The Molecular Plant-Pathogen Interactions (MPPI) Group is located in the Plant Sciences Complex at the University of Pretoria. The group is part of the Department of Plant Science and the Forestry and Agricultural Biotechnology Institute (FABI) and is headed by Prof Dave Berger. Research focuses on the molecular basis of plant-pathogen interactions and the mechanisms of plant defence using a range of approaches from whole plant phenotyping to functional genomics, as well as developing bioinformatics tools. The MPPI group has particular experience in transcriptomics using microarrays and is now increasingly using RNAseq.

There are two major research projects in the MPPI lab, The first involves maize, the staple food of sub-Saharan Africa. We are interested in understanding mechanisms underlying quantitative disease resistance in maize to grey leaf spot (GLS) disease. GLS is an important constraint to maize production in many maize growing regions of the world, particularly in Africa.

We collaborate with maize breeders and field pathologists to understand the disease in its Agricultural context, which gives postgraduate students the opportunity to temporarily "escape" from the lab. Apart from glasshouse bioassays, the MPPI group is employing genomics, such as high density molecular markers, and transcriptomics to study maize defence mechanisms against GLS, with the long term aim to develop tools for maize improvement, such as marker assisted selection.

The MPPI group, together with the CFPRG in FABI, is also elucidating pathogenicity strategies employed by Cercospora zeina, the causal agent of GLS. We are taking a comparative genomics approach, through whole genome sequencing of C. zeina isolates. The research is followed up using functional genomics tools developed in the CFPRG. In addition, we are carrying out genetic diversity studies of C.zeina.

The second project area is study of the pathosystem between Ralstonia solanacearum, the causal agent of bacterial wilt and the model plant Arabidopsis thaliana. We are taking a genetic approach. This exploits the natural diversity of Arabidopsis accessions as well as the many molecular tools available for Arabidopsis research.

The MPPI group is hosted in the Plant Sciences Complex with excellent laboratories for plant biotechnology research, dedicated Arabidopsis growth rooms and access to phytotron and glasshouse facilities. Several bioinformatics software packages and databases have been developed by the group in collaboration with the Bioinformatics and Computational Biology Unit at the University of Pretoria.

New Publications

Export to RIS
Swart V, Crampton BG, Ridenour J, Bluhm BH, Olivier NA, Meyer JJM, Berger DK. (2017) Complementation of CTB7 in the maize pathogen Cercospora zeina overcomes the lack of in vitro cercosporin production. Molecular Plant-Microbe Interactions First Look Online 10.1094/MPMI-03-17-0054-R
Christie N, Myburg AA, Joubert F, Murray SL, Carstens M, Lin Y-C, Meyer J, Crampton BG, Christensen SA, Ntuli JF, Wighard SS, Van de Peer Y, Berger DK. (2017) Systems genetics reveals a transcriptional network associated with susceptibility in the maize-gray leaf spot pathosystem. The Plant Journal 89(4):746-763. 10.1111/tpj.13419
Reitmann A, Berger DK, Van den Berg. (2017) Putative pathogenicity genes of Phytophthora cinnamomi identified via RNA-Seq analysis of pre-infection structures. European Journal of Plant Pathology 147(1):211-228. 10.1007/s10658-016-0993-8
Human MP, Barnes I, Craven M, Crampton BG. (2016) Lack of population structure and mixed reproduction modes in Exserohilum turcicum from South Africa. Phytopathology 106(11):1386-1392. 10.1094/PHYTO-12-15-0311-R
Muller MF, Barnes I, Kunene NT, Crampton BG, Bluhm B, Phillips S, Olivier NA, Berger DK. (2016) Cercospora zeina from maize in South Africa exhibits high genetic diversity and lack of regional population differentiation. Phytopathology 106(10):1194-1205. 10.1094/PHYTO-02-16-0084-FI