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Abstract
Background: Resolving the evolutionary relationships among Fungi remains challenging because
of their highly variable evolutionary rates, and lack of a close phylogenetic outgroup. Nucleariida,
an enigmatic group of amoeboids, have been proposed to emerge close to the fungal-metazoan
divergence and might fulfill this role. Yet, published phylogenies with up to five genes are without
compelling statistical support, and genome-level data should be used to resolve this question with
confidence.

Results: Our analyses with nuclear (118 proteins) and mitochondrial (13 proteins) data now
robustly associate Nucleariida and Fungi as neighbors, an assemblage that we term 'Holomycota'.
With Nucleariida as an outgroup, we revisit unresolved deep fungal relationships.

Conclusion: Our phylogenomic analysis provides significant support for the paraphyly of the
traditional taxon Zygomycota, and contradicts a recent proposal to include Mortierella in a phylum
Mucoromycotina. We further question the introduction of separate phyla for Glomeromycota and
Blastocladiomycota, whose phylogenetic positions relative to other phyla remain unresolved even
with genome-level datasets. Our results motivate broad sampling of additional genome sequences
from these phyla.

Background
The investigation of previously little known eukaryotic
lineages within and close to the opisthokonts will be key
to understanding the origins of Fungi, the evolution of
developmental traits in Fungi and Metazoa, and ulti-

mately the origin(s) of multicellularity [1-3]. In particular,
it will help to establish which and how many develop-
mental genes are either shared or specific to these two
major eukaryotic groups. In this context, it is essential to
determine the precise phylogenetic position of candidate
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protists that are close to Fungi, Metazoa, or opisthokonts
as a whole.

The candidate organisms choanoflagellates, ichthyospore-
ans and Ministeria have been convincingly shown to be
relatives of Metazoa (combined in a taxon termed Holo-
zoa; [4]) by using molecular phylogenetics with genomic
datasets (e.g., [4-8]). Yet, there are remaining questions
about the exact phylogenetic positions of Capsaspora [5,8]
and Ministeria [7] within Holozoa. Another, less well stud-
ied group of protists are Nucleariida, a group of hetero-
trophic amoeboids with radiating filopodia. Nucleariids
lack distinctive morphological features that might allow
associating them with either animals or fungi. Their mito-
chondrial cristae are either discoidal-shaped or flattened
[9-11]. Indeed, initial phylogenetic analyses based on sin-
gle genes have been inconsistent in placing them even
within opisthokonts. There has been also confusion due
to the inclusion within Nucleariida of Capsaspora owc-
zarzaki, a species that is now excluded from this group and
shown to be clearly associated with Holozoa [5,11-17].

Overall, the phylogenetic position of the 'true' nucleariids
remains controversial. In a more recent phylogenetic
investigation with four nuclear gene sequences (EF-1α,
HSP70, actin and β-tubulin), nucleariids associate confi-
dently with Fungi, but only when selecting two slow-
evolving chytridiomycetes [18]. When improving the
taxon sampling to 18 fungal species, the bootstrap sup-
port (BS) value for fungal monophyly drops to 85%, and
alternative nucleariid positions are not rejected with the
approximately unbiased (AU) test [18,19]. In this context,
it seems noteworthy that Nuclearia and fungi other than
chytrids are fast-evolving, and that the rate of tubulin evo-
lution varies strongly among species of the latter dataset
(correlating to some degree with the independent loss of
the flagellar apparatus in non-chytrid fungi and in Nucle-
aria). Together, these rate differences at the gene and spe-
cies levels may increase long-branch-attraction (LBA
between the two fast-evolving groups) thus causing
weaker support for fungal monophyly and the nucleariid-
fungal sister relationship, or predicting altogether incor-
rect phylogenetic relationships.

These unresolved questions served as motivation for the
current phylogenetic analyses that are based on broad
taxon sampling, substantially more nuclear genes (availa-
ble through expressed sequence tag (EST) or complete
genome projects), and comparative analyses of nuclear
and mitochondrial gene datasets. To this end, we
sequenced several thousand ESTs each from two Nuclearia
simplex strains (probably representing separate species
based on the high level of sequence divergence between
them), and added them to a previous dataset [20] along
with new genome data available from Holozoa (C. owc-

zarzaki, Amoebidium parasiticum, Sphaeroforma arctica; [5])
and Fungi (Allomyces macrogynus, Batrachochytrium dendro-
batidis, and Mortierella verticillata). We then sequenced the
mitochondrial genome of one of the two N. simplex
strains. Similar to the nuclear genomes of fungi, their
mitochondrial genomes also evolve at varying rates
thereby introducing a considerable potential for phyloge-
netic artifacts. However, phylogenetic comparisons
between mitochondrial and nuclear data provide valua-
ble, cross-wise indicators of phylogenetic artifacts as the
respective evolutionary rates differ between the two
genomes. For instance, such comparisons have revealed
inconsistencies for the positioning of Schizosaccharomyces
species within Taphrinomycotina [21], and of Capsaspora
within Holozoa [5,7,8].

If the nucleariids are indeed the closest known relatives of
Fungi as claimed [18], this protist group will provide an
excellent fungal outgroup that would ultimately facilitate
the settling of controversial phylogenetic placement of
taxa within Fungi and/or in close neighboring groups.
Among the debated issues are the monophyly and appro-
priate classification of the traditional fungal taxa Chytrid-
iomycota and Zygomycota. Previous analyses based on
single or a few genes have been inconsistent in answering
these questions, and often lack significant support [22-
31]. For example, the analyses of ribosomal RNA data
supports the sister relationship between Glomeromycota
and Dikarya (Ascomycota plus Basidiomycota) [29],
while analysis of genes encoding the largest and second-
largest subunits of the nuclear RNA polymerase II sup-
ports the monophyly of Zygomycota in its traditional def-
inition [25].

Phylogenetic positioning of the extremely fast-evolving
Microsporidia (causing strong LBA artifacts in phyloge-
netic analyses) is another controversial issue of great inter-
est. In some of the most recent analyses, Microsporidia
have been placed either close to zygomycetes/Mucorales
[32,33], or together with Rozella allomycis [24]. Together
with environmental sequences, Rozella species form part
of a large, diverse and relatively slowly evolving lineage
(designated "Rozellida"). They branch as a sister clade to
Fungi [24,34], which raises the additional question
whether they should be considered to be true fungi as
originally proposed [35]. Testing the above alternative
hypotheses on microsporidian affinities by phylogenomic
analysis will require much more data from Rozellida (a
few genes are known from Rozella allomycis, but largely
insufficient for inclusion in our analyses), and from a
much wider range of the paraphyletic zygomycetes. Gen-
eration of genome-size data will be further critical for
applying methods that reduce LBA artifacts such as
removal of fast-evolving genes or sequence sites (e.g., [36]
and references therein).
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Despite these and various other unresolved phylogenetic
issues, fungal taxonomy has been substantially redefined
in a recent proposal [28]. Chytridiomycota is still treated
as a phylum, but now include only Chytridiomycetes and
Monoblepharidomycetes. Other traditional chytrid line-
ages such as Blastocladiomycota and Neocallimastigales
have been elevated to phyla based on the analyses of LSU
and SSU rRNA [23], although support with these and
other molecular markers is inconclusive. In turn, the tra-
ditional phylum Zygomycota has been altogether
removed from this taxonomy [28], because evolutionary
relationships among its members are currently unresolved
and suspected to be paraphyletic. Zygomycota are now
reassigned into a phylum Glomeromycota plus four sub-
phyla incertae sedis (i.e., uncertain): Mucoromycotina,
Kickxellomycotina, Zoopagomycotina and Entomoph-
thoromycotina. To revisit these somewhat contentious
issues, we compared results with mitochondrial and
nuclear phylogenomic datasets, and further analyzed the
effect of extending fungal species sampling, with the two
N. simplex strains as the outgroup.

Results and Discussion
Phylogenomic analysis with the Eukaryotic Dataset 
supports Nucleariida as sister to Fungi
Phylogenomic analysis of the Eukaryotic Dataset with one
of the currently most realistic phylogenetic models (cate-
gory mixture model (CAT); [37]) confirms the mono-
phyly of major eukaryotic groups including Holozoa,
Fungi, Amoebozoa, and Viridiplantae. Further, Amoebid-
ium, Sphaeroforma plus Capsaspora form a monophyletic
group, and Nuclearia is without a doubt the closest known
sister-group to Fungi (100% BS; Figure 1). Also some
higher-order relationships are recovered with significant
support, such as opisthokonts and the two recently pro-
posed supergroups JEH (jakobids, Euglenozoa plus Heter-
olobosea [20]) and CAS (Cercozoa, Alveolata plus
Stramenopila [20,38,39]), whereas monophyly of Plan-
tae, Excavata and Chromalveolata is not found. Evidently,
the taxon sampling of protists in our dataset is insufficient
for (and not aimed at) resolving the phylogenetic rela-
tionships among these latter lineages, as it was meant to
constitute only a strong and well sampled outgroup to
opisthokonts.

Analysis of the Eukaryotic Dataset with maximum likeli-
hood (ML) using RAxML [40] and the commonly used
WAG+Γ model generated a similar tree topology (Figure 1
and additional file 1). Deep opisthokont divergences are
predicted consistently and with significant support (BS >
98%), with Nuclearia clearly sister to Fungi (100% BS)
and choanoflagellates the closest neighbor of animals.
Amoebidium, Sphaeroforma plus Capsaspora form a mono-
phyletic sister group to animals plus choanoflagellates,
consistent with a previous analysis [5] but contradicting

others [7,8]. The reasons for this incongruence may be
related to differences in data and taxon sampling. Our
dataset contains 50 eukaryotic species with a close out-
group to Holozoa (i.e., including nucleariids together
with fungal representatives), compared with a total of
only 30 species in a more extensive previous analysis [7].
In contrast to our analysis using Bayesian inference (BI),
ML associates Malawimonadozoa with JEH (77% BS), a
tendency noted and discussed previously [20,41], and an
issue to be addressed by better taxon sampling in this
group (currently, data are available from only two spe-
cies). Other minor differences between WAG versus CAT
model analyses (yet without statistical support in favor of
alternatives) are in relationships within Plantae and the
placement of Haptophyceae.

We further investigated if the position of Nuclearia next to
Fungi might be affected by potential phylogenetic arti-
facts, such as compositional sequence bias and/or LBA
[36,42]. This is suspected because of the highly varying
evolutionary rates both within Fungi and in protist out-
groups, and the unusual result that better taxon sampling
in Fungi reduces phylogenetic support for the Nuclearia
position ([18]; see introduction). To do so, we first elimi-
nated fast-evolving species from the dataset: S. cerevisiae,
Blastocystis hominis, Cryptosporidium parvum, Sterkiella his-
triomuscorum, Diplonema papillatum and Leishmania major.
The results from analyses using RAxML were essentially
unchanged, both with respect to tree topology and BS val-
ues (additional file 2). To counteract sequence bias, we
recoded the 20 amino acids into six groups as previously
proposed [43]. Again, phylogenetic analysis of this dataset
using P4 [44] generated essentially the same tree topol-
ogy, with some support values decreased due to loss of
information by recoding (additional file 3).

Finally, we evaluated the positioning of Nuclearia next to
Fungi with the AU and weighted Shimodeira Hasegawa
(wSH) likelihood tests [45]. For this, we compared the
topology presented in Figure 1 with competing tree topol-
ogies in which the two Nuclearia strains were moved as sis-
tergroup to all major eukaryotic lineages, and all possible
positions within Opisthokonta. The results of both tests
confirm Nuclearia as the closest neighbor group of Fungi,
with all alternative topologies rejected at a significance
level of p = 0.002 (Table 1). Given the unequivocal sup-
port for Nuclearia as the fungal sistergroup, we propose
the term 'Holomycota' to refer to the assemblage of Nucle-
ariida plus Fungi.

Mitochondrial phylogeny and genomic features support 
monophyly of the Holomycota
Phylogenetic analyses of nuclear versus mitochondrial
datasets are expected to come to similar conclusions, thus
providing independent evidence for the given phyloge-
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netic relationships. To this end, we sequenced and ana-
lyzed the complete mitochondrial DNA (mtDNA) of one
of the N. simplex strains (a circular mapping DNA of 74
120 bp; see additional file 4). Note that growth of Nucle-
aria is complicated (the standard method calls for growth
on Petri dishes with a bacterial lawn as food source), and
that it is difficult to obtain sufficient cell material for
mtDNA purification, explaining why we succeeded for
only one of the two Nuclearia species.

The Nuclearia mtDNA contains a high number of introns
(21 group I, and one group II), and mitochondrial protein
genes appear to be translated with the standard transla-
tion code. These features are also widespread in Fungi. In

contrast, Holozoa all use a mitochondrial UGA (tryp-
tophan) codon reassignment, and contain no or only a
few introns (with the notable exception of Placozoa, an
enigmatic group of Metazoa [46]).

Phylogenetic analysis of a dataset with 56 species and 13
of the ubiquitous, most conserved mtDNA-encoded pro-
teins predicts the monophyly of Opisthokonta, Stra-
menopila, Holozoa and Fungi with confidence, and also
recovers Nuclearia as the sister-group of Fungi, albeit with
a moderate BS value of 85% (Figure 2). To verify if the
limited support for Holomycota is expected (i.e., correlat-
ing with the number of available sequence positions in
the respective datasets), we performed a variable length

Tree of eukaryotes based on Eukaryotic DatasetFigure 1
Tree of eukaryotes based on Eukaryotic Dataset. Trees were inferred with PhyloBayes and rooted following a previous 
suggestion [69,70]. The values at branches indicate bootstrap support (BS) values (upper value, BI/CAT model; lower value ML/
WAG model). Values below 60% are indicated by a hyphen; when BS values are equal only one is indicated. The posterior 
probability values using PhyloBayes are 1.0 for all except two branches (0.98 for the branch uniting Viridiplantae and Hapto-
phyceae; 0.90 for the clade indicted by *). The analyses using ML (RAxML, WAG+Gamma; four categories, see additional file 1) 
support the alternative grouping of Malawimonadozoa and JEH with a BS of 77%. Other minor differences include Plantae rela-
tionships and the placement of Haptophyceae, which receive no solid support in both BI and ML analyses.
Page 4 of 11
(page number not for citation purposes)



BMC Evolutionary Biology 2009, 9:272 http://www.biomedcentral.com/1471-2148/9/272
bootstrap (VLB) analysis. It compares the development of
BS values with the number of sequence positions, for the
nucleariid/fungal sister relationship. For this, we chose
the 29 species shared between the two datasets (for the
tree topology of the respective nuclear dataset see addi-
tional file 5). The results show that the development of BS
values is similar for nuclear and mitochondrial data (Fig-
ure 3), and that the available mitochondrial dataset (as
well as the above-cited nuclear phylogenies with five
genes) is too small to resolve the phylogenetic position of
nucleariids with high confidence. A better taxon sampling
primarily in nucleariids will be imperative for improved
phylogenetic resolution, motivating sequencing projects
with new technologies, which are likely to provide mito-
chondrial as well as nuclear genome sequences - even with
the limited amount of cellular material that is available
for some taxa (e.g., [47]).

Fungal phylogeny with Nucleariida as outgroup
Analyses of both the nuclear and mitochondrial datasets
have been insufficient to assess with confidence, neither
zygomycete mono/paraphyly, nor the phylogenetic posi-
tion of Blastocladiomycota (Blastocladiales) (Figure 1, 2).
For instance, a recent mitochondrial multi-gene phylog-
eny with the first complete Glomus mtDNA sequence
groups Glomus and Mortierella, yet lacks significant statis-
tical support [47]. To re-address these questions, we have
assembled a large dataset of nuclear-encoded genes from
an extended, representative selection of fungal species,
plus the two Nuclearia species as outgroup (i.e., the Fungal
Dataset). The analyses show overall strong BS for the par-
aphyly of zygomycetes (Figure 4), i.e., the Entomoph-
thoromycotina represent a significantly supported and
completely independent fungal lineage. However, mono-
phyletic Mucoromycotina including Mortierella as recently
redefined [28] is not recovered (rendering the taxon

Mucoromycotina paraphyletic), neither is the taxon Sym-
biomycota (Glomeromycota plus Dikarya; [29]). Instead,
there is moderate support to group Mucorales plus
Dikarya (92% BS in BI) and Glomus as their next neighbor
(85% BS in BI). Although the placement of Glomus relative
to Mortierella differs between our BI and ML analyses (Fig-
ure 4), we assume that the result of the BI analysis with its
superior evolutionary model is more reliable. In light of
these results, taxonomic reordering based on stable phyl-
ogenetic resolution of the traditional zygomycetes will
require phylogenomic analyses with a much improved
taxon sampling. Currently, nuclear and mitochondrial
genome data are available only for single species in the
latter two taxa; i.e. Glomus intraradices and M. verticillata.

Rooting of the fungal tree with nucleariids confirms that
the traditional chytridiomycetes are also paraphyletic,
again assuming that the result of the BI analysis is correct
(Figure 4). Confirmation of this result (justifying an eleva-
tion of Blastocladiomycota as a separate phylum; [28]) is
highly desirable, as genome-size datasets in Blastocladio-
mycota are limited to the two moderately distant species
Blastocladiella emersonii and A. macrogynus. Similarly, in
light of the significant support for a monophyletic
Chytridiomycota plus Neocallimastigomycota (100% BS
with BI; Figure 4), their division into separate taxonomic
higher ranks should be reconsidered, but only after phyl-
ogenomic analysis with improved taxon sampling in both
groups. Finally, our results motivate genome or EST
sequencing in Rozella species (Rozellida), potential rela-
tives of Microsporidia and close neighbors of Fungi. The
availability of a largely improved taxon sampling in zygo-
mycetes, chytrids and Rozellida will provide a solid basis
for evaluating the proposed placements of Microsporidia
- either within or as a sistergroup to Fungi - based on phy-
logenomic analyses.

Table 1: Comparison of alternative tree topologies with AU and wSH tests.

Rank Tree topology ΔlnL AU wSH

1 Best tree (see Figure 1) 0 1.000 1.000
2 Nuclearia sister of Holozoa 187.9 0 0
3 Nuclearia sister of Opisthokonta 237.4 0 0
4 Nuclearia sister of Asco- + Basidio- + Zygomycetes 418.2 0 0
5 Nuclearia sister of Capsaspora + Amoebidium + Sphaeroforma 478.2 0 0
6 Nuclearia sister of Metazoa + Monosiga 495.3 0 0
7 Nuclearia sister of Allomyces 511.1 0 0
8 Nuclearia sister of Spizellomyces 513.7 0 0
9 Nuclearia sister of Capsaspora 534.3 0 0
10 Nuclearia sister of Amoebidium + Sphaeroforma 561.2 0 0
11 Nuclearia sister of Amoebozoa 621.2 0.002 0
12 Nuclearia sister of Opisthokonta + Amoebozoa 626.8 0.002 0
13 Nuclearia sister of Asco- + Basidiomycetes 704.5 0 0
14 Nuclearia sister of Monosiga 727.5 0 0
15 Nuclearia sister of Metazoa 738.9 0 0

Log likelihood differences and AU and wSH p values of top-ranking trees are listed.
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The results presented here are consistent with previous
notions on how Fungi came into being. For example it is
thought that the first Fungi probably had branched
chytrid-like rhizoids, which developed by enclosure of
nucleariid-like filopodia (sometimes branched) into cell
walls, during a nutritional shift from phagotrophy to
saprotrophy, thus giving rise to fungal hyphae and rhiz-
oids [7]. However, the picture is more complicated as it is
widely thought that the ancestral opisthokont also had a
single posterior flagellum [48]. This structure was lost dur-
ing evolution of most but not all fungal lineages (e.g.,
[9,25,49,50]), with a separate loss in the nucleariid sister-
group. In this sense, nucleariids are unlikely to represent a
primitive developmental stage, but rather a secondary
reduction resulting in a unicellular, amoeboid life style.
Obviously, the clarification of the chain of events leading
to the emergence of multicellularity in Fungi is by no
means complete. These issues will only become clear with

a much broader sampling of genomes from taxa near the
animal-fungal divergence and the discovery of additional
protist groups that are closely related to Fungi.

Conclusion
Here we demonstrate that phylogenomic analysis with
improved evolutionary models and algorithms has a
potential for resolving long-standing issues in fungal evo-
lution, by increasing phylogenetic resolution. Yet, while
our results support certain aspects of the new taxonomic
classification of Fungi they contradict others, suggesting
that the introduction of certain higher-level taxa is only
preliminary. In particular, the elevation of Neocallimasti-
gales, Blastocladiomycota and Glomeromycota to sepa-
rate phyla is questionable from a molecular phylogenetics
standpoint, and potentially confusing to the larger scien-
tific community. At present, genome analyses continue to
suffer from poor sampling in chytrids, zygomycetes and

Phylogeny inferred from the mitochondrial datasetFigure 2
Phylogeny inferred from the mitochondrial dataset. For details on figure description, evolutionary models and phyloge-
netic methods, see legend of Figure 1. Note that as already noted in a previous publication [5], the phylogenetic position of 
Capsaspora with mitochondrial data differs from that with nuclear data (Figure 1). We attribute this inconsistency to the limited 
availability of mtDNA sequences from Capsaspora relatives, and a strong LBA artifact introduced by the fast-evolving Bilateria in 
concert with Trichoplax. Further, the placements of Cryptococcus and Ustilago differ (although without significant support) from 
those with nuclear data (see Figure 4), although results with the much larger nuclear dataset are more likely to be correct.
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close fungal relatives such as nucleariids. This issue will be
resolved by the employment of new, increasingly inex-
pensive genome sequencing technologies. Phylogenomic
projects like the current one will help focusing on genome
analyses of poorly known phyla and taxa that are key to
understanding fungal origins and evolution.

Methods
Construction of cDNA libraries and EST sequencing
Two N. simplex (CCAP 1552/2 and 1552/4) cDNA librar-
ies were constructed following recently published proto-
cols [51]. Cells were grown in liquid standing cultures in
WCL medium http://megasun.bch.umontreal.ca/People/
lang/FMGP/methods/wcl.html supplemented with 0.5 ×
Cerophyll, with E. coli cells as food, which were pre-grown
on LB medium in Petri-dishes as food. Plasmids were
purified using the QIAprep 96 Turbo Miniprep Kit (Qia-
gen), sequencing reactions were performed with the ABI
Prism BigDye™ terminator version 3.0/3.1 (Perkin-Elmer,
Wellesley, MA, USA) and sequenced on an MJ BaseStation
(MJ Research, USA). Trace files were imported into the
TBestDB database http://tbestdb.bcm.umontreal.ca/

searches/login.php[52] for automated processing, includ-
ing assembly as well as automated gene annotation by
AutoFact [53,54].

Mitochondrial sequencing and genome annotation
N. simplex (CCAP 1552/2) was grown as described above.
The harvested cells were disrupted by addition of SDS plus
proteinase K, and mitochondrial DNA was purified fol-
lowing a whole cell lysate protocol [55] and sequenced
from a random clone library [56]. For mitochondrial
genome assembly we used Phred, Phrap and Consed
[57,58]; http://www.phrap.org/. Mitochondrial genes and
introns were identified using automated procedures
(MFannot, N. Beck and BFL unpublished; RNAweasel,
[59]), followed by manual curation of the results.

Dataset construction
A previously published alignment of nuclear-encoded
proteins [20] was used for adding the new Nuclearia cDNA
sequences generated in our lab, plus extra sequences avail-
able from GenBank (a taxonomic broad dataset contain-
ing 50 eukaryotes will be referred to as the 'Eukaryotic

VLB analysisFigure 3
VLB analysis. Relationship between the number of sequence positions and bootstrap support for Fungi+Nucleariida, with 
nuclear and mitochondrial datasets.
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Dataset'; another one containing 26 fungal species plus
the two Nuclearia species as 'Fungal Dataset') using MUST
[60] and FORTY (Denis Baurain and HP, unpublished).
The number of species has been limited (to allow phylog-
enomic analyses within reasonable time frames), but only
in well-sampled phylogenetic groups of undisputed phyl-
ogenetic affinity. Species that were not included are either
fast-evolving and/or are incompletely sequenced. Other
procedures for dataset construction, in particular the elim-
ination of paralogous proteins, have been described pre-
viously [61]. Within opisthokonts, major lineages had to
be represented by at least two distant species, and the
extremely fast-evolving Microsporidia were excluded, as
these are known to introduce phylogenetic artifacts and
an overall reduction of phylogenetic resolution (at an
extreme leading to misplacement of species; e.g., [62,63]).
Sampling within the protist outgroup of the Eukaryotic
Dataset is also not comprehensive (Stramenopila, Alveo-
lata, and Euglenozoa) and limited to slow-evolving repre-
sentatives of major eukaryotic lineages. The final
Eukaryotic Dataset contains 118 proteins (24 439 amino
acid positions) and the Fungal Dataset 150 proteins (40

925 amino acid positions). Proteins included in the
nuclear datasets are listed in additional file 6.

For a dataset of mitochondrial proteins, 13 ubiquitous
genes (cox1, 2, 3, cob, atp6, 9, and nad1, 2, 3, 4, 4L, 5, 6)
were selected. Muscle ([64]), Gblocks ([65]) and an appli-
cation developed in-house (mams) were used for auto-
matic protein alignment, removal of ambiguous regions
and concatenation. The final dataset contains 56 taxa and
2 710 amino acid positions.

Phylogenetic analysis
Phylogenetic analyses were performed at the amino acid
(aa) level using methods that are known to be least sensi-
tive to LBA artifacts ([36,37,66], and references therein).
The concatenated protein datasets were analyzed either by
Bayesian inference (BI, PhyloBayes [37]) with the CAT+ Γ
model and four discrete gamma categories, or by maxi-
mum likelihood (ML, RAxML [40] with the WAG+ Γ
model and four discrete categories. BI analyses using the
CAT model have been shown to be more reliable than ML,
due to the application of a more realistic evolutionary

Fungal phylogeny with nuclear data, using Nucleariida as the outgroupFigure 4
Fungal phylogeny with nuclear data, using Nucleariida as the outgroup. For details on figure description, evolution-
ary models and phylogenetic methods, see legend of Figure 1. Note that the phylogenetic position of Blastocladiomycota is 
unstable, differing between ML versus BI analyses (we consider the latter to be more reliable).
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model. ML analyses were essentially performed to identify
differences in topology, pinpointing problematic parts of
the tree for which addition of new data would be in order
(i.e., preferentially genome sequences from slowly-evolv-
ing species, and those that are expected to break long
internal branches at questionable tree topologies).

In case of BI and the Eukaryotic Dataset (values for the
Fungal Dataset in brackets), chains were run for 3000
(1000) cycles, and the first 1500 (500) cycles were
removed as burn-in corresponding to approximately
1,200,000 (400,000) generations. Convergence was con-
trolled by running three independent chains, resulting in
identical topologies. The reliability of internal branches
for both, ML and BI analyses was evaluated based on 100
bootstrap replicates. For BI, we inferred a consensus tree
from the posterior tree topologies of replicates.

Likelihood tests of competing tree topologies were also
performed. The site-wise likelihood values were estimated
using Tree-Puzzle [67] with the WAG+ Γ model, and p-
values for each topology were calculated with CONSEL
[45].

Variable Length Bootstrap analysis
We compared the performance of nuclear and mitochon-
drial datasets in phylogenetic inference by Variable Length
Bootstrap (VLB) analysis [68]. Sequences of 29 common
species were taken from the eukaryotic (24,439 aa posi-
tions) and mitochondrial (2,710 aa positions) datasets.
From these, two respective series of sub-datasets were con-
structed by randomly choosing 400, 600, 800, 1 000 ...
sequence positions. Phylogenetic inferences were then
performed using RAxML with the WAG+Γ model and four
discrete categories, after which the BS values for the group-
ing of nucleariids and Fungi were recorded.
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