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Evaluating Critical Uncertainty Thresholds in a Spatial
Model of Forest Pest Invasion Risk

Frank H. Koch,1 Denys Yemshanov,2∗ Daniel W. McKenney,2 and William D. Smith3

Pest risk maps can provide useful decision support in invasive species management, but most
do not adequately consider the uncertainty associated with predicted risk values. This study
explores how increased uncertainty in a risk model’s numeric assumptions might affect the
resultant risk map. We used a spatial stochastic model, integrating components for entry, es-
tablishment, and spread, to estimate the risks of invasion and their variation across a two-
dimensional landscape for Sirex noctilio, a nonnative woodwasp recently detected in the
United States and Canada. Here, we present a sensitivity analysis of the mapped risk es-
timates to variation in key model parameters. The tested parameter values were sampled
from symmetric uniform distributions defined by a series of nested bounds (±5%, . . . , ±40%)
around the parameters’ initial values. The results suggest that the maximum annual spread
distance, which governs long-distance dispersal, was by far the most sensitive parameter. At
±15% or larger variability bound increments for this parameter, there were noteworthy shifts
in map risk values, but no other parameter had a major effect, even at wider bounds of vari-
ation. The methodology presented here is generic and can be used to assess the impact of
uncertainties on the stability of pest risk maps as well as to identify geographic areas for
which management decisions can be made confidently, regardless of uncertainty.

KEY WORDS: Invasive species; parametric uncertainty; pest risk mapping; stochastic modeling;
sensitivity analysis

1. INTRODUCTION

Invasive alien species have caused significant
deleterious impacts on the agriculture, forestry,
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and public health sectors, with worldwide economic
losses estimated at US$1.4 trillion annually, or
roughly 5% of the global economy.(1) Since species
introductions are strongly linked to global trade, this
level of impact is likely to persist into at least the
near future.(2,3) Notably, such substantial economic
losses are caused by the small number of inva-
sive alien species that actually survive beyond intro-
duction and become established in new geographic
areas.(4) These survivors may subsequently disrupt
native ecosystems and communities(4–6) and imperil
native species through predation or competition.(7,8)

Assessing the level of invasion risk and poten-
tial impact posed by organisms of interest is a crit-
ical initial stage in a systematic response to emerg-
ing invasive alien species threats. While regulatory
agencies commonly issue risk assessments for newly
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recognized pests, the models underlying these risk as-
sessments are rarely quantitative because of a dearth
of scientific data for many pests and are usually lim-
ited to a simplified characterization of establishment
or impact potential.(9–11) As a result, the histori-
cal emphasis in invasive alien species risk manage-
ment has been on preventing introductions rather
than on the development of comprehensive response
strategies for all potentially impacted geographic ar-
eas; thus, spatial aspects of risk have often been ne-
glected,(12,13) even though total risk of both invasion
and impact clearly varies between geographic do-
mains.(14) Nevertheless, risk maps, as the spatially ex-
plicit realizations of risk assessments, have become
increasingly popular among decisionmakers and reg-
ulators as support tools to allocate resources for
quarantine, monitoring, and control of invasive alien
species.(9,15)

1.1. Uncertainty in Risk Estimates of Invasion

Uncertainties are intrinsic to all risk analyses.
Unfortunately, public calls for action when a new in-
vasive organism is detected in a given area seldom
allow enough time to acquire the necessary scientific
knowledge to characterize the potential risk well, so
uncertainty becomes an inherent feature of the anal-
ysis.(16) Systematic characterization of uncertainty is
complicated by the fact that there are different defi-
nitions of the types as well as the potential sources of
uncertainty.(16–21) In general terms, uncertainty may
be categorized as stochastic (associated with natu-
ral variability) or epistemic (derived from incomplete
knowledge about the system of interest). Stochastic
uncertainty is irreducible but may be represented in
a formal manner (e.g., as a probability distribution),
while epistemic uncertainty can, in theory, be re-
duced through additional research or data.(18,19) With
respect to models, uncertainties associated with pa-
rameter values or functions (parametric uncertainty
hereafter) or with input data (input uncertainty)
propagate to uncertainty in the model output.(21,22)

Some of the inputs and parameters may be corre-
lated or otherwise interact.(23,24) The model formu-
lation or structure, and even its particular software
implementation,(21) may also contribute to the output
uncertainty.

Recently, there has been much literature dis-
cussing the characterization of uncertainty in general
and ecological risk analysis(14,17,20,21,24,25) as well as
in specific invasive alien species contexts.(5,26,27) Sim-
ilarly, Li and Wu(22) provided an overview of un-

certainty analysis methods for large-scale ecological
models used as environmental decision support. The
relevance of uncertainty when characterizing com-
plex ecological phenomena is thus widely acknowl-
edged, but in practice, analysts often overlook (or
only partially acknowledge) uncertainty and present
their results as effectively certain.(16,18,20,22) Although
uncertainty can lead to erroneous decisions and over-
confidence, its quantification is frequently seen as too
complex or time-consuming.(16,24,26)

Poor characterization of uncertainty is a particu-
lar flaw of many risk maps for invasive alien species.
Most current mapping analyses involve the use of ge-
ographic information systems (GIS) software. While
there may be substantial analytical capacity to quan-
tify uncertainty in GIS applications,(28–30) most GIS
software packages still do not have good methods
for representing uncertainty, and so it is easy for
typical GIS users to create elegant but fundamen-
tally flawed results.(31) Moreover, published studies
on uncertainty analysis in GIS have focused primar-
ily on the propagation of spatial uncertainties; un-
certainty analysis in dynamic (i.e., temporal as well
as spatial) GIS models is a still-developing field of
inquiry.(32) Conversely, many conceptual approaches
for characterizing uncertainty in risk analysis, such as
imprecise probability theory,(17) fuzzy/rough set the-
ory,(33,34) and info-gap theory,(35,36) have been rarely
implemented in a spatial context. A special challenge
for risk maps is that their reliability in the face of
uncertainty may be judged at multiple scales: the
entire map, particular regions, or perhaps most criti-
cally, for individual and sometimes very specific geo-
graphic locations.

1.2. Objectives

In previous work,(37) we modeled the potential
invasion of a recently detected woodwasp species,
Sirex noctilio Fabricius, in eastern North American
forests. Native to Europe, western Asia, and north-
ern Africa, S. noctilio has been introduced in many
locations throughout the world and is considered to
be a significant pest of pine plantations (Pinus sp.)
in the Southern Hemisphere.(38,39) Given the insect’s
high bioclimatic tolerance,(38) S. noctilio had been
considered a major threat to North America for some
time before it was discovered in upstate New York in
2004(40) and southern Ontario in 2005.(41)

In this prior analysis,(37) we generated risk maps
for S. noctilio using a spatial stochastic model
that integrates the entry, establishment, and spread
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components of an invasion into a single framework.
Adopting an approach of repeated stochastic model
simulations, we quantified the risk of S. noctilio in-
vasion as a probabilistic estimate(42,43) for each ge-
ographic location (map cell) comprising the study
area. The approach also allowed us to calculate the
variation of risk estimates in each cell, as propagated
from the model’s numeric assumptions. This method-
ology allowed us to estimate both risks and associ-
ated uncertainties of S. noctilio invasion.

Subsequently, we had three primary objectives
for the follow-up study presented in this article. The
first was to estimate the influence of variation in
key model parameters on the predictions of invasion
risk and their associated levels of uncertainty. This
type of sensitivity analysis (i.e., the relative influence
of changes to various input and/or parameter val-
ues on the model outputs) and uncertainty analysis
(propagation of uncertainty from inputs to outputs)
is common across disciplines(22,24,30,44) and, in partic-
ular, in testing the stability of ecological models.(36)

Our second objective was to find the levels of in-
troduced parametric uncertainty that would dramat-
ically change the output maps and affect their utility
as decision support tools. Notably, some portions of a
risk map may remain stable even if substantial para-
metric variation is introduced to the model. Hence,
our third objective was to identify any geographic ar-
eas where the risk map remains stable enough for
decisionmakers to use it confidently in planning re-
sponses to S. noctilio invasion.

2. METHODS

We used the Canadian Forest Service Forest
Bioeconomic Model (CFS-FBM) to perform the spa-
tial simulations for this study. The CFS-FBM is a
spatially explicit, raster-based framework that inte-
grates biophysical and economic components. While
it includes, for example, components for model-
ing wood supply impacts and bioeconomics of car-
bon sequestration,(45,46) we used it only to generate
risk maps of S. noctilio invasion in eastern North
America. As a dynamic spatiotemporal model,(47,48)

the CFS-FBM has an important advantage over static
risk modeling approaches, which typically adopt the
simplifying assumption that an invader’s potential
distribution is already at an equilibrium state.(26) The
model components used for risk mapping were de-
scribed previously,(37) so here we provide only brief
descriptions of the relevant components, primarily

to highlight the model parameters for which sensi-
tivity/uncertainty analyses were performed. For the
ease of comparison, we have employed the same no-
tation as in our earlier study.

2.1. Entry

The CFS-FBM depicts potential introductions of
a pest into an area of interest as well as the expan-
sion of already established populations. With respect
to introductions, the U.S. Department of Agricul-
ture (USDA) Animal and Plant Health Inspection
Service (APHIS) Port Information Network (PIN)
database (see Haack(49) for a description) reports
that S. noctilio has only been intercepted at U.S.
marine ports of entry (i.e., not at airports or bor-
der crossings). Hence, we used the CFS-FBM to
simulate new entries of S. noctilio at U.S. and Cana-
dian marine port locations. Like many other for-
est pests,(49,50) S. noctilio has been linked to either
commodities shipped with solid wood packing ma-
terials or raw wood products. Our calculation of
S. noctilio entry probabilities at marine ports in-
volved two steps:(51) estimation of the “global” en-
try potential and apportionment of this value among
all port locations. The global entry potential is the
annual probability of successful new S. noctilio in-
troduction for the entire study. We estimated this
probability based on the dynamics of total annual
imports to the United States and Canada(52,53) from
1970 to 2006; for example, the global entry potential
in 2006 was calculated as 0.172 (see prior study(37)

for additional details). With respect to later years,
we assumed that the global entry potential would
drop in 2007 by 50% as a result of the adoption
of recent international phytosanitary wood treat-
ment standards(54) and then grow by 7% per year
thereafter. This scenario thus anticipates relatively
modest long-term impacts of the new standards, as
implemented by both the United States and Canada
in 2006, and is equivalent to a “high-risk” scenario
outlined in our previous study.(37)

We apportioned the global entry potential
among all ports of entry using a vector of local en-
try probabilities, Wx (t), for each port x at each year t.
The probabilities for individual ports were calculated
from the relative tonnages of S. noctilio-associated
commodities (based on the PIN database) received
annually at the ports, as determined from marine im-
port data for the United States and Canada.(55–60)

These values (i.e., the probabilities of S. noctilio
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establishment at the ports’ locations) were used to
generate entry events into eastern North America
through time.(43)

2.2. Spread and Establishment

For biological realism, spread was represented as
a coalescing colony using the traveling wave model
of Sharov and Liebhold.(61) In our case, the rate of
metapopulation expansion for any given map cell was
modeled as a function of the distance between it and
the other nearest cell where S. noctilio was already
established. Since few data were available regarding
the pest’s behavior in North America,(38,62) the shape
of this function was based on expert estimates.(37,45)

In addition to the distance from the nearest already
infested cell, there are two other key parameters in
the spread function: p0, the probability of coloniza-
tion in the nearest adjacent map location (i.e., the lo-
cal infestation probability); and dmax, the maximum
distance from an already infested location at which
a new cell may be successfully invaded (i.e., a long-
distance dispersal constraint). For S. noctilio, dmax

was set to 50 km and p0 to 0.2.
The model also tracked the maximum popula-

tion growth of S. noctilio in order to estimate the
projected amount of host mortality and the establish-
ment potential. In a cell successfully invaded by S.
noctilio, the maximum population size is constrained
by a carrying capacity, k, that is reached by geometric
growth at a constant annual rate, R:(61)

Nj(t+1) = RNj(t)∀Nj(t+1) < k and

Nj(t+1) = k ∀ Nj(t+1) ≥ k, (1)

where T is the time since initial infestation, and Nj (t)

and Nj (t+1) are the population densities at years t and
t + 1. Essentially, k limits the maximum volume of
pine killed by S. noctilio at time t, λj (t), depending on
the minimum volume of pine required to support a
single population unit, μ:

λ j(t) = μNj(t) ∀ Nj(t) < k and

λ j(t) = μk ∀ Nj(t) = k. (2)

Because the S. noctilio population density in a map
cell at any given time t may be limited by the amount
of currently available (i.e., unconsumed) host re-
source (such that Nj (t) ≤ λj (t)/μ), the carrying capac-
ity can thus be viewed as a constraint that sets the
annual limit for host mortality, which in turn affects
the establishment potential.

The probability that an S. noctilio population will
become successfully established in an invaded loca-
tion also depends on the susceptibility of the avail-
able pine hosts. Host susceptibility, sv, was defined as
a species-dependent function of stand age (i.e., the
average stand age in a map cell). A cell’s sv value
equates to the probability of successful establishment
in the cell, but also serves as a modifier for determin-
ing what proportion of pines in the cell are suscep-
tible to S. noctilio. The sv value is set to 0 when the
stand age is less than the typical age of stand closure
for pines (20 years) and is maximized when the stand
age exceeds 65 years; notably, we employed different
maximum susceptibility values for two pine groups,
high- and low-hazard, based on the USDA Forest
Service susceptibility ratings.(63)

Maps of the stand volume of pine species in
our study area were derived from the National For-
est Inventory for Canada(64) and the USDA Forest
Service Forest Inventory and Analysis Database.(65)

Individual species maps were aggregated into the
high- and low-hazard pine groups. The amount of
pine host resource in these groups was modeled with
growth rates, gv, based on normal yield curves con-
structed for the Canadian(66) and U.S.(67) portions of
our study area (see prior study(37) for details). The
yield curves were also used to estimate the amount
of host surviving after S. noctilio infestation.

2.3. Mapping Risk and Output Uncertainty

Our “baseline scenario” simulates S. noctilio
spread across eastern North America from currently
known locations and potential new entries at U.S.
and Canadian ports over a 30-year time horizon. (As
noted in Section 2.1, this baseline scenario is equiva-
lent to a “high-risk” scenario presented in our previ-
ous study.(37)) We initialized the model with the 2006
map of known S. noctilio infestations identified by
field surveys in the United States and Canada. Our
output map resolution was 5 × 5 km2. Following our
earlier work,(37) we define invasion risk for any given
map cell i as the probability, p, that S. noctilio in-
vades a minimum area equal to the size of a map
cell at the end of the forecast horizon. The value of p
for each cell was calculated through repetitive model
simulations:

p =

Nobs∑
n=1

τi,n,T

Nobs
, (3)
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where τ i,n,T is a binary variable indicating the pres-
ence or absence of S. noctilio in cell i at time hori-
zon T for a single model replication n, and Nobs is
the number of replications. The variation of p values
(i.e., the output uncertainty) was characterized with
a map of the standard deviations of p, σ (p).

Complex stochastic simulation models usually
require a sizeable number of replications to achieve
stability of the outputs.(24,43) We evaluated the mini-
mum number of model replications required to stabi-
lize the maps of p and σ (p) (see the related discussion
of convergence for the sensitivity analysis scenarios
in Section 2.4). Our previous work(37) suggested three
useful convergence metrics: square root of the total
map area with p < 0.1, square root of the map area
with σ (p) < 0.2, and SXY , the sum of the squared dif-
ferences in p map values between two trials incor-
porating consecutively increasing numbers of repli-
cations:

SXY =
√√√√ M∑

i=1

[(pi X − piY)2], (4)

where M is the total number of map cells covering
eastern North America (∼156,000) and piX and piY

are the invasion probabilities for map cell i in trials
using X and Y number of replications, where X >

Y.

2.4. Sensitivity Analysis

We analyzed the sensitivity of the invasion risk
estimates to variation in several key model parame-
ters using four common steps: (1) generating a prob-
ability distribution associated with a parameter of in-
terest, (2) sampling from this distribution to select
a value, (3) performing multiple simulations of the
risk model with the parameter values sampled from
the distributions, and (4) summarizing the results
from repeated realizations of this process.(22,24,29,30)

A parameter or input may be poorly known or spec-
ified, so its associated distribution may have to be
approximated; in such cases, perhaps the simplest ap-
proach is to assume a uniform distribution.(24,68) For
this study, we used a nested set of variability bounds
around each tested parameter: ±5%, ±10%, and so
on up to ±50%. Each pair of “plus-minus” bounds
defined the endpoints for a symmetric uniform dis-
tribution from which we sampled values randomly
for input into the model. Importantly, the mean val-
ues of the uniform distributions remained unchanged
and matched the baseline parameter values.

We identified six parameters that we believe are
key drivers of the model: Wx (t), the annual probabil-
ities of new local entries of S. noctilio at individual
U.S. and Canadian ports; k, the S. noctilio popula-
tion carrying capacity at a given location (k also sets
the maximum rate of host mortality); dmax, the max-
imum annual spread distance; p0, the probability of
invasion at the nearest cell adjacent to a given in-
fested location; sv, susceptibility of the host resource;
and gv, growth rate of the host trees (all parameters
were described previously). At each variability level,
we varied values for one parameter at a time, leaving
the other parameters unchanged (i.e., local sensitiv-
ity analysis). To verify the relative impact of specific
parameters, we also tested an alternative approach of
varying all parameters but one, which was kept at the
baseline.(19,69)

Because each model simulation used indepen-
dent parameter randomizations, a significant number
of replications was required to stabilize the configu-
ration of risk maps. We examined the convergence
of risk maps for each of the sensitivity scenarios by
generating a series of trial risk maps and then plot-
ting the stabilization metric values (see Section 2.3)
against the number of model replications. Most of
the sensitivity scenarios converged after 2,400–2,700
replications (Fig. 1). (The baseline scenario did not
use the parameter randomizations, so it converged
after <500 replications.) Hence, we generated maps
of p and σ (p) based on 3,000 model replications for
each scenario.

We also used the SXY equation (Equation (4))
to compare the maps of invasion risks and their
standard deviations, p and σ (p), for each sensitivity
scenario, X, with the corresponding maps from the
baseline scenario, Y. The parameter SXY in this case
depicts cumulative changes in the risk map as a re-
sult of the introduction of parametric uncertainty.
We cross-tabulated these SXY differences for east-
ern North America as well as for three regions: east-
ern Canada, the northeastern United States, and the
southeastern United States (Virginia, Kentucky, and
all states further south in the study area). To geo-
graphically assess the impact of added parametric un-
certainty on the output uncertainty of the risk maps
(i.e., the σ (p) values), we calculated “uncertainty ra-
tios” under each scenario and mapped the results.
For a map cell, the uncertainty ratio is the value of
σ (p) for the sensitivity scenario of interest divided
by σ (p) for the baseline scenario. An uncertainty
ratio value is close to 1.0 when adding variation to
the parameter value does not change the variability
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Fig. 1. Convergence metric values versus
number of replications, at 40% added
parametric uncertainty. Tested
parameters: (a) local probabilities of
entry at marine ports, Wx (t); (b)
population carrying capacity, k; (c)
maximum annual spread distance, dmax;
(d) probability of infestation in the
nearest adjacent cell, p0; (e) host
susceptibility, sv; (f) host growth rate, gv.

(uncertainty) of the output risk estimate, while a ra-
tio value near 0 or much above 1 indicates a notewor-
thy impact of added parametric uncertainty.

For each sensitivity scenario, we also plotted the
regions where adding parameter variation changed
the mapped risk estimates considerably. To do so,
we divided the baseline risk map into three broad
classes, “low,” “medium,” and “high” risk, corre-
sponding to the p intervals of [0, 0.25], ]0.25, 0.75],
and ]0.75, 1], respectively. We then determined, for
each sensitivity scenario, the percentage of map area
that shifted from one risk class to another. The shifts
from one risk class to another can also be represented
in a classified map, which can help identify geo-

graphic locations that exhibited considerable changes
in infestation risks, and can also be used to determine
what portions of the risk map for each sensitivity sce-
nario remained unchanged despite a given increase
in parametric uncertainty.

3. RESULTS

3.1. Baseline Scenario Maps

The map products for the baseline scenario
(Fig. 2) illustrate several broad predictions regard-
ing the S. noctilio invasion in eastern North Amer-
ica. First, invasion risks (i.e., p; Fig. 2a) are high
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Fig. 2. S. noctilio risk maps for the baseline scenario: (a) invasion
risk, p; (b) variation of the risk values, σ (p).

throughout the northeastern United States, southern
Ontario, and Quebec and also at the northern end of
the southeastern U.S. region. Basically, this depicts
the expected path of the invasion over 30 years. Out-
put uncertainty (i.e., σ (p); Fig. 2b) is generally high-
est near the predicted front of the invasion. Beyond
the main front, the southeastern United States con-
tains extensive areas of medium-level risk near the
Atlantic and Gulf coasts (i.e., near possible ports of
entry), throughout which there is a substantial host

presence. The output uncertainty tends to be high
here because the probability of a new S. noctilio en-
try at any port, and its subsequent spread and es-
tablishment, is relatively moderate compared with
the probability of expansion in northern areas near
the existing infestations. Notably, areas of the south-
eastern United States that are further inland (i.e.,
noncoastal) typically exhibit low risk and low uncer-
tainty, reflecting less abundant host resources and/or
greater distance from possible sources of invaders.

3.2. Uncertainty Ratios

The uncertainty ratio maps show impacts of
added parametric uncertainty on the spatial varia-
tion of risk estimates across the study area. Fig. 3
shows uncertainty ratio maps for several key pa-
rameters at 40% added parametric uncertainty (i.e.,
the parameters were varied uniformly within ±40%
of their baseline value). With respect to the one-
parameter-at-a-time sensitivity analyses (Figs. 3(a)–
3(c)), the maximum annual spread distance, dmax

(Fig. 3(a)), exhibited the most significant increases
in uncertainty ratios across much of the map area.
Notably, high uncertainty ratios occurred in a wide
band beyond the leading edge of the estimated inva-
sion front as well as in a few areas within the front
(e.g., coastal New England) that were of high risk,
yet of low uncertainty, under the baseline scenario.
A second parameter, the probability of invasion in
the nearest neighboring cell, p0 (Fig. 3(b)), also ex-
hibited elevated uncertainty ratio values in similar
geographic locations, but to a lesser degree. In ad-
dition, ratios for p0 were notably less than 1 in the
northwestern portion of our study area. We believe
increased parametric uncertainty enabled more inva-
sion nuclei to enter this remote, yet host-rich, area
through time, leading to alteration of the invasion
risk estimates but partial stabilization of the output
uncertainties at a slightly lower level than under the
baseline scenario. This same phenomenon occurred
with the other parameters (i.e., besides dmax). The
ratio map for the port entry probabilities parame-
ter, Wx (t) (Fig. 3(c)), illustrates another common phe-
nomenon that locations with high uncertainty ratios
are generally limited to a small, inland portion of
the study area, even in scenarios assuming very high
added parametric uncertainty (40%).

Uncertainty ratios for the all-but-one sensitiv-
ity scenarios (Figs. 3(d)–3(f)) essentially show the
inverse of the one-at-a-time scenarios. When dmax

(Fig. 3(d)) was the only parameter left fixed at its
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Fig. 3. Maps of uncertainty ratios generated through sensitivity analyses. One-parameter-at-a-time sensitivity analysis scenarios: (a) dmax,
(b) p0, (c) Wx(t ). All-but-one (i.e., single parameter left fixed) scenarios: (d) fixed dmax, (e) fixed k, (f) fixed gv. Scenarios at 40% added
parametric uncertainty are shown. For any map cell, the uncertainty ratio is the σ (p) value for the sensitivity scenario of interest divided by
the σ (p) value from the baseline scenario.
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Fig. 4. Regional summaries of the SXY metric for the sensitivity analyses. Results from one-parameter-at-a-time sensitivity analyses are
presented in two variability increments: (a) SXY for p at 25% added parametric uncertainty, (b) for σ (p) at 25%, (c) for p at 40%, (d) for
σ (p) at 40% added parametric uncertainty.

baseline value, and all other parameters were var-
ied uniformly within a ±40% bound, the uncertainty
ratios were low to moderate throughout nearly the
entire study area. However, when any other single
parameter was left fixed, such as the population car-
rying capacity, k (Fig. 3(e)), or the host growth rate,
gv (Fig. 3(f)), substantial increases in uncertainty ra-
tio values were observable across a large portion of
the study area. These results further suggest that dmax

had the most influence on the model outputs, includ-
ing the variation of the risk estimates.

3.3. Regional Summaries

Fig. 4 shows SXY , the sum of the cumulative
differences between the sensitivity scenario’s p and
σ (p) maps and the corresponding baseline projec-
tions of p and σ (p). The results are shown at two

levels of added parametric uncertainty, 25% and
40%. In this case, X denotes the sensitivity scenario
and Y is the scenario using the baseline parameter
values. When we calculated SXY for the entire study
area, and whether we did so based on p or σ (p),
the results echoed the uncertainty ratio maps: dmax

was the most important model parameter by a
substantial margin. The graphs of SXY for the risk
of invasion p (Figs. 4(a) and (c)) further suggest that
p0 was the second-most sensitive parameter when
including the entire study area, but at a noticeably
lower level of importance. A third parameter, gv,
also exhibited low-to-moderate sensitivity, but this
was only distinguishable at 40% added uncertainty
(Figs. 4(c) and (d)).

The SXY values for the eastern Canada and
northeastern U.S. regions similarly indicated dmax

as the most important parameter and p0 as more



1236 Koch et al.

sensitive than the other four tested parameters. In
contrast, the results for the southeastern U.S. region
suggest relatively lower importance for dmax and that,
under a high level of added uncertainty (Figs. 4(c)
and (d)), gv was nearly as important. This may be
partially explained by the fact that the southeastern
United States is farthest from the existing infested
locations, so successful invasions may only develop
from new entries, which are relatively rare and may
not occur until late in the 30-year time frame. Given
the latter point, it makes sense in this situation that a
parameter governing the abundance of the suscepti-
ble host resource would influence the invasion model
nearly as much as one shaping the maximum rate of
spread.

3.4. Shifts in Risk Classes

Table I shows the percentages of map area that
shifted from one risk class to another in the one-
parameter-at-a-time sensitivity analyses. The results
are displayed for sensitivity scenarios completed at
low (10%), moderate (25%), and high (40%) levels
of added parametric uncertainty. At 10% added un-
certainty, the scenarios displayed generally modest
shifts in risk classes (less than 5% of the map area
relative to the baseline scenario), although one pa-
rameter, the local probability of entry, Wx (t), exhib-
ited a relatively large shift (8.3% of the map area
between the medium- and low-risk classes). We be-
lieve this reflects the phenomenon, noted earlier, of
added variability in a parameter causing more inva-
sion nuclei to enter geographically remote portions
of the study area through time, altering invasion risk
but stabilizing output uncertainty, σ (p), to a lim-
ited degree. We interpret similarly the shifts between
medium and low risk for Wx (t) (8.1% of map area)
and between high and medium risk for p0 (8.1%)
at 40% added uncertainty; indeed, this interpreta-
tion likely applies to many of the observed changes
in risk caused by added parametric uncertainty. Re-

Table II. The Percentage of Total Map
Area Shifting from One Risk Class to
Another When Varying Only the dmax
Parameter; Reported Percentages Are

Relative to the Class Area Totals for the
Baseline Scenario

Uniform Variation of dmax, Percentage of the Baseline Value

Shift in Risk Class ±5% ±10% ±15% ±20% ±25% ±30% ±35% ±40% ±50%

Low→medium∗ 1.6 3.0 2.9 3.5 3.5 3.4 4.1 4.4 6.4
Medium→low 3.8 3.5 8.1 7.4 6.6 5.1 4.8 5.7 7.8
High→medium 3.4 4.9 9.8 12.1 17.4 20.6 25.2 27.7 34.9
Medium→high (×10) 2.8 2.2 1.3 1.1 0.8 0.8 0.4 0.3 0.3

∗Low risk: p < 0.25, medium risk: 0.25 ≤ p ≤ 0.75, high risk: p > 0.75.

Table I. The Percentage of Map Area Shifting from One Risk
Class to Another When Varying One Parameter at a Time Within
Three Different Symmetric Uniform Ranges: ±10%, ±25%, and
±40%; Percentages Are Relative to the Class Area Totals for the

Baseline Scenario

Model Parameter

Shift in Risk Class Wx (t) k dmax p0 sv gv

10% added parametric uncertainty
Low→medium∗ 0.5 4.3 3.0 1.0 1.3 1.7
Medium→low 8.3 1.2 3.5 5.4 4.4 2.6
High→medium 1.0 0.9 4.9 1.1 1.0 0.9
Medium→high 0.7 0.6 0.2 0.6 0.5 0.8

25% added parametric uncertainty
Low→medium 2.2 2.8 3.5 2.3 2.6 2.5
Medium→low 1.7 1.3 6.6 2.0 1.6 3.7
High→medium 1.3 1.0 17.4 4.6 1.1 0.9
Medium→high 0.6 0.7 0.1 0.2 0.7 0.6

40% added parametric uncertainty
Low→medium 0.6 3.7 4.4 1.4 2.1 5.8
Medium→low 8.1 2.2 5.7 5.5 3.5 1.1
High→medium 1.2 1.3 27.7 8.1 1.1 1.1
Medium→high 0.6 0.6 0.0 0.1 0.6 0.6

∗Low risk: p < 0.25, medium risk: 0.25 ≤ p ≤ 0.75, high risk: p >

0.75.

gardless, Table I also shows that dmax scenarios ex-
hibited larger map area shifts (from high to medium
risk) at 25% and 40% added uncertainty than any
other parameter. The results for dmax from all one-at-
a-time sensitivity analysis scenarios (Table II) show a
9.8% map area shift between high and medium risk at
15% added uncertainty. This is larger than any shift
observed, at any variability bound increment, with
respect to the other five parameters. Furthermore,
there was also a large shift between medium and low
risk (8.1% of map area) at 15% added parametric un-
certainty for dmax.

Fig. 5 depicts the shift from one risk class to an-
other for eastern North America for the scenarios
with 15% and 50% added uncertainty in dmax. At
15% added uncertainty (Fig. 5(a)), much of the area



Evaluating Uncertainty in Pest Invasion Risk 1237

Fig. 5. Geographic distribution of the shifts in predicted risk
classes due to increased uncertainty in the dmax parameter: (a)
15% added uncertainty in dmax, (b) 50% added uncertainty in
dmax. White areas delineate no changes in risk class. Risk classes:
low risk, p < 0.25; medium risk, 0.25 ≤ p ≤ 0.75; high risk, p > 0.75.

within the main 30-year invasion front (see Fig. 1)
did not experience a shift in risk class, although there
were clusters of cells with high-to-medium risk shifts
near the southern and northern extents of the front.
The risk class shifts in the southeastern United States
were mostly limited to coastal areas and reflect a
complex relationship between new S. noctilio entries
at the region’s marine ports and their pattern of sub-
sequent expansion into host-rich areas under a vari-
able dmax. Similar trends appeared under 50% added
parametric uncertainty (Fig. 5(b)), although more
map cells were affected. Nonetheless, even at this
high level of added uncertainty in dmax, large areas
both within and beyond the main invasion front dis-
played no change in risk class.

4. DISCUSSION

Three major points emerge from this analysis.
First, the sensitivity analyses revealed that the max-
imum annual spread distance, dmax, was the most
influential component in our integrated risk model.
This has important ramifications for pest risk mod-
eling. Foremost, for an invasion occurring across a
moderate-length time frame, the long-distance com-
ponent of the invasion will substantially determine
its progress in any given year. Moreover, the pa-
rameter that we identified as the next most sensi-
tive, p0, significantly influences local dispersal. Im-
portantly, the dmax value combines with the local
dispersal probability represented by p0 to affect the
overall shape of the dispersal kernel. Thus, it appears
that uncertainties associated with the spread compo-
nent of our risk model generally have the greatest in-
fluence on the reliability of the output risk map. For
S. noctilio, this may be partially explained by the fact
that the insect has already established a significant
presence in our study area, and thus the potential
risks from spread of existing populations outweigh
the threats from potential new entries. This is less
true in the southeastern United States, which is far-
thest from the existing infestations; in this region, fac-
tors related to successful establishment (e.g., the host
growth rate, gv, and the carrying capacity, k) also be-
come fairly important. In any case, the generally high
sensitivity of model predictions to the dispersal pa-
rameters is not surprising.(70−72) Still, it should be ac-
knowledged that long-distance and human-mediated
dispersal are poorly understood phenomena;(73–76)

indeed, this lack of knowledge has been recog-
nized as a major concern in many other studies of
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invasive species.(70,72,74,77,78) We believe that the cur-
rently limited understanding about the dispersal of
invasive pests is a significant challenge for pest risk
assessment activities and so should be a focus of mod-
eling research efforts.

Our study employed an arbitrary designation
of the low-, medium-, and high-risk classes. This
sacrifices some of the precision in the probabilistic
estimates of p, but doing so offers a simple and illus-
trative way to quantify the influence of added para-
metric uncertainty on the stability of the output risk
map. Our analysis of the shifts between risk classes
emphasizes the importance of dmax, but it also reveals
where the risk map begins to change in a manner
that may compromise its utility for decision support.
In our view, either a decrease or an increase in the
predicted risk class due to uncertainty could be prob-
lematic. A decrease means that adequate resources
to combat an invader may not be directed to the area
of interest because the true risk may have been un-
derpredicted there. Conversely, an increase, or over-
prediction, of the true risk could lead to too many
resources being devoted to a particular area of in-
terest at the expense of others. This, however, raises
the issue of appropriate thresholds for declaring that
a risk map is no longer stable. For our S. noctilio
example, added uncertainty in dmax resulted in map
area shifts, between high and medium risk, that were
larger than any shifts seen with the other tested pa-
rameters, at any level of variability. The first of these
comparatively large shifts (i.e., nearly 10% relative
to the baseline) appeared at 15% added uncertainty
for dmax. This suggests that somewhere between 10%
and 15% added uncertainty in dmax, the S. noctilio
risk map experienced a noticeable decline in overall
stability.

Nonetheless, and this is our third major point,
many areas of the risk map were unchanged despite
added variation in the parameter values. This was
even true with 50% added parametric uncertainty.
Most obviously, areas close to the existing infesta-
tions, in general, retained their risk class, which is not
surprising because even with a substantial increase in
dmax variation, these areas are still likely to experi-
ence invasion by the end of the forecast horizon. It
also seems reasonable to assume that many inland ar-
eas in the southeastern United States are unlikely to
be invaded within the 30-year forecast horizon with-
out human-assisted dispersal, even if the dispersal ca-
pability of S. noctilio is substantially underestimated
by the current model.

4.1. Implications of the Approach

The approach presented here has a fairly tra-
ditional foundation, relying on established Monte
Carlo techniques for sensitivity analysis(22,24) to eval-
uate uncertainty for a particular, spatially explicit
risk modeling context. We have depicted the conser-
vative premise that the most important drivers of a
new pest’s invasion will likely be poorly understood.
Even if they are adequately specified, our approach
permits us to evaluate whether uncertainty in any of
these drivers will have meaningful consequences for
the mapped risk estimates. In addition, determining
which of the risk model’s parameters contributes the
most to its overall uncertainty helps to identify where
parameter refinements may be possible (e.g., through
field data collection).(69) Notably, the approach ac-
commodates rapid updates should new invasion loci
be detected, which is an important consideration for
adaptive management of invasive pests.

Another advance of the methodology presented
here is the development of metrics for quantifying
the impact of uncertainty in risk map products. The
study illustrates how these metrics (e.g., SXY and the
shifts in risk classes) can be used to sketch out a hori-
zon of parameter variation beyond which the output
map loses its stability. However, the method may not
be applicable in cases in which information for pa-
rameterizing the risk model is severely limited, as it
requires at least approximate knowledge of the base-
line parameter values. We believe that such cases of
severe uncertainty necessitate a different approach
that does not rely on a probabilistic representation
of the structure of uncertainty, such as the info-gap
framework.(35)

The study had several limitations that must be
recognized. First, the analysis is computationally in-
tensive and included more than 100 sensitivity anal-
ysis scenarios, each requiring 3,000 individual model
replications. Sampling techniques such as the Latin
hypercube sampling(44,79) could reduce the number
of replications (and thus the computation time). Sec-
ond, we only examined six parameters for this study.
Our choices were guided by our familiarity with
the model and also preliminary tests, but it would
be straightforward to apply the approach to other
less critical parameters. The study also did not ex-
plore uncertainties in the geographic inputs (such
as pine host distribution or the locations of marine
ports). The input data may contain spatial uncertain-
ties linked to certain types of heterogeneities and
landscape features (such as patches or corridors).
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Technically, our approach can be applied to analyze
these geographic uncertainties, but would require
generating series of maps with randomized realiza-
tions of spatial heterogeneities and then sampling
these maps in a sensitivity analysis. This topic war-
rants further investigation.

Third, this study did not examine uncertainties
associated with model functional structure and for-
mulation. There are ensemble or multimodel ap-
proaches that combine the results of several different
models into a unified spectrum of uncertainty.(19,80)

Our approach can be adapted to explore this issue,
but would require significant effort in incorporating
other models and still would not guarantee that all
plausible models had been included.(19) More crit-
ically, there is some danger of including inappro-
priately formulated models in such an exercise.(81)

Overall, the presented modeling framework is consis-
tent with the general understanding of the dynamics
of biological invasions,(5) and the findings can be used
to guide further modeling efforts. Indeed, in future
work, we will focus on reformulating the risk model
to accommodate the possibility of human-mediated
dispersal, which is acknowledged as a poorly char-
acterized, yet highly important, factor for a growing
number of pests.(82–84)

5. CONCLUSIONS

The typical lack of knowledge about recently rec-
ognized invasive pests and related uncertainties of
pest risk models can limit the utility of risk map-
ping efforts. Our study explored certain aspects of
this problem, most notably how uncertainty in a risk
model’s numeric assumptions may change a risk map
and thus its reliability as a decision support tool. Sen-
sitivity analysis of a Sirex noctilio risk map and under-
lying risk mapping model for eastern North Amer-
ica identified the maximum annual spread distance
as the most critical model assumption affecting the
estimates of risk. The risk map begins to lose some of
its stability when the uncertainties about this param-
eter reach 15% of its nominal value, emphasizing the
importance of the long-distance dispersal component
in the overall model formulation. The study also out-
lines an approach in which sensitivity analysis is used
to identify geographical hotspots in risk maps that
may be affected by uncertainties in key assumptions
about an invader. We believe that detailed consid-
eration of uncertainty and application of sensitivity
analyses in a manner such as described here should
be standard procedures in pest risk mapping, espe-

cially because they will indicate ways to ultimately
improve the accuracy and utility of these efforts.
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