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The woodwasp Sirex noctilio is causing extensive damage to Pinus patula trees in

the summer rainfall areas of South Africa. The ability to remotely detect S. noctilio

infestation remains crucial for monitoring purposes and for the effective deploy-

ment of suppression activities. In this study, we evaluated whether random forest

and boosting trees can accurately discriminate between healthy trees and the early

stages of S. noctilio infestation using reflectance measurements in the shortwave

infrared (SWIR). Three variable selection methods, namely, a filter, the random

forest out-of-bag samples and a wrapper algorithm, were used to select the smallest

subset of SWIR bands. The results show that random forest produces better

classification results than the competing boosting trees for all three variable selec-

tion methods, even when noise is introduced into the SWIR bands and class labels.

The ability of the bands centred at 1990, 2009, 2028, 2047 and 2065 nm to

discriminate between healthy trees and the early stages of infestation could be

explained due to the rapid physiological changes that occur as a result of the toxic

mucus and a fungus that S. noctilio injects into the tree. Overall, the results are

encouraging and show that there is a link between the selected SWIR bands and

existing physiological knowledge, thereby improving the chances of detecting the

early stages of S. noctilio infestation at a canopy or landscape level.

1. Introduction

Sirex noctilio (woodwasp) is currently the most important pest of conifers in South

Africa, causing an estimated US$45 million of damage in the summer rainfall areas of
the country (Hurley et al. 2008). The nematode Deladenus siricidicola and parasitic

wasps such as Ibalia leucospoides and Megarhyssa nortoni are used as biological

control agents for the pest (Tribe and Cillie 2004). However, the ability to accurately

detect S. noctilio (hereafter, referred to as S. noctilio infestations) remains crucial for

the effective deployment of these biological control agents (Ismail et al. 2007).

Researchers have shown that multispectral remotely sensed data can detect the

later, more visible stages of S. noctilio infestations when the canopy of the attacked

tree changes colour from green to yellow to reddish brown (Ismail et al. 2007, 2008b).
However, a primary limitation remains on the effective discrimination between

healthy trees and the early (or green) stage of S. noctilio infestations, which is a highly

sought after goal, and from a management perspective could potentially help identify
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forests requiring intervention before they reach a point of no recovery (Ismail et al.

2008a).

High spectral resolution data (hyperspectral) has the ability to discriminate the

early stages of insect infestations (Lawrence and Labus 2003, Pontius et al. 2005b,

2008) because the bands are narrow (10 nm or less) and small spectral differences can
be distinguished (Schmidt and Skidmore 2001). Initial efforts at discriminating the

green stage from healthy trees showed that bands centred at 500, 521, 685 and 760 nm

have the greatest potential (Ismail et al. 2008a). The laboratory-based study by Ismail

et al. (2008a) concentrated on the visible and near-infrared regions, but excluded the

shortwave infrared (SWIR), a domain which researchers have shown to be a good and

consistent indicator of conifer mortality (Collins and Woodcock 1996, Skakun et al.

2003, Jin and Sader 2005). More specifically, physiological evidence suggests that,

during the green stage, S. noctilio injects toxic mucus and a fungus that causes an
increase in enzyme activity associated with the conversion of foliar starch reserves to

soluble sugars and a rise in respiratory activity which then results in the rapid

depletion of soluble sugar levels (Neumann and Minko 1981). According to Kumar

et al. (2001), starch is a polysaccharide of D-glucose and is the main food storage

molecule of plants with absorption features located predominately in the

SWIR. Starch has known SWIR absorption features located at 1450, 1560, 1700,

1770, 1930, 2100, 2320 and 2480 nm (Kumar et al. 2001). Therefore, this study intends

to expand on the work by Ismail et al. (2008a) by determining if there are specific
bands in the SWIR region that will allow for the accurate discrimination between

healthy trees and the green stage.

In light of the future availability of hyperspectral data in South Africa (Scholes and

Annamalai 2006, van Aardt and Coppin 2006) there is a keen interest amongst remote

sensing researchers in developing robust methods and techniques that will allow for

the accurate discrimination of the green stage of S. noctilio infestation. Additionally,

these methods need to be automated to some level with limited human interaction to

allow for critical evaluation (Soh 1999). However, hyperspectral data tend to be more
difficult to process than the commonly used multispectral data due to the geometrical

and statistical properties associated with high-dimensional data (Langrebe 2002).

From a statistical perspective, the challenge is identifying the relevant bands from a

large set of candidate bands (p) and a small number of samples (n). The ‘small n large p

problem’ introduces multi-collinearity into the input data matrix which subsequently

leads to instability into the classification process (Kavzoglu and Mather 2002).

Various variable selection approaches have been proposed to reduce the ‘curse of

dimensionality’ (Bruzzone and Serpico 2000, Kavzoglu and Mather 2002, Bajcsy and
Groves 2004, Vaiphasa et al. 2005, 2007). These approaches can be basically divided

into two categories based on whether they use the classification algorithm as part of

the evaluation process (Guyon and Elisseeff 2003). If the variable selection is inde-

pendent of the classification algorithm then the approach is defined as a filter

approach, and if the variable selection is dependant on the classification algorithm

then the method is defined as a wrapper (Kohavi and John 1997). The filter approach

has been more commonly used to reduce the number of bands in hyperspectral

applications (Schmidt and Skidmore 2001, Vaiphasa et al. 2005, Ismail et al. 2008a);
however the wrapper approach is fast gaining popularity amongst some remote

sensing researchers (Chan and Paelinckx 2008). A potential problem when using the

filter approach which is relatively faster is that the ranking of the bands is carried out

between pairs of bands and without any direct relation to the classification algorithm.
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According to Granitto et al. (2006), in order to obtain unbiased estimates of error,

especially in applications where n , p, the selection of variables should be included in

the classification process and not treated as a separate pre-processing step. Therefore,

an algorithm such as random forest (Breiman 2001), which provides an additional

direct measure of variable importance, should be well suitable for the classification of
hyperspectral data.

While popular methods such as support vector machines and neural networks are

useful for the classification of hyperspectral data (Mutanga and Skidmore 2004, Pal

and Mather 2004), these algorithms do not produce any insight regarding the bands

that best contribute to the final classification (Archer and Kimes 2008). Alternatively,

random forest has been successfully used for variable selection and for classification

purposes in non-remote sensing domains (Svetnik et al. 2003, Svetnik et al. 2004,

Diaz-Uriarte and Alvarez de Andres 2006, Granitto et al. 2006). With the exception of
Chan and Paelinckx (2008), few applications in the remote sensing domain have

evaluated the random forest for the combined purpose of classification and variable

selection using hyperspectral data. Additionally, researchers (Gislason et al. 2006)

have applied random forest to applications that classify phenomena or objects that

have distinct spectral characteristics. In this study we evaluated random forest for

variable selection and classification in a hyperspectral application (i) where the

number of samples is less than the number of variables (n , p) and (ii) where classes

have similar spectral characteristics. However, as no single algorithm has been
demonstrated to be superior for all applications (Kohavi et al. 1997), it was necessary

to test an additional competing classification tree ensemble known as boosting trees.

To summarize, in this article we evaluate whether two classification tree ensembles

can accurately discriminate between healthy trees and the early stages of S. noctilio

infestation using SWIR bands. More specifically, we examine the potential role of

three variable selection methods to produce a subset of bands with the lowest mis-

classification error. Furthermore, we evaluated if the two classification tree ensembles

can recover the signal in the hyperspectral data when the class labels or the reflectance
values of bands are randomly altered. Given that the number of samples was limited

in this study, it was not practical to subset the original observations for testing

purposes. We therefore use the .632þ bootstrap error (Efron and Thibshirani 1997)

to assess the classification accuracy of both algorithms.

2. Methods and materials

2.1 Site description

During April 2006, needle samples from healthy and green stage Pinus patula trees were

collected from an S. noctilio attacked compartment (4 ha) located at the Sappi Pinewoods

plantation (centroid 30�4013.8300 E and 29�38036.0600 S) in KwaZulu–Natal, South

Africa (Ismail et al. 2008a). The site is located approximately 30 km west of the town

of Pietermaritzburg, KwaZulu–Natal. The average altitude for the site is 1190 m with an
average air temperature of 16.1�C (Macfarlane 2004). The mean annual rainfall of the

area is 916 mm. The terrain consists of low mountains and undulating hills. The geology

of the area is a mixture of mudstone, sandstone, tillite, ampholite and basalt. Soils in the

area are mostly sandy clay and sand–clay loams (Macfarlane 2004).

Before any sampling or spectral measurements were acquired, the pine trees were

carefully examined with the assistance of experienced foresters and classified into

mutually exclusive classes (i.e. healthy or green stage trees). The green stage trees are
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characterized by the appearance of resin droplets along the trunk of the tree, the

presence of ovipositors on the bark and a dark fungal stain appearing along the

cambium. There is minimal needle loss and the canopy appears green, healthy and

visibly indistinguishable from a healthy tree (Neumann and Minko 1981, Tribe and

Cillie 2004). Tree climbers obtained samples from five green stage trees and four
healthy trees located in the same compartment and within 20 m of each other.

Additionally, the pine trees were of the same age and no other damaging agents

were observed (Ismail et al. 2008a). The samples for each class were then obtained

from three branches (upper, middle and lower crowns) with two needle samples from

the same branch.

2.2 Spectral data acquisition and processing

In situ spectral measurements of the needle samples (n ¼ 54) were acquired on a

clear sunny day between 10:00 a.m. and 2:00 p.m. using the analytical spectral

devices (ASD) Field Spec Pro FR spectroradiometer (ASD Inc., Boulder, CO,

USA). The ASD senses in the 350–2500 nm spectral range and has a spectral

sampling interval between 1.4 and 2.0 nm with a spectral resolution of 3 and 12
nm (ASD 2006). The instrument (equipped with a field of view of 25�) was

mounted on a tripod and positioned 0.5 m above each sample at the nadir

position. Following ASD measurement protocols, reflectance spectra were

obtained by calibrating the radiance of the target samples with the radiance of

a standard (white reference panel, spectralon) of known spectral characteristics.

The needle samples from the green stage (n ¼ 30) and healthy trees (n ¼ 24) were

arranged side-by-side on a vinyl mount to form solid mats because the needles

were too small to fill the ASD field of view (Stimson et al. 2005). Using the
technique described by Stimson et al. (2005), the needles were arranged in a

contiguous manner without any overlapping needle or leafy shoots and care was

taken to minimize the gap between needles. Additionally, to minimize error, 10

spectral reflectance measurements were averaged for each sample and individual

samples were rotated 30� between scans (Pontius et al. 2005a). Since current

hyperspectral sensors do not reach such a fine spectral resolution as the ASD, we

subsequently resampled the ASD spectral reflectance to Hyperspectral Mapper

(HyMAP) bands using ENVI 4.2 (http://www.ittvis.com/envi). The method used
a Gaussian model with a full width at half maximum (FWHM) equal to the

band spacing provided (Mutanga and Skidmore 2005). HyMAP provides 64

bands covering the SWIR region. The resampled HyMAP bands (table 1) were

used in all subsequent analysis.

Table 1. The spectral configuration of the Hyperspectral Mapper sensor. The sensor provides
contiguous sampling of the spectral reflectance except for the water absorption bands centred at

1400 and 1900 nm.

Module
Spectral range

(nm)
Bandwidth across module

(nm)
Average spectral sampling interval

(nm)

SWIR1 1400–1800 15–16 13
SWIR2 1950–2480 18–20 17
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2.3 Classification procedures

2.3.1 Random forest. The Breiman–Cutler random forest algorithm (Breiman

2001) is an ensemble method that grows multiple classification trees (ntree) and uses

the entire forest as a complex composite classifier. As opposed to single classification

trees, individual trees in the forest are maximally grown without any pruning and the

final classification of a given sample is decided by applying the majority rule over the

votes of individual trees. The random forest (RF) ensemble introduces randomness in

the classification process by firstly selecting only a random subset of candidate

features (mtry) to determine the split at each node in a tree and secondly using a
bootstrap sample with replacement from approximately two-thirds of the dataset

(n ¼ 54) to create each tree in the forest. This implies that in some instances training

samples will be chosen more than once, while some training samples may not be used

at all to grow individual trees in the forest. The excluded one-third of the samples or

the out-of-bag (OOB) estimates are used to determine an internal measure of variable

importance and an estimate of error (Breiman 2001, Liaw and Wiener 2002, Pal 2005).

The OOB error estimate is calculated by putting each OOB sample down the corre-

sponding classification tree from which it was excluded. The error estimate is then
calculated as the misclassified proportion of that OOB sample (Breiman 2001, Liaw

and Wiener 2002, Pal 2005, Garzon et al. 2006, Prasad et al. 2006, Peters et al. 2007).

We implemented the random forest library (Liaw and Wiener 2002) using the

R statistical software (R Development Core Team 2008).

2.3.2 Boosting trees. We compared RF with a competing ensemble method, boost-

ing trees (Freund and Shapiro 1996). While RF relies on bootstrapped aggregations of

the original training data to generate individual trees in the ensemble, boosting trees
(BT) rely on the classification results from a previous iteration. Boosting methods

grow a single classification tree and weights are assigned to the training data. Hence,

training data that are misclassified are increased in weight while training data that are

correctly classified are decreased in weight. This forces subsequent classification trees

to focus on the more ‘difficult’ examples in the dataset. This entire process is repeated

for a specific number of iterations and the resulting classification tree vote using a

plurality rule (Freund and Shapiro 1996, Lawrence et al. 2004, Pal 2007, Chan and

Paelinckx 2008). For boosting we used 100 iterations; however if the algorithm
terminated earlier, then a smaller iteration was subsequently used (Dietterich 1999).

We used the ada library (Culp et al. 2006) for the R statistical software (R

Development Core Team 2008) to implement the AdaBoost version (Freund and

Shapiro 1996) of boosting by weighting.

2.4 Variable selection

We evaluated the one-way analysis of variance (ANOVA) as a baseline filter
approach. As mentioned earlier, when implementing the filter method, bands with

no statistical significance are discarded while the significant bands are used as input

variables into the relevant classification algorithm. In contrast, the wrapper approach

searches for the best subset of bands using the classifier as part of the evaluation and

the subset of bands that produces the lowest misclassification error are then selected.

We used the wrapper developed by Diaz-Uriarte and Alvarez de Andres (2006). Since

the RF algorithm provides an internal measure of variable importance, we also
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considered the top 10 and 20% of variables as ranked by the OOB samples. The

sections below describe the OOB and wrapper methods in more detail.

2.4.1 Using the out-of-bag method for variable selection. Random forest returns

three measures of variable importance (Breiman 2001). The first measure is based on
the number of times each candidate variable is selected; the second measure is based

on the Gini index, which measures the impurity of a predictor variable with respect to

the response variable (Pal 2005) and the final measure utilizes the permutation of

variables as an estimate of variable importance (Strobl et al. 2007). The most reliable

measure is the permutation of variables which calculates variable importance as the

mean decrease in classification accuracy using the OOB samples (Breiman 2001).

According to Strobl et al. (2007), by randomly permuting the reflectance values of a

single band, its original association with the response variable is broken. The per-
muted band and the remaining non-permuted bands are then used to classify the

response for the OOB sample. It follows that the classification accuracy will decrease

substantially if the original band was associated with the response variable. Thus, the

difference in classification accuracy before and after permuting the bands can be used

as a measure of variable importance (Breiman 2001).

2.4.2 Using the wrapper method for variable selection. We used a backward vari-

able selection (BVS) method that starts with all the bands and then progressively
eliminates the least promising bands. The BVS method developed by Diaz-Uriarte

and Alvarez de Andres (2006) builds multiple random forests and, after building each

random forest, iteratively discards 20% of the bands with the smallest variable

importance. After developing all models, we then selected the subset of bands

whose OOB error rate is within u standard errors of the minimum OOB error of all

the forests created. Setting u ¼ 0 selects the subset of bands with the smallest OOB

error and setting u ¼ 1 selects the smallest subset of bands but whose OOB error is

within the sampling error from the best solution (Diaz-Uriarte and Alvarez de Andres
2006). We used the varSelRF library (Diaz-Uriarte and Alvarez de Andres 2006) for

the R statistical software (R Development Core Team 2008) to implement the BVS

method. According to Granitto et al. (2006), the selection of variables is an unstable

process especially when n , p, and this could subsequently lead to the selection of very

different subsets of explanatory variables for each replicate of the study. Therefore,

we repeated the BVS method (repetitions¼ 1000) to determine the frequency that the

selected bands appear in subsequent replicates of the study.

2.5 Accuracy assessments

Classification accuracy in the absence of an independent test dataset can be deter-

mined by resampling of the original data (Molinaro et al. 2005). Several variants of

the bootstrap resampling method have been introduced to estimate error (Efron and

Tibshirani 1993). In this study we applied the .632þ bootstrap method (Efron and

Thibshirani 1997) to compare the overall classification accuracy of the three variable

selection methods using RF and BT. The method is based on a random sample that is

repeatedly drawn with replacement from the original observations. For each draw,
the observations that are left out serve as a test dataset. However, this leads to an

overestimation of error because a decrease of samples in the training dataset leads to

an increase in bias (Molinaro et al. 2005). To correct the bias in error, the .632þ
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bootstrap method uses a weighted average of the resubstitution error (Efron and

Thibshirani 1997).

The .632þ bootstrap method was previously used to assess overall misclassification

error in chemometric and genomic studies in applications where n , p (Diaz-Uriarte

and Alvarez de Andres 2006, Granitto et al. 2006). It should be noted that in this study
we applied the .632þ bootstrap method (bootstrap replications ¼ 100) as an ‘outer

loop’ to compare the three variable selection methods using RF and BT, whereas the

OOB error was used as an ‘inner loop’ to guide the variable selection for the wrapper

and the OOB variable selection methods (Diaz-Uriarte and Alvarez de Andres 2006,

Granitto et al. 2006). Therefore, the classification tree ensembles are evaluated on a

dataset which was not previously used for variable selection or for classification

purposes. We used the errorest library (Peters et al. 2002) for the R statistical software

(R Development Core Team 2008) to calculate the .632þ bootstrap error.

2.6 Class label and band noise

In this study we also assess the robustness and stability of the classification tree
ensembles against the introduction of noise. Remotely sensed data is most likely to

be noisy due to factors that include saturation of signal, missing scans, mislabelling,

problems with the sensor and geometry (DeFries and Chan 2000). In order to

determine if the classification tree ensembles would perform well under conditions

where noise is introduced, we applied the classification tree ensembles to noisy data

and then examined the resulting misclassification error as determined by .632þ boot-

strap error (bootstrap replications ¼ 100).

Similar to the method implemented by Dietterich (1999), Breiman (2001) and
Hamza and Larocque (2005), we randomly (without replacement) in increments of

5% (up to a maximum of 20%) changed the values of the class labels and the

reflectance values of the best subset of SWIR bands. As a result, we replaced the

original values with values chosen from all other reflectance (%) and class label (i.e.

healthy and green) values. Following suggestions by Zhu and Wu (2004), the impacts

of the two categories of noise (class labels and bands) were analysed independently

because it would be difficult to consider the combined effects of both categories.

3. Results

3.1 Variable selection using the filter method

The ANOVA with a Tukey’s HSD post-hoc test was calculated at each measured band

for the healthy and green stage (H-G) class pair. The ANOVA results of the individual

bands (64 bands) are shown in figure 1. The shaded areas in figure 1 indicate specific

bands (54 bands) where the H-G class pair shows a significant statistical difference in
reflectance (p , 0.001). Bands that have the potential to discriminate between the

H-G class pair are centred in the following SWIR regions: 1409–1613 nm (16 bands),

1739–1799 nm (6 bands) and 1952–2485 nm (32 bands). The majority of the signifi-

cant bands (59.25%) are predominately centred between 1952 and 2485 nm (HyMAP

SWIR 2). All significant bands were then retained as input variables into the classi-

fication tree ensembles.
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3.2 Variable selection using the out-of-bag method

The mtry parameter denotes the number of bands that RF randomly selects to build

each tree and the default mtry parameter is equal to the square root of the total

amount of HyMAP SWIR bands (Liaw and Wiener 2002). However, following

suggestions by Diaz-Uriarte and Alvarez de Andres (2006) and Hamza and

Larocque (2005), we optimized the mtry parameter by trying all possible values

ranging from 1 to 64. Results show that the default mtry parameter of eight produced

the lowest OOB error (9.26%). Additionally, we found that there was no significant

increase in classification accuracy beyond 500 trees (ntree) in the ensemble.
Subsequently, an mtry value of eight and an ntree value of 500 were used as input

parameters for RF. As mentioned earlier, in addition to classification, RF also

calculates variable importance based on the mean decrease in classification accuracy

using the OOB method (Breiman 2001). Figure 2 shows the importance of all bands as

determined by the OOB method. Noticeable in figure 2 are the number of important

bands centred between 1971 and 2101 nm (eight bands). Additional important bands

are centred between 2326 and 2485 nm (seven bands). The bands with the highest

mean decrease in accuracy are centred at 2028 and 2047 nm, respectively. Since the
OOB method produces a ranking for all bands, we will only consider the top 10% (six

bands) and 20% (13 bands) of the highest ranked bands for classification purposes.

3.3 Variable selection using the wrapper approach

The BVS method iteratively built multiple random forests (iterations ¼ 15) while

discarding 20% of the least important bands as determined by the OOB samples

(figure 3). We used an ntree value of 500 and the default mtry values for all iterations.
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Figure 1. Analysis of variance results for the healthy-green class pair using the resampled
Hyperspectral Mapper bands. The grey shades indicate regions of electromagnetic spectrum
where there were significant differences (p , 0.001). For contextual purposes the average
shortwave infrared reflectance for the green stage (n ¼ 30) and for the healthy stage (n ¼ 24)
are shown.
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Figure 3. Misclassification error estimates for all random forest classifiers (iterations¼ 15) as
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Figure 2. Variable selection using random forest. The forest was created using all the
resampled shortwave infrared bands. The bands with the highest mean decrease in accuracy
are shown by the black arrow. The average reflectance of the healthy stage is shown for
contextual purposes.
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Figure 3 shows that the lowest misclassification rate (7.41%) as determined by the

OOB error is obtained when using five variables centred at the following bands: 1990,

2009, 2028, 2047 and 2065 nm. Analogous to the findings of Diaz-Uriarte and Alvarez

de Andres (2006), we found that u parameter had minor effect on the results of the

BVS. However, experiments showed that a value of u ¼ 1 leads to a slightly more

stable result with a smaller subset of bands. Hence, we used u ¼ 1 for all subsequent

replicates of the study.
We repeated the entire BVS method (repetitions¼ 1000) to determine the frequency

that the 1990, 2009, 2028, 2047 and 2065 nm bands occur in the best selected subset of

bands. Although no bands are selected more than 50% of the time, figure 4 shows that

the BVS selected bands have a much higher frequency of being selected than any of the

other bands in the SWIR domain. More specifically, the bands are selected as follows:

1990 nm (frequency ¼ 196), 2009 nm (frequency ¼ 103), 2028 nm (frequency ¼ 407),

2047 nm (frequency ¼ 466) and 2065 nm (frequency ¼ 271). The 2028 and 2047 nm

bands are most frequently selected by the BVS method.

3.4 Classification results

This section compares the results from the three variable selection methods and
reports on the misclassification rate as determined by the .632þ bootstrap error.

For comparative purposes, figure 5 shows the frequency and location of bands that

were selected by all three variable selection methods (i.e. ANOVA, OOB and BVS).

The five bands centred at 1990, 2009, 2028, 2047 and 2065 nm were selected by all

three variable selection methods. Also noticeable is the absence of selected bands

between 1614 and 1740 nm. The various band selections were then used as input

variables into RF and BT. Table 2 reports on the misclassification rate for both
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Figure 4. The frequency that backward variable selected bands occur in the selected subset of
bands during each replicate (n¼ 1000) of the study. The bands that are most frequently selected
by the approach are shown by the black arrow.
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classification tree ensembles as determined by the .632þ bootstrap errors.

Additionally, for comparison purposes the misclassification error for a single classi-

fication tree (Breiman et al. 1984) is also shown in table 2.

The .632þ bootstrap error for a single classification tree is above 8% whereas the

misclassification errors of RF and BT using the three variable selection methods are
comparable and below 8%. However, RF produces slightly better classification results

than BT for all three variable selection methods, including when all HyMAP SWIR

bands (64 bands) are used for classification. Using the bands (i.e. 1990, 2009, 2028,

2047 and 2065 nm) selected by the BVS method as input variables into RF (i) produces

better accuracies than using all the HyMAP SWIR bands, (ii) produces the lowest

overall misclassification error (6.14%) and (iii) produces the largest difference in error

(1.4%) between RF and BT. Bands selected by the ANOVA (54 bands) produce the
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Figure 5. The combined frequency and location of bands using the analysis of variance, the
out-of-bag and the backward variable selection methods. The average reflectance of the healthy
stage is shown for contextual purposes.

Table 2. The misclassification rate for random forest and boosting trees as determined by the
.632þ bootstrap errors using the bands selected by the analysis of variance, backward variable

selection and the out-of-bag (top 10 and 20%) methods.

All
bands

Analysis of
variance

Backward variable
selection

Top
10%

Top
20%

Number of
bands

64 54 5 6 13

Boosting trees 7.43% 7.51% 7.54% 7.57% 6.82%
Random forest 7.29% 7.45% 6.14% 6.52% 6.60%
Classification

tree
11.25% 11.25% 8.74% 8.85% 10.43%
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highest misclassification error (7.45%) for RF. Using the top 10 or 20% of bands

selected by the OOB method with RF produces comparable results with the best

solution. BT achieves the lowest misclassification error (6.82%) when using the top

20% (13 bands) of bands selected by the OOB method. Bands selected by either the

ANOVA or the BVS variable selection methods do not produce better classification
results when compared to the using all the bands with BT.

3.5 Class label and band noise

This section examines the robustness of the classification tree ensembles against

changes in the class labels and reflectance values and reports on the resulting mis-

classification error as determined by the .632þ bootstrap errors. For consistency, we

used the bands (1990, 2009, 2028, 2047 and 2065 nm) that produced the lowest
misclassification error to determine if both classification tree ensembles would per-

form well under conditions where noise is introduced. Figure 6 shows the .632þ
bootstrap errors (replications ¼100) for all noise levels as a result of changing the

class labels. Mislabelling of the class labels causes severe problems in terms of the

classification accuracy for both classification tree ensembles. However, compara-

tively, BT shows a higher increase in misclassification error when compared to RF

for all noise levels. RF has a minimum error of 12.56% and a maximum error of

18.15% compared with the original misclassification error of 6.14%. On the other
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Figure 6. The .632þ bootstrap errors (bootstrap replications¼ 100) when random noise (%) is
introduced into the class labels. Noise was introduced into the class labels by randomly
replacing the original class label with the alternate value (‘green’ was changed to ‘healthy’
and ‘healthy’ was changed to‘green’). Class labels were replaced in increments of 5% up to a
maximum of 20%.
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hand, BT has a minimum error of 13.27% and a maximum error of 21.62% compared

with the original misclassification error of 7.54%.

Figure 7 shows the .632þ bootstrap errors (replications ¼ 100) when noise is

introduced into the reflectance values of the BVS selected bands. Changing the

reflectance values has a more pronounced effect on the misclassification error of

BT. The misclassification error rate of RF remains below 8% for all noise levels,

while the error rates for BT are all above 8%. RF has a minimum error of 6.77% and a

maximum error of 7.80% compared with the original misclassification error of 6.14%.
In contrast, BT has a minimum error of 9.23% and a maximum error of 11.82%

compared with the original misclassification error of 7.54%.

4. Discussions

4.1 Variable selection and classification accuracy

In recent years RF has gained popularity as an effective classification method in the

remote sensing domain (Ham et al. 2005, Pal 2005, Gislason et al. 2006, Lawrence

et al. 2006, Chan and Paelinckx 2008). Results from this study confirm that RF is a

robust and accurate method for the combined purpose of variable selection and for

the classification of hyperspectral data in an application where (i) the number of

samples is limited and (ii) classes have similar spectral characteristics. Statistically, RF
deals with the ‘small n large p’ problem, by using a user defined random selection of

variables (mtry) to grow each classification tree (Breiman 2001). Hence, each classi-

fication tree is grown using only a subset of candidate variables and the problems

associated with ‘small n and large p’ are thereby avoided. Results from this study

additionally demonstrate that the suggested default mtry value (p p) by Liaw and

Wiener (2002) also achieves the best overall classification accuracies. Furthermore, by
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Figure 7. The .632þ bootstrap errors (bootstrap replications¼ 100) when random noise (%) is
introduced into the best subset of shortwave infrared bands. Noise was introduced into the best
bands by randomly replacing the original reflectance values with values selected from all other
possible shortwave infrared reflectance values. Reflectance values in the best bands were
replaced in increments of 5% up to a maximum of 20%.
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limiting the number of variables used for each split and using classification trees that

are not pruned, the computational complexity of RF is reduced, thus making it well

suited for hyperspectral data (Gislason et al. 2006).

Researchers have shown that RF achieves comparable if not better results than

other competing classification methods (Pal 2005, Gislason et al. 2006, Chan and
Paelinckx 2008). Results from this study confirm that RF has lower misclassification

errors than BT for all three variable selection methods, including when all HyMAP

SWIR bands (64 bands) are used. However, the difference in error between RF and

BT is minimal (,2%). Chan and Paelinckx (2008) and Gislason et al. (2006) reported

similar findings on the small differences in the classification error between RF and

BT. Nevertheless, bands selected by the wrapper approach produce the lowest mis-

classification error (6.14%) in conjunction with RF. More importantly the wrapper

method (i.e. BVS method) simplified the classification process and identified
the smallest number of bands that offer the best discriminatory power between the

classes. Using the wrapper method, we only used approximately 8% (5 bands) of the

total number of HyMAP bands (64 bands) while still producing the best overall

classification accuracies. Additionally, by using the wrapper method, we did not

have to specify the number of HyMAP bands required for the classification process;

rather the method adaptively selected the minimum amount of bands that provide the

best classification accuracy.

4.2 Model robustness and the introduction of noise

For all levels of noise, RF produces lower misclassification errors than BT when either
the class labels or the reflectance values are changed. BT is known to be particularly

sensitive to noise in the training dataset because the algorithm places emphasis on the

noisy data; that is, after a few iterations most of the data with large weights are cases

where the noisy data have been misclassified (Dietterich 1999, Lawrence et al. 2004).

Similarly, using 28 non-remote sensing datasets, Hamza and Larocque (2005) found

that RF is more robust with respect to noise than other tree-based ensemble methods

like BT. The robustness of RF can be explained by the ability of the classification

algorithm to exploit the noise in the dataset to create a more diverse classifier
(Breiman 2001).

However, changing the class labels causes a greater decline in classification accu-

racy than altering the reflectance values of the bands. Similar results were reported by

DeFries and Chan (2000) when they evaluated tree-based classification algorithms for

landcover classifications. Additionally, using non-remote sensing datasets, Zhu and

Wu (2004) also reported that classification accuracies decline with an increase in class

noise especially when there is a limited number of samples (i.e. n , p).

4.3 Understanding reflectance characteristics of green stage Sirex noctilio infestations

The importance of the RF algorithm is not only to improve classification accuracy or
to reduce data dimensionality but also to deepen our understanding of which SWIR

bands are most suitable for discriminating the green stage of infestation. Results show

that the HyMAP sensor provides the necessary spectral sensitivity to detect anomalies

in SWIR reflectance that will allow remote sensing researchers to effectively detect

and monitor the green stage of infestation. More specifically, this study has shown

that bands centred at 1990, 2009, 2028, 2047 and 2065 nm have the greatest potential

for discriminating the green stage. According to Kumar et al. (2001), the absorption
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features centred in this region are related to protein, starch and nitrogen with the main

absorption feature for starch centred at 2000 nm. As noted earlier, physiological

evidence suggests that during the green stage of infestation there is a conversion of

foliar starch to sugar and a rapid decrease in depletion of sugar levels (Neumann and

Minko 1981). It is only during the later stages of infestation that the breakdown of
chlorophyll occurs which is subsequently followed by the collapse of vascular tissue

that causes chlorosis, wilting and premature needle fall (Neumann and Minko 1981).

These results show that there is a link between the SWIR HyMAP spectral measure-

ments and existing physiological research, thereby improving the chances of detecting

the green stage at an airborne level. However, background effects, atmospheric

absorption, solar angle and sensor view may all have a confounding influence upon

the reflectance properties of the bands centred at 1990, 2009, 2028, 2047 and 2065 nm.

For verification purposes, a detailed study relating airborne hyperspectral data to
physiological measurements is currently underway.

5. Conclusion

In this article we demonstrated that the random forest algorithm can accurately

discriminate between healthy trees and the early stages of S. noctilio infestation

using SWIR bands. More specifically we have shown that the wrapper method that

uses random forest as part of the evaluation process produces the smallest subset of

bands with the lowest misclassification error. Bands centred at 1990, 2009, 2028, 2047

and 2065 nm have the greatest potential for discriminating the green stage.
Additionally, random forest performs better than boosting trees when noise is intro-

duced into the class labels or the selected bands. However class noise has a more severe

impact on the performance of the random forest algorithm. Overall the results from

this study additionally confirm that random forest is a robust and accurate method

for the combined purpose of variable selection and for the classification of hyper-

spectral data in an application where (i) the number of samples is limited and (ii)

where classes have similar spectral characteristics.
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