

Armillaria root rot of avocado caused by Armillaria species

Fact Sheet (January 2023)

Hartley, J & van den Berg, N, Avocado Research Programme (FABI), University of Pretoria

Background

Armillaria species are the causal agents of root and trunk rot on a wide range of plant species [1]. Among these species, A. mellea is the most prominent fungus associated with Armillaria root rot [2]. Armillaria root rot of avocado was first reported by Smoyer in 1941 in the USA [3]. This pathogen has since spread to multiple countries, and has been reported on Eucalyptus spp., Pinus spp. and other woody hosts in South Africa [4-6].

Symptoms

Infection of the large roots and crown of the host (Fig. A) causes aerial symptoms such as decline in vigour and leaf chlorosis (Fig. B) [2]. Death can occur rapidly with leaves still attached, or trees can deteriorate gradually [2,7]. White-cream mycelial growth can be observed along the roots and underneath the bark at the crown, eventually progressing to the cambium and inner bark at the base of the tree [7,8]. Following wet weather, honey-coloured fruiting bodies of *Armillaria* may appear near the base of infected trees (Fig. C) [2].

Biology

Armillaria spp. are basidiomycete fungi that can live as saprophytes in the soil on woody debris [1,2]. Armillaria spp. will spread to adjacent trees through root contact and movement of soil [1,2].

Known Hosts

These fungi have a worldwide distribution and have been reported on a variety of host species [2]. Economically important hosts include avocado, grapevine, pine, eucalyptus, cherimoya, conebushes, citrus, protea and oak [6-9].

Control

The most effective control measures are based on improving growth conditions and employing proper cultural practice. Environmental and nutritional stresses should be avoided [8]. All dead trees, stumps and root debris should be removed and discarded [8]. Adjacent trees that may also be infected should also be removed. Care should be taken when irrigating orchards as excess irrigation should be avoided [8]. In grapevine, deterrents such as excavation around the root crown have proven effective [10]. Pruning and harvesting equipment should be disinfected between each tree by cleaning or wiping with disinfectant (70% ethanol or bleach solution diluted to 5%) [8]. In peach orchards, addition of fresh organic matter, especially woody high C:N ratio tree wastes aided in the survival in Armillaria infested soils [11]. In grapevine and stone fruit trees, sterol demethylation inhibiting fungicides can be effective in disease prevention [11-12].

Photos by David Rosen and Jack Kelly Clark, provided by Dr. Akif Eskalen and University of California, Agriculture & Natural Resources (UCANR).

What to do?

- Monitor your trees for wilt and decline, as well as the presence of cream-white mycelia under the bark, on the roots or in the soil.
- 2. Fill out a FABI diagnostic clinic form, available at https://www.fabinet.up.ac.za/index.php/hosted-sites/diagnostic-clinic and send to diagnostic.clinic@fabi.up.ac.za.
- Collect samples from the trunk (bark) and roots, package separately in brown paper bags with a wet paper towel in each, place in a crate/polystyrene box and send to the FABI diagnostic clinic.

Contact Address

Avocado Research Programme, Prof. Noëlani van den Berg, Diagnostic clinic, FABI, 74 Lunnon street, University of Pretoria, Pretoria, 0083 Dr. Lieschen De Vos, +27 12 420 3938/5826.

References

- 1. Darley & Zentmyer. 1957. California Avocado Society 41: 80-81.
- 2. Pérez-Jiménez. 2008. European Journal of Plant Science and Biotechnology 2 (1): 1-24.
- 3. Smoyer. 1941. California Avocado Society Yearbook 25: 86.
- 4. Doidge et al. 1953. South African Department of Agriculture Science Bulletin 346: 1–122.
- 5. Wingfield & Knox-Davies. 1980. Phytophylactica 12: 57–63.
- 6. Coetzee et al. 2000b. Mycologia 92 (4): 777-785.
- 7. Zentmyer *et al.* 1965. California Agricultural Experiment Station, Circular 534, 11 pp.
- 8. Eskalen *et al.* 2016. UC IPM Pest Management Guidelines: Armillaria Root Rot (Oak Root Fungus). https://www2.ipm.ucanr.edu/agriculture/avocado/Armillaria-root-rot-Oak-root-fungus/
- 9. Coetzee et al. 2003. Plant Pathology 52 (5): 604-612.
- 10. Baumgartner. 2004. Plant Disease 88: 1235-1240.
- 11. Downer & Faber. 2019. Journal of Plant Science and Phytopathology 3: 050-055.
- 12. Adaskaveg et al. 1999. Plant Disease 83: 240-246.