FABI News

FABI Events

FABI in a nutshell

Research Features

Summary

Needle diseases of pines

Two potentially important diseases of pine needles are known in South Africa. These are Dothistroma needle blight caused by Dothistroma septosporum and Cercoseptoria needle blight caused by Cercoseptoria pini-densiflorae. In addition, Diplodia pinea can infect, kill and sporulate on pine needles. This fungus, however, usually infects shoots as discussed previously.

The primary needle pathogens of pines infect healthy, young foliage. Infections usually occur early in spring during wet, warm weather. After infection, symptoms may take a few days or a few months to appear. To recognise a primary needle disease, it is necessary to inspect the current year's needles at regular intervals. Needle pathogens usually infect most of the trees of a susceptible species in an area and are often most severe on younger trees and seedlings. In older plantations, a needle disease is often detected by inspecting natural regeneration.

Dothistroma needle blight can be identified by chlorotic bands on the older needles at the base of branches in the lower half of the tree. These yellow bands spread to cover the entire needle, which ultimately turns brown and is shed. As the disease develops, it spreads to the younger foliage at the branch tips and at a chronic stage the tree may be left only with tufts of current year needles. Groups of small black fruiting bodies of the fungus break through the epidermis of dead needles.

Cercoseptoria needle blight was first recognised in South Africa in the 1980's where it was found in the eastern Cape, mainly on P. radiata, and in the eastern Mpumalanga on P. patula. This disease can be very severe in nurseries and young plantations where seedlings of many pine species can be entirely defoliated. The fungus usually infects old foliage first but in severe cases young foliage can also be affected. The first symptoms of infection are light green bands on the needles, which then turn yellow, brown and finally a grey colour. Fruiting bodies can be seen on dead needles and are characteristically "brush-like" and gray in appearance.

There are a number of other fungi that occur on senescent pine needles in South Africa (Crous et al. 1990). These are often found on needles killed by some of the previously mentioned needle pathogens. Under certain conditions these fungi can be pathogenic and kill healthy needles. The two most common genera in this group are Lophodermium spp. and Cyclaneusma spp. Lophodermium spp. are easily recognised on dead needles by the very distinct, elongate, black fruiting structures which open by a longitudinal slit in the centre. Cyclaneusma minus also produces distinct fruiting structures on dead needles. This fungus causes the needles to break open on the surface in a double "trap-door" like pustule.

Leaf diseases of eucalypts

In recent years, considerable effort has been made to identify the most common eucalypt leaf-infecting fungi. This has resulted in the identification of a large number of fungi, ranging from virtually saprophytic to highly pathogenic. Of these the most common leaf pathogens include Teratosphaeria (Mycosphaerella) spp. (T. nubilosa is considered most common and important), Aulographina eucalypti, Kirramyces (Phaeophloeospora) epicoccoides, Sphaerotheca pannosa and Pseudocercospora eucalypti (Crous et al., 1989).

At present, only Teratosphaeria spp. are considered to be major pathogens of eucalypts in plantations. These fungi cause a disease commonly known as Mycosphaerella leaf blotch. This disease occurs on many eucalypt species but is most common and serious on E. nitens. Mycosphaerella leaf blotch is characterised by large necrotic lesions on juvenile leaves and the presence of small black pseudothecia (fruiting structures containing sexual spores) on these lesions.

Only juvenile leaves of E. nitens are susceptible to infection by Teratosphaeria spp. and, once trees produce adult leaves, they are no longer affected by this pathogen. Victoria provenances of E. nitens are highly susceptible and severe defoliation can prevent trees from reaching the adult leaf stage. In general, New South Wales provenances are relatively resistant to this disease. Certain provenances from this area are, however, beginning to show unacceptable levels of susceptibility to Mycosphaerella leaf blotch. In recent years, the disease has also begun to occur commonly on E. grandis and there are indications that the pathogen is adapting to this species.

Powdery mildew caused by Sphaerotheca pannosa is an important and damaging disease of eucalypts in seedling as well as vegetative propagation nurseries. It is also important on trees in clonal hedge banks. The disease can cause serious defoliation and even death of trees in these situations (Crous et al., 1989).

Leaf spot and blight cause by Quambalaria eucalypti is a sporadic problem in the Zululand region, especially in nurseries. Infection may result in shoot death and affects the production of cuttings from hedges. The disease is most common on E. grandis hybrid clones in Zululand, but has also been found on E. nitens in the Mpumalanga region of the country (Roux et al. 2006).

Leaf diseases of wattle

Only two diseases are known to affect the leaves of wattle trees in South African plantations. These include rust caused by Uromyces alpinum and leaf spot caused by the Ascomycete, Camptomeris albizziae. Losses associated with these diseases are minimal. They do, however, appear to be associated with leaf drop, which can often be severe in autumn (Roux 2002).

New Publications

Marais I, Buitendag C, Duong TA, Crampton BG, Theron J, Kidanemarium D, Berger DK. (2024) Double-stranded RNA uptake for the control of the maize pathogen Cercospora zeina. Plant Pathology Online first:1-11. 10.1111/ppa.13909
van Heerden A, Pham NQ, Wingfield BD, Wingfield MJ, Muro Abad JI, Durán A, Wilken PM. (2024) LAMP assay to detect Elsinoë necatrix; an important Eucalyptus shoot and leaf pathogen. Plant Disease 10.1094/PDIS-01-24-0086-RE
Silva GA, Oliveira MES, Rêgo GMS, Wingfield BD, Wingfield MJ, Ferreira MA. (2024) Chrysoporthe brasiliensis sp. nov. pathogenic to Melastomataceae in southeast Brazil. Fungal Biology 10.1016/j.funbio.2024.04.001
Fick A, Swart V, Bombarely A, van den Berg N. (2024) Comparative transcriptional analysis of Persea americana MYB, WRKY and AP2/ERF transcription factors following Phytophthora cinnamomi infection. Molecular Plant Pathology 25(4):e13453. 10.1111/mpp.13453 PDF
Van Lill M, Venter SN, Muema EK, Palmer M., Beukes CW, Chan WY, Steenkamp ET. (2024) SeqCode facilitates naming of South African rhizobia left in limbo. Systematics and Applied Microbiology 47(2-3):126504. 10.1016/j.syapm.2024.126504 PDF
Visagie CM, Meyer H, Yilmaz N. (2024) Maize–Fusarium associations and their mycotoxins: Insights from South Africa. Fungal Biology 10.1016/j.funbio.2024.03.009
Elisa P, Allison J, Hurley BP, Slippers B, Fourie G. (2024) Lethal and sublethal effects of insecticides on Bathycoelia distincta (Heteroptera: Pentatomidae). African Entomology 32: e16992:1-9. 10.17159/2254-8854/2024/a16992
Pietersen G, Morgan S, Read DA. (2024) First report of Citrus concave gum-associated virus (CCGaV) on apple (Malus spp.) in South Africa. Journal of Plant Pathology 10.1007/s42161-024-01629-9
Gush S, Lebre P, Coutinho TA, Cowan DA, van der Waals JE. (2024) Disentangling shifts in the soil microbiome of potatoes infected with Rhizoctonia solani Anastomosis Group 3-PT in search of potential biocontrol agents. Phytobiomes Journal 10.1094/PBIOMES-06-23-0046-R
Dankie VN, Steenkamp ET, De Vos L, Swalarsk-Parry BS, Dewing C, Fru F, Wilken PM, Mchunu NP, Wingfield BD, Wingfield MJ, van der Nest MA. (2024) Growth, pathogenicity and sexual fertility of the African tree pathogen Ceratocystis albifundus. Journal of Plant Pathology :1-11. 10.1007/s42161-024-01634-y
Abkallo HM, Arbuthnot P, Auer TO, Berger DK, Burger J, Chakauya E, Concordet J-P, Diabate A, Di Donato V, Groenewald J-H, Guindo A, Koekemoer LL, Nazare F, Nolan T, Okumu F, Orefuwa E, Paemka L, Prieto-Godino L, Runo S, Sadler M, Tesfaye K, Tripathi L, Wondji C. (2024) Making genome editing a success story in Africa. Nature Biotechnology :1-4. https://rdcu.be/dBJUa
Robert R, Robberste N, Thompson GD, Read DA. (2024) Characterization of macadamia ringspot‑associated virus, a novel Orthotospovirus associated with Macadamia integrifolia in South Africa. European Journal of Plant Pathology 10.1007/s10658-024-02832-1 PDF
Hiroyuki S, Marincowitz S, Roux J, Paap T, Wingfield BD, Wingfield MJ. (2024) A new genus and species of Cryphonectriaceae causing stem cankers on plantation eucalypts in South Africa. Plant Pathology :1-14. 10.1111/ppa.13883 PDF
Strydom RF, Wilson CR, Tegg RS, Balendres MA, van der Waals JE. (2024) Advancements in Spongospora subterranea: Current knnowledge, management strategies, and research gaps. Potato Research 10.1007/s11540-024-09701-8
Mapfumo P, Buthelezi S, Archer E, Swanevelder DZH, Wilken PM, Creux N. (2024) In-field climatic factors driving Sclerotinia head rot progression across different sunflower planting dates. Plant Pathology 10.1111/ppa.13873
Price J-L, Visagie CM, Meyer H, Yilmaz N. (2024) Fungal species and mycotoxins Associated with Maize ear rots collected from the Eastern Cape in South Africa. Toxins 16:95. 10.3390/toxins16020095
Tarigan M, Wingfield MJ, Jami F, Marpaung YMAN, Duran A, Pham NQ. (2024) Pathogenicity of Chrysoporthe deuterocubensis on eucalypts in Indonesia. Southern Forests: a Journal of Forest Science 10.2989/20702620.2023.2279054
Caballol M, Serradó F, Barnes I, Camarero JJ, Valeriano C, Colangelo M, Oliva J. (2024) Climate, host ontogeny and pathogen structural specificity determine forest disease distribution at a regional scale. Ecography :e06974. 10.1111/ecog.06974 PDF
MISEV Consortium, Motaung T. (2024) Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. Journal of Extracellular Vesicles 13(2):e12404. 10.1002/jev2.12404
Pham NQ, Suzuki H, Duong TA, Wingfield BD, Barnes I, Duran A, Wingfield MJ. (2024) Cryptic sexual reproduction in an emerging Eucalyptus shoot and foliar pathogen. Plant Pathology 10.1111/ppa.13876
Francinah M. Ratsoma, Nthabiseng Z. Mokoena, Quentin C. Santana, Brenda D. Wingfield, Emma T. Steenkamp, Thabiso E. Motaung. (2024) Characterization of the Fusarium circinatum biofilm environmental response role. Journal of Basic Microbiology 00(00):1-16. 10.1002/jobm.202300536
Morrison EW, Duong TA, Garnas JR. (2024) A high-quality draft genome sequence of Neonectria faginata, causative agent of beech bark disease of Fagus grandifolia. Microbiology Resource Announcements 10.1128/mra.01048-23
Roberts E, Paap T, Roets F. (2024) Chemical control of the Polyphagous Shothole Borer beetle (PSHB, Euwallacea fornicatus) and Fusarium euwallaceae in American sweetgum (Liquidambar styraciflua). Journal of Plant Pathology 10.1007/s42161-023-01583-y
Fitza KNE, Allison J, Slippers B, Chingandu N, Reed SE. (2024) Diversity and potential sources of introduction of the Beech leaf nematode (Litylenchus crenatae< mccannii) to Ontario, Canada. Canadian Journal of Plant Pathology
Engelbrecht K, Raubenheimer I, Paap T, Neethling E, Roets F. (2024) Detection of Fusarium euwallaceae and its vector Euwallacea fornicatus on Pear (Pyrus communis) and in deciduous fruit orchards in South Africa. Australasian Plant Disease Notes 19(1) 10.1007/s13314-023-00524-z PDF
Visagie CM, Meijer M, Kraak B, Groenewald M, Houbraken J, Theelen B, Vorst Y, Boekhout T. (2024) Blastobotrys nigripullensis, a new yeast species isolated from a fungal outbreak on an ancient Roman shipwreck in the Netherlands. Antonie Van Leeuwenhoek 117:22. 10.1007/s10482-023-01898-x
Hlongwane NL, Dzomba EF, Hadebe K, van der Nest MA, Pierneef R, Muchadeyi FC. (2024) Identification of signatures of positive selection that have shaped the genomic landscape of South African pig populations. Animals 14:235. 10.3390/ani14020236
De Vos L, van der Nest MA, Santana QC, van Wyk S, Leeuwendaal KS, Wingfield BD, Steenkamp ET. (2024) Chromosome-level assemblies for the pine pitch canker pathogen Fusarium circinatum. Pathogens 13(1):70. 10.3390/pathogens13010070
Chen BY, Wu WX, Chen SF. (2024) Wide distribution of Teratosphaeria epicoccoides and T. destructans associated with diseased Eucalyptus leaves in plantations in Southern China. Microorganisms 12:129. 10.3390/microorganisms12010129
Visagie CM, Yilmaz N, Kocsubé S, Frisvad JC, Hubka V, Samson RA, Houbraken J. (2024) A review of recently introduced Aspergillus, Penicillium, Talaromyces and other Eurotiales species. Studies in Mycology 107:1–66. 10.3114/sim.2024.107.01
Joubert M, van den Berg N, Theron J, Swart V. (2024) Global transcriptomic analysis in avocado nursery trees reveals differential gene expression during asymptomatic infection by avocado sunblotch viroid (ASBVd). Virus Research 339:199263. 10.1016/j.virusres.2023.199263. PDF
Nganso BT, Soroker V, Osabutey AF, Pirk CWW, Johansson T, Elie N, Otieno-Ayayo ZN, Ibrahim MM, Ndungu NN, Ayalew W, Wubie AJ, Taboue GCT, Fameni ST, Bobadoye BO, Assefa F, Subramanian S. (2024) Best practices for colony management: a neglected aspect for improving honey bee colony health and productivity in Africa. Journal of Apicultural Research :1-18. 10.1080/00218839.2024.2308418
Yusuf A, Pirk C, Crewe R. (2024) A Hitchhiker’s Ride: The Honey Bee Louse Braula Coeca (Diptera: Braulidae) Selects its Host by Eavesdropping. Journal of Chemical Ecology 10.1007/s10886-024-01481-2
Crous PW, Costa MM, Kandemir H, Vermaas M, Vu D, Zhao L, Arumugam E, Flakus A, Jurjević Ž, Kaliyaperumal M, Mahadevakumar S, Murugadoss R, Shivas RG, Tan YP, Wingfield MJ, Abell SE, Marney TS, Danteswari C, Darmostuk V, Denchev CM, Denchev TT, Gené J, Etayo J, Gunaseelan S, Hubka V, Illescas T, Jansen GM, Kezo K, Kumar S, Larsson E, Mufeeda KT, Piatek M, Rodriguez-Flakus P, Sarma PVSRN, Stryjak-Bokacka M, Torres-Garcia D, Vauras J, Acal DA, Akulov A, Alhudaib K, Asif M, Balashov S, Baral H-O, Baturo-Cieśniewska A, Begerow D, Beja-Perreira A, Bianchinotti MV, Bilański P, Chandranayaka S, Chellappan N, Cowan DA, Custódio FA, Czachura P, Delgado G, De Silva NI, Dijksterhuis J, Dueñas M, Eisvand P, Fachada V, Fournier J, Fritsche Y, Fuljer F, Ganga KGG, Guerra MP, Hansen K, Hywel-Jones N, Ismail AM, Jacobs CR, Jankowiak R, Karich A, Kemler M, Kisło K, Klofac W, Krisai-Greilhuber I, Latha KPD, Lebeuf R, Lopes ME, Lumyong S, Maciá-Vicente JG, Maggs-Kölling G, Magistà D, Manimohan P, Martín MP, Mazur E, Mehrabi-Koushki M, Miller AN, Mombert A, Ossowska EA, Patejuk K, Pereira OL, Piskorski S, Plaza M, Podile AR, Polhorsky A, Pusz W, Raza W, Ruszkiewicz-Michalska M, Saba M, Sánchez RM, Singh R, Śliwa L, Smith ME, Stefenon VM, Strašiftáková D, Suwannarach N, Szczepańska K, Telleria MT, Tennakoon DS, Thines M, Thorn RG, Urbaniak J, van der Vegte M, Vasan V, Vila-Vićosa C, Voglmayr H, Wrzosek M, Zappelini J, Groenewald JZ. (2023) Fungal Planet description sheets: 1550-1613. Persoonia 51:280-417. 10.3767/persoonia.2023.51.08
Wilken PM, Lane FA, Steenkamp ET, Wingfield MJ, Wingfield BD. (2023) Unidirectional mating-type switching is underpinned by a conserved MAT1 locus architecture. Fungal genetics and Biology (103859) 10.1016/j.fgb.2023.103859
Schertler A, Thines M, Dawson W, van Kleunen M, Kreft H, Pergl J, Pyšek P, Weigelt P, Winter M, Seebens H, Wingfield MJ, Reino L, Lenzner B, Dellinger S, Moser D, Bufford JL, Ghelardini L, Santini A, Capinha C, Monteiro M, Essl F. (2023) Biogeography and global flows of 100 major alien fungal and fungus-like oomycete pathogens. Journal of Biogeography 10.1111/jbi.14755
van der Merwe E, Slippers B, Dittrich-Schröder G. (2023) Mechanical egg activation and rearing of first instar larvae of Sirex noctilio (Hymenoptera: Siricidae). Insects 14(12):931. https://www.mdpi.com/2075-4450/14/12/931
Wingfield MJ, Marincowitz S, Barnes I, Tarigan M, Solís M, Duran A, Pham NQ. (2023) First report of phyllode rust on Acacia crassicarpa outside its native range. Forest Pathology 10.1111/efp.12839
Fourie A, Venter S, Slippers B, Fourie G. (2023) Pantoea bathycoeliae sp. nov and a Sodalis sp. are core gut microbiome symbionts of the two-spotted stink bug. Frontiers in Microbiology :1-19. 10.3389/fmicb.2023.1284397 PDF
Rakubu IL, Katumanyane A, Hurley BP. (2023) Host-foraging strategies of five local entomopathogenic nematode species in South Africa. Crop Protection 176:106525. 10.1016/j.cropro.2023.106525
Barten H, Schröder ML, Slippers B, Howe AG, Lawson SA, Hurley BP. (2023) Reproductive compatibility of a newly imported Australian population of the biocontrol agent Anaphes nitens with an existing South African population. Biological Control 187:105403. 10.1016/j.biocontrol.2023.105403 PDF
Anbu SP, Swart V, van den Berg N. (2023) Unmasking the invaders: NLR-mal function in plant defense. Frontiers in Plant Science 14:1307294. 10.3389/fpls.2023.1307294 PDF
Pham NQ, Duong TA, Wingfield BD, Barnes I, Duran A, Wingfield MJ. (2023) Characterisation of the mating-type loci in species of Elsinoe causing scab diseases. Fungal Biology 127:1484–1490. 10.1016/j.funbio.2023.11.003
Wu WX, Li WW, Liu FF, Chen SF. (2023) Evidence of High Genetic Diversity and Differences in the Population Diversity of the Eucalyptus Leaf Blight Pathogen Calonectria pseudoreteaudii from Diseased Leaves and Soil in a Plantation in Guangxi, China. Microorganisms (11) 10.3390/microorganisms11112785 PDF
Backer R, Naidoo S, van den Berg N. (2023) The expression of the NPR1-dependent defense response pathway genes in Persea americana (Mill.) following infection with Phytophthora cinnamomi. BMC Plant Biology 23(1):548. 10.1186/s12870-023-04541-z PDF
Rakubu IL, Katumanyane A, Hurley BP. (2023) Screening five local entomopathogenic nematode species for their virulence against pupae of the Eucalyptus snout beetle, Gonipterus sp. n. 2, under laboratory conditions . Crop Protection 176:106500. 10.1016/j.cropro.2023.106500
Omondi DO, Dida MM, Berger DK, Beyene Y, Nsibo DL, Juma C, Mahabaleswara SL, Gowda M. (2023) Combination of Linkage and Association Mapping with Genomic Prediction to Infer QTL Regions Associated with Gray Leaf Spot and Northern Corn Leaf Blight Resistance in Tropical Maize. Frontiers in Genetics 14:1-16. 10.3389/fgene.2023.1282673
Granados GM, Rodas CA, Vivas M, Wingfield MJ, Barnes I. (2023) Patterns of Dothistroma septosporum conidial dispersal in Colombian Pinus tecunumanii plantations. Forest Pathology (00):e12834. 10.1111/efp.12834
Bose T, Hammerbacher A, Spies CFJ, Coutinho TA. (2023) Phytophthora: an underestimated threat to agriculture, forestry, and natural ecosystems in sub-Saharan Africa. Mycological Progress 22:78. 10.1007/s11557-023-01926-0
Robert Mangani, Kpoti M. Gunn, Nicky Creux. (2023) Projecting the effect of climate change on planting date and cultivar choice for South African dryland maize production. Agricultural and Forest Meteorology 341(15):109695. 10.1016/j.agrformet.2023.109695