Evolutionary Relationships among the *Fusarium oxysporum* f. sp. *cubense* Vegetative Compatibility Groups

Published Ahead of Print 29 May 2009.
Evolutionary Relationships among the *Fusarium oxysporum* f. sp. *cubense* Vegetative Compatibility Groups

Gerda Fourie,¹* E. T. Steenkamp,¹ T. R. Gordon,² and A. Viljoen¹,³

Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa¹; Department of Plant Pathology, University of California, Davis, California 95616²; and Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa³

Received 16 February 2009/Accepted 21 May 2009

*Corresponding author. Mailing address: Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa. Phone and fax: 2712 420 3853. E-mail: gerda1.fourie@fabi.up.ac.za.

† Published ahead of print on 29 May 2009.

Fusarium oxysporum Schlechtendahl emend. Snyder and Hansen is a cosmopolitan species (9) comprised of both pathogenic and nonpathogenic isolates (20). The pathogenic isolates of *F. oxysporum* cause fusarium wilt of several agricultural crops, and are accordingly subdivided into formae speciales (3, 26, 55). One of the economically more important and destructive formae speciales is the causal agent of fusarium wilt (Panama disease) of banana (*Musa* spp.), *F. oxysporum* f. sp. *cubense* (E. F. Smith) Snyder et Hansen. This disease has been reported in all banana production regions of the world, except some islands in the South Pacific (66, 77).

A range of approaches are typically employed for the characterization of *F. oxysporum* f. sp. *cubense* isolates. Based on virulence to specific banana cultivars (66, 67), the pathogen may be classified into one of three races (i.e., races 1, 2, and 4), although this designation may be contingent on environmental conditions. For instance, genetically identical isolates of *F. oxysporum* f. sp. *cubense* are classified as race 4 isolates in the subtropics and as race 1 isolates in the tropics because they cause disease to Cavendish bananas under subtropical conditions only (67, 86). Based on vegetative compatibility, *F. oxysporum* f. sp. *cubense* isolates have been separated into 24 so-called vegetative compatibility groups (VCGs) (5, 29, 47, 68). Finally, various DNA-based tools have been used to separate *F. oxysporum* f. sp. *cubense* into a number of clonal lineages that more or less correspond to their grouping based on VCGs (6, 22, 38, 59).

The evolutionary history of *F. oxysporum* f. sp. *cubense* is complex. Based on the results of phylogenetic studies (4–7, 22, 38, 57, 59), *F. oxysporum* f. sp. *cubense* represent multiple unrelated lineages, some of which are more closely related to other formae speciales of *F. oxysporum* than to other *F. oxysporum* f. sp. *cubense* lineages (3, 57, 59). This has lead to speculations that new pathogenic forms of *F. oxysporum* may be derived from other pathogenic and nonpathogenic members of this species (21). Factors such as coevolution with the plant host and the spread of virulence determinants via processes such as parasexuality, heterokaryosis, and sexual recombination also have been implicated in the evolution of this pathogen (11, 36, 37, 39, 64, 65, 69). Although parasexuality and heterokaryosis are known to occur in *F. oxysporum* (11, 39), sexual fruiting structures have never been observed in the species and only indirect evidence for sexual recombination has been detected (82). Indeed, the organization of the *F. oxysporum* f. sp. *cubense* mating type locus (MAT) is similar to those found in the closely related *Gibberella fujikuroi* (Sawada) Ito in Ito et K. Kimura complex and other heterothallic ascomycetes (2, 90).

Development of appropriate disease management strategies and the selection of *F. oxysporum* f. sp. *cubense*-resistant banana cultivars may benefit from a better understanding of the diversity and evolutionary history of the pathogen. Although most previous DNA-based studies provided knowledge regarding the diversity of *F. oxysporum* f. sp. *cubense*, the genetic relatedness among the lineages identified in these studies re-
mains uncertain (22). It is also not clear how the different races and VCGs of *F. oxysporum f. sp. cubense* are related to one another and to other isolates of *F. oxysporum*. Therefore, the main objective of this study was to resolve the relationships among the *F. oxysporum f. sp. cubense* VCGs and determine their relationships with other formae specialiae and nonpathogenic members of *F. oxysporum* by using a multigene phylogenetic approach (8, 32, 52, 63, 72, 75, 91). To facilitate the rapid differentiation of the various *F. oxysporum f. sp. cubense* lineages, we also aimed to develop a diagnostic PCR-restriction fragment length polymorphism (RFLP) procedure. To evaluate the potential of *F. oxysporum f. sp. cubense* to reproduce sexually, sexual crosses among isolates of opposite mating types were attempted after PCR-based detection of the MAT-1 and MAT-2 idiomorphs (34).

MATERIALS AND METHODS

Fungal isolates. A global collection of 70 *F. oxysporum* isolates representing 20 of the 24 VCGs, a new *F. oxysporum f. sp. cubense* VCG from Vietnam, other formae specialiae of *F. oxysporum*, *F. oxysporum* isolates from heliconia (*Heliconia* sp.), and nonpathogenic *F. oxysporum* isolates from the rhizosphere of banana plants in South Africa (48) were included in this study (Table 1). All cultures are maintained in the culture collection (CAV) of the Forestry Agricultural Biotechnology Institute (FABI), University of Pretoria, South Africa. DNA for cultures that were not available was kindly supplied by Suzy Bentley from the Queensland Department of Primary Industries (QDPI) in Brisbane, Australia.

Pathogenicity tests. To verify that the isolates included in this study are indeed specific pathogens of banana, 27 isolates representing 17 known VCGs of *F. oxysporum f. sp. cubense* were selected for pathogenicity tests on banana plants (Table 1). All cultures were grown on 20 g/liter potato dextrose agar (PDA) (Biolab Diagnostics, Wadeville, South Africa) for 10 days. A spore suspension was prepared by washing spores from mycelia with sterile distilled water, followed by filtration through cheese cloth and adjustment of the spore concentration to 1 × 10⁵ spores/ml. Pathogenicity tests were performed with all isolates on Gros Michel tissue culture banana plantlets or Gros Michel and Bluggoe tissue culture banana plantlets for the new VCG from Vietnam and the *F. oxysporum* isolates from heliconia. Five tissue culture banana plantlets were inoculated for each isolate tested. The tests were conducted in a hydropot system (49), and disease severity was measured after 6 weeks using a disease rating scale developed previously (12).

Morphological characterization. To confirm that the isolates included in this study represent *F. oxysporum*, their cultural and morphological characteristics were studied using the procedures described by Nelson et al. (50) and Leslie and Summerell (41). All *F. oxysporum f. sp. cubense* isolates were cultured on PDA (40 g/liter) and carnation leaf agar (41) and incubated at 25°C under white and near-UV fluorescent light for 12 days. Morphological features such as the presence and abundance of micro- and macroconidia, chlamydospores, and the size and shape of the macroconidia produced on carnation leaf agar were examined using light microscopy. Colony color and colony diameter were recorded after 3, 7, and 10 days of growth on PDA, and the presence of sclerotia and sporodochia was documented after 12 days.

DNA isolation, PCR amplification, and sequencing. Isolates of *F. oxysporum f. sp. cubense* and *F. oxysporum* were grown on 20 g/liter PDA medium for 7 days. DNA was isolated from the isolates as described previously (22). For phylogenetic analyses, we targeted the translation elongation factor-1α (TEF) and the mitochondrial small subunit (mtSSU) RNA genes, as well as the RNA intergenic spacer (IGS) region and a repeat region encoded in the mitochondrial genome (MTR) (T. Gordon, unpublished data). For this purpose, we used the primer sets EF1 and EF2 (59), MS1 and MS2 (68), and PCF1 and PCD2 (17) to amplify regions of TEF, mtSSU, and IGS, respectively. To target the MTR region, primers R117 (5'-GTCAACCAGGAGCAGACTG-3') and U9 (5'-GTA ACCCTGACTCACC-3') were used. Each amplification reaction mixture contained ~5 ng/μl DNA, 0.3 μM of each primer, 250 μM deoxynucleoside triphosphates (dNTPs; Fermentas, Nunningen, Switzerland), 0.04 μl Tag DNA polymerase (Roche Molecular Biochemicals, Mannheim, Germany), and PCR buffer with MgCl₂ (Roche). Cycling conditions consisted of 35 cycles at 94°C for 45 s, 60°C (TEF), 53°C (mtSSU), 50°C (IGS), or 59°C (MTR) for 45 s and 72°C for 90 s. Each PCR was preceded by an initial denaturation step at 94°C for 2 min and concluded with a final extension step at 72°C for 5 min. PCR products were purified using the High Pure PCR product purification kit (Roche Applied Biociences) and sequenced using the Big Dye Terminator version 3.1 cycle sequencing kit (Applied Biosystems, Foster City, CA) and an ABI 377 automated sequencer (Applied Biosystems). In the case of IGS, we also designed and used an internal reverse primer, IGS2 (5'-GCGGAATTTGTCCTCCTTCT-3'), for sequencing of the entire 1,500-bp fragment.

Phylogenetic analysis. Multiple sequence alignments were constructed using MUSCLE (version 3.8) (http://www.ebi.ac.uk/muscle/online/), with the L-INS-i option effective (30, 33). This option utilizes an iterative refinement method with various algorithms for optimization of local and pairwise alignments (30). Four data sets were constructed for the sequenced gene regions, where three of these comprised the MTR, IGS, and together TEF-plus-MtSSU sequences of *F. oxysporum f. sp. cubense* generated in this study. The fourth data set represented an extended TEF-MtSSU data set that included *F. oxysporum f. sp. cubense* sequences, as well as sequences for other formae specialiae of *F. oxysporum*, nonpathogenic *F. oxysporum* isolates from South Africa, *F. oxysporum* isolates from heliconia, and sequences for *F. oxysporum* isolates that were obtained from GenBank. All ambiguously aligned sites, including a 148- or 156-bp insertion/deletion (indel) within MTR, were excluded from these analyses.

To test for the combinability of data sets, the partition homogeneity test (18) implemented in PAUP*, version 10b (79), was used on parsimony informative sites only (14, 16, 40). These tests were based on 1,000 repartitions and heuristic search using 100 random sequence additions and 100 random sequence additions, followed by branch swapping. Phylogenies based on maximum parsimony (MP), Bayesian inference (BI), and maximum likelihood (ML) methods were inferred for the different data sets using PAUP*, version 10b, MrBayes, version 3.6b (24), and PhyML, version 2.4.3 (23), respectively. For these analyses, the best-fit models of evolution, as indicated by MrModeltest 2.2 (34) and Modeltest 3.7 (71), were used. For the *F. oxysporum f. sp. cubense* TEF-MtSSU data set, the BI analysis was used to separate the current work and 20000 posterior probabilities were calculated. MP and ML bootstrap confidence values were based on 1,000 replications and the same parameters described above.

Selected diagnostic data for F. oxysporum f. sp. cubense VCGs. All sequences were screened for VCG- or lineage-specific polymorphisms in BioEdit, version 6.0.7 (24). As the IGS region contained polymorphisms for the different *F. oxysporum f. sp. cubense* lineages, five restriction enzymes were used for diagnostic PCR-RFLP purposes. These enzymes included Aval (New England BioLabs, Hitchin, England), BbvI (New England BioLabs), BceAI (New England BioLabs), BsrDI (New England BioLabs), and CspEl (Fermentas). All enzymes were used separately in PCR-RFLP digestion reactions and consisted of 18 μl H2O PCR product, 2 μl of the restriction enzyme, and 2 μl of the supplied restriction buffer. After incubation at 37°C for 3 h, the restricted fragments were separated by agarose (3% [wt/vol]) gel electrophoresis (72).

Mating type diagnoses and mating studies. Mating types of the various *F. oxysporum f. sp. cubense* isolates were determined by PCR using the primer set Falpha 1 and Falpha 2 for MAT-1 (2), and the primers GFMa1α2c (76) and FF1 (87) for MAT-2. PCR conditions were similar to those described above, apart from the use of annealing temperatures of 55°C for MAT-1 and 54°C for MAT-2. Selected MAT-1 and MAT-2 products were also sequenced in both directions with the original PCR primers, as described above and compared to those in GenBank (http://www.ncbi.nlm.nih.gov/) using BLASTN. Once the mating type of the isolates was known, two *F. oxysporum f. sp. cubense* isolates in each VCG were crossed in all possible combinations with isolates of the opposite mating type in other VCGs by procedures described by Leslie and Summerell (41). For the *F. oxysporum f. sp. cubense* lineages containing both mating types, all isolates of opposite mating type were crossed with each other. For all of the crosses, isolates were treated as males and females. *F. oxysporum f. sp. cubense* isolates were also crossed with the mating type tester of *Fusarium circinatum* (MRC 6213 or MRC 7488) (10) for control purposes, and crosses between the *F. circinatum* tester isolates were included as positive controls.
<table>
<thead>
<tr>
<th>Isolate no.</th>
<th>Other identification no.</th>
<th>Species and forma specialis</th>
<th>VCG</th>
<th>Host or cultivar</th>
<th>Origin</th>
<th>Collector(s)</th>
<th>Pathogenicity</th>
<th>Mating type</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAV 009</td>
<td>1020</td>
<td>F. oxysporum f. sp. cubense</td>
<td></td>
<td>Cavendish</td>
<td>South Africa</td>
<td>A. Viljoen</td>
<td>Not tested</td>
<td>MAT-2</td>
</tr>
<tr>
<td>CAV 045</td>
<td>1020</td>
<td>F. oxysporum f. sp. cubense</td>
<td></td>
<td>Cavendish</td>
<td>South Africa</td>
<td>A. Viljoen</td>
<td>Not tested</td>
<td>MAT-2</td>
</tr>
<tr>
<td>CAV 105</td>
<td>1020</td>
<td>F. oxysporum f. sp. cubense</td>
<td></td>
<td>Cavendish</td>
<td>South Africa</td>
<td>A. Viljoen</td>
<td>Not tested</td>
<td>MAT-2</td>
</tr>
<tr>
<td>CAV 203</td>
<td>1020</td>
<td>F. oxysporum f. sp. cubense</td>
<td></td>
<td>Dwarf Cavendish</td>
<td>Canary Islands</td>
<td>J. Hernandez</td>
<td>Pathogenic</td>
<td>MAT-2</td>
</tr>
<tr>
<td>CAV 294</td>
<td>34661</td>
<td>F. oxysporum f. sp. cubense</td>
<td></td>
<td>Highgate</td>
<td>Honduras</td>
<td>R. Ploetz, American Type Culture Collection</td>
<td>Pathogenic</td>
<td>MAT-2</td>
</tr>
<tr>
<td>CAV 296</td>
<td>1020</td>
<td>F. oxysporum f. sp. cubense</td>
<td></td>
<td>Highgate</td>
<td>Honduras</td>
<td>R. Ploetz, R. H.</td>
<td>Not tested</td>
<td>MAT-2</td>
</tr>
<tr>
<td>CAV 298</td>
<td>BR18</td>
<td>F. oxysporum f. sp. cubense</td>
<td>0120</td>
<td>Banana</td>
<td>Brazil</td>
<td>Unknown</td>
<td>Not tested</td>
<td>MAT-2</td>
</tr>
<tr>
<td>CAV 299</td>
<td>PD14-1</td>
<td>F. oxysporum f. sp. cubense</td>
<td>0120</td>
<td>Gros Michel</td>
<td>Nigeria</td>
<td>C. Pausberg-Gaulh</td>
<td>Not tested</td>
<td>MAT-2</td>
</tr>
<tr>
<td>CAV 607</td>
<td>RP13</td>
<td>F. oxysporum f. sp. cubense</td>
<td>0122</td>
<td>Cavendish</td>
<td>Philippines</td>
<td>R. Ploetz</td>
<td>Pathogenic</td>
<td>MAT-1</td>
</tr>
<tr>
<td>CAV 605</td>
<td>RP14</td>
<td>F. oxysporum f. sp. cubense</td>
<td>0122</td>
<td>Cavendish</td>
<td>Philippines</td>
<td>R. Ploetz</td>
<td>Pathogenic</td>
<td>MAT-1</td>
</tr>
<tr>
<td>CAV 613</td>
<td>Phil 7</td>
<td>F. oxysporum f. sp. cubense</td>
<td>0126</td>
<td>Latundan</td>
<td>Philippines</td>
<td>Unknown</td>
<td>Pathogenic</td>
<td>MAT-2</td>
</tr>
<tr>
<td>CAV 793</td>
<td>Ind 33</td>
<td>F. oxysporum f. sp. cubense</td>
<td>0126</td>
<td>Pisang Rubus</td>
<td>Indonesia</td>
<td>R. Shivas</td>
<td>Pathogenic</td>
<td>MAT-2</td>
</tr>
<tr>
<td>CAV 794</td>
<td>Ind 38</td>
<td>F. oxysporum f. sp. cubense</td>
<td>0126</td>
<td>Pisang Rubus</td>
<td>Indonesia</td>
<td>Unknown</td>
<td>Not tested</td>
<td>MAT-2</td>
</tr>
<tr>
<td>CAV 1051</td>
<td>RP52</td>
<td>F. oxysporum f. sp. cubense</td>
<td>0120</td>
<td>Apple</td>
<td>United States</td>
<td>R. Ploetz</td>
<td>Pathogenic</td>
<td>MAT-1</td>
</tr>
<tr>
<td>CAV 732</td>
<td>RP26</td>
<td>F. oxysporum f. sp. cubense</td>
<td>0120</td>
<td>Highgate</td>
<td>Honduras</td>
<td>R. Ploetz</td>
<td>Pathogenic</td>
<td>MAT-1</td>
</tr>
<tr>
<td>CAV 847</td>
<td>Ind 35</td>
<td>F. oxysporum f. sp. cubense</td>
<td>0121</td>
<td>Pisang Raja Sereh</td>
<td>Indonesia</td>
<td>H. Stover</td>
<td>Pathogenic</td>
<td>MAT-1</td>
</tr>
<tr>
<td>CAV 195</td>
<td>Ind 25</td>
<td>F. oxysporum f. sp. cubense</td>
<td>0121</td>
<td>Pisang Ambon</td>
<td>Indonesia</td>
<td>N. Moore</td>
<td>Not tested</td>
<td>MAT-1</td>
</tr>
<tr>
<td>CAV 841</td>
<td>Ind 19</td>
<td>F. oxysporum f. sp. cubense</td>
<td>0121</td>
<td>Pisang Ambon</td>
<td>Indonesia</td>
<td>N. Moore</td>
<td>Not tested</td>
<td>MAT-1</td>
</tr>
<tr>
<td>CAV 191</td>
<td>Ind 34</td>
<td>F. oxysporum f. sp. cubense</td>
<td>0121</td>
<td>Pisang Berangan</td>
<td>Indonesia</td>
<td>I. Buddenhagen, J. C.</td>
<td>Pathogenic</td>
<td>MAT-1</td>
</tr>
<tr>
<td>CAV 811</td>
<td>Ind 30</td>
<td>F. oxysporum f. sp. cubense</td>
<td>0121</td>
<td>Pisang Kepu</td>
<td>Indonesia</td>
<td>H. Stover</td>
<td>Pathogenic</td>
<td>MAT-1</td>
</tr>
<tr>
<td>CAV 810</td>
<td>Ind 31</td>
<td>F. oxysporum f. sp. cubense</td>
<td>0121</td>
<td>Pisang Kepu</td>
<td>Indonesia</td>
<td>J. Katan</td>
<td>Pathogenic</td>
<td>MAT-1</td>
</tr>
<tr>
<td>CAV 312</td>
<td>RPML 25</td>
<td>F. oxysporum f. sp. cubense</td>
<td>0121</td>
<td>Pisang ubung</td>
<td>Malaysia</td>
<td>R. Ploetz</td>
<td>Pathogenic</td>
<td>MAT-1</td>
</tr>
<tr>
<td>CAV 313</td>
<td>RPML 47</td>
<td>F. oxysporum f. sp. cubense</td>
<td>0121</td>
<td>Pisang awak legor</td>
<td>Malaysia</td>
<td>R. Ploetz</td>
<td>Pathogenic</td>
<td>MAT-1</td>
</tr>
<tr>
<td>CAV 814</td>
<td>Ind 47</td>
<td>F. oxysporum f. sp. cubense</td>
<td>0121</td>
<td>Cavendish</td>
<td>Indonesia</td>
<td>I. Buddenhagen, R. Shivas</td>
<td>Pathogenic</td>
<td>MAT-1</td>
</tr>
<tr>
<td>CAV 815</td>
<td>Ind 56</td>
<td>F. oxysporum f. sp. cubense</td>
<td>0121</td>
<td>Cavendish</td>
<td>Indonesia</td>
<td>I. Buddenhagen, G. P. Salengay</td>
<td>Pathogenic</td>
<td>MAT-1</td>
</tr>
<tr>
<td>CAV 604</td>
<td>Ind 50</td>
<td>F. oxysporum f. sp. cubense</td>
<td>0126</td>
<td>Cavendish</td>
<td>Indonesia</td>
<td>Unknown</td>
<td>Not tested</td>
<td>MAT-1</td>
</tr>
<tr>
<td>CAV 609</td>
<td>23538</td>
<td>F. oxysporum f. sp. cubense</td>
<td>0124</td>
<td>Lady finger</td>
<td>Australia</td>
<td>Unknown</td>
<td>Pathogenic</td>
<td>MAT-2</td>
</tr>
<tr>
<td>CAV 786</td>
<td>23734</td>
<td>F. oxysporum f. sp. cubense</td>
<td>0124</td>
<td>Lady finger</td>
<td>Australia</td>
<td>K. Pegg</td>
<td>Not tested</td>
<td>MAT-2</td>
</tr>
<tr>
<td>CAV 861</td>
<td>8611</td>
<td>F. oxysporum f. sp. cubense</td>
<td>0125</td>
<td>Lady finger</td>
<td>Australia</td>
<td>Unknown</td>
<td>Pathogenic</td>
<td>MAT-2</td>
</tr>
<tr>
<td>CAV 23480</td>
<td>23480</td>
<td>F. oxysporum f. sp. cubense</td>
<td>0125</td>
<td>Lady finger</td>
<td>Australia</td>
<td>Unknown</td>
<td>Pathogenic</td>
<td>MAT-2</td>
</tr>
<tr>
<td>CAV 23487</td>
<td>23487</td>
<td>F. oxysporum f. sp. cubense</td>
<td>0125</td>
<td>Lady finger</td>
<td>Australia</td>
<td>Unknown</td>
<td>Pathogenic</td>
<td>MAT-2</td>
</tr>
<tr>
<td>CAV 1097</td>
<td>22993</td>
<td>F. oxysporum f. sp. cubense</td>
<td>0128</td>
<td>Blue Java</td>
<td>Australia</td>
<td>Unknown</td>
<td>Pathogenic</td>
<td>MAT-2</td>
</tr>
<tr>
<td>CAV 1096</td>
<td>22994</td>
<td>F. oxysporum f. sp. cubense</td>
<td>0128</td>
<td>Bluggoe</td>
<td>Australia</td>
<td>Unknown</td>
<td>Pathogenic</td>
<td>MAT-2</td>
</tr>
<tr>
<td>CAV 24211</td>
<td>24211</td>
<td>F. oxysporum f. sp. cubense</td>
<td>0122</td>
<td>Cavendish</td>
<td>Australia</td>
<td>Unknown</td>
<td>Not tested</td>
<td>MAT-2</td>
</tr>
<tr>
<td>CAV 24219</td>
<td>24219</td>
<td>F. oxysporum f. sp. cubense</td>
<td>0122</td>
<td>Cavendish</td>
<td>Australia</td>
<td>Unknown</td>
<td>Not tested</td>
<td>MAT-2</td>
</tr>
<tr>
<td>CAV 957</td>
<td>Thai 37</td>
<td>F. oxysporum f. sp. cubense</td>
<td>0123</td>
<td>Khai Namw</td>
<td>Thailand</td>
<td>K. Konariyakul</td>
<td>Not tested</td>
<td>MAT-2</td>
</tr>
<tr>
<td>CAV 929</td>
<td>PHIL 13</td>
<td>F. oxysporum f. sp. cubense</td>
<td>0123</td>
<td>Latundan</td>
<td>Philippines</td>
<td>L. Magnaye</td>
<td>Pathogenic</td>
<td>MAT-2</td>
</tr>
<tr>
<td>CAV 933</td>
<td>Thai 2-1</td>
<td>F. oxysporum f. sp. cubense</td>
<td>0123</td>
<td>Khai Namw</td>
<td>Thailand</td>
<td>N. Singburadom</td>
<td>Pathogenic</td>
<td>MAT-2</td>
</tr>
<tr>
<td>CAV 1100</td>
<td>23510</td>
<td>F. oxysporum f. sp. cubense</td>
<td>0129</td>
<td>Lady finger</td>
<td>Australia</td>
<td>Unknown</td>
<td>Not tested</td>
<td>MAT-2</td>
</tr>
<tr>
<td>CAV 1100</td>
<td>23518</td>
<td>F. oxysporum f. sp. cubense</td>
<td>0129</td>
<td>Lady finger</td>
<td>Australia</td>
<td>K. Pegg</td>
<td>Not tested</td>
<td>MAT-2</td>
</tr>
<tr>
<td>CAV 23631</td>
<td>23631</td>
<td>F. oxysporum f. sp. cubense</td>
<td>0121</td>
<td>SH1</td>
<td>Australia</td>
<td>Unknown</td>
<td>Not tested</td>
<td>MAT-2</td>
</tr>
<tr>
<td>CAV 189</td>
<td>RP58</td>
<td>F. oxysporum f. sp. cubense</td>
<td>0122</td>
<td>Nye poovan</td>
<td>Tanzania</td>
<td>Unknown</td>
<td>Pathogenic</td>
<td>MAT-2</td>
</tr>
<tr>
<td>CAV 871</td>
<td>MAL 7</td>
<td>F. oxysporum f. sp. cubense</td>
<td>0127</td>
<td>Pisang Rastali</td>
<td>Malaysia</td>
<td>Unknown</td>
<td>Pathogenic</td>
<td>MAT-2</td>
</tr>
<tr>
<td>CAV 791</td>
<td>Ind 5</td>
<td>F. oxysporum f. sp. cubense</td>
<td>0128</td>
<td>Pisang Siem</td>
<td>Indonesia</td>
<td>N. Moore</td>
<td>Pathogenic</td>
<td>MAT-1</td>
</tr>
<tr>
<td>CAV 1107</td>
<td>Viet 6</td>
<td>F. oxysporum f. sp. cubense</td>
<td>0129</td>
<td>Chuoi xiem</td>
<td>Vietnam</td>
<td>I. Buddenhagen, N. Moore, S. Bentley</td>
<td>Not tested</td>
<td>MAT-2</td>
</tr>
<tr>
<td>CAV 1020</td>
<td>Viet 15</td>
<td>F. oxysporum f. sp. cubense</td>
<td>0120</td>
<td>Chuoi xiem</td>
<td>Vietnam</td>
<td>I. Buddenhagen, N. Moore, S. Bentley</td>
<td>Pathogenic</td>
<td>MAT-1</td>
</tr>
<tr>
<td>CAV 1788</td>
<td></td>
<td>F. oxysporum</td>
<td>0280</td>
<td>Heliconia</td>
<td>South Africa</td>
<td>S. Tween</td>
<td>Nonpathogenic</td>
<td>Nonpathogenic</td>
</tr>
<tr>
<td>CAV 1787</td>
<td></td>
<td>F. oxysporum</td>
<td>0280</td>
<td>Heliconia</td>
<td>South Africa</td>
<td>S. Tween</td>
<td>Nonpathogenic</td>
<td>Nonpathogenic</td>
</tr>
</tbody>
</table>

Continued on following page
MtSSU datasets (Pmogeneity test supported the combination of the TEF and identical sequences for all of these regions. The partition ho-
boxysporum f. sp. TEF, MtSSU, and IGS, respectively. The length of our
quenced wall.
weeks, and in some cases after 6 weeks. Chlamydospores were
F. oxysporum produced by
except for one isolate representing each of
shaped macroconidia were sparse or absent in most isolates,
and 01219, which produced few microconidia. Thin, sickle-
sociated with microconidia in abundance, with the exception of isolates as-
mostly single celled and kidney shaped. All isolates produced
were produced in false heads on short monophialides and were
produced by any of the isolates after 12 days. Microconidia
did not cause any symptoms on the respective banana hosts.
pathogenicity test was conducted in a hydroponics system (49), and disease severity was measured with a previously developed rating scale (12).

Morphological characterization. Isolates of F. oxysporum f. sp. cubense developed cultural and morphological traits typical of those described for F. oxysporum (41, 50). No significant differences were found in growth rate between isolates repre-
senting different VCGs, lineages, or clades of F. oxysporum f. sp. cubense. No sclerotium-like structures or sporodochia were produced by any of the isolates after 12 days. Microconidia
were produced in false heads on short monophialides and were
mostly single celled and kidney shaped. All isolates produced microconidia in abundance, with the exception of isolates asso-
ciated with F. oxysporum f. sp. cubense VCGs 0126, 01210, and 01219, which produced few microconidia. Thin, sicker-
shaped macroconidia were sparse or absent in most isolates,
except for one isolate representing each of F. oxysporum f. sp. cubense VCGs 0121, 0126, and 01210. Chlamydospores were
produced by F. oxysporum isolates from heliconia after 12 days,
and for the F. oxysporum f. sp. cubense isolates only after 4 weeks,
and in some cases after 6 weeks. Chlamydospores were
formed singly and sometimes in pairs with a coarse protective wall.

Sequence and phylogenetic analysis. In this study, we se-
quenced ~650 bp, 700 bp, and 1,500 bp of the regions encoding TEF, MtSSU, and IGS, respectively. The length of our F. oxysporum f. sp. cubense MtrR sequences ranged between 1,100 and 1,250 bp. Isolates associated with the same VCG had identical sequences for all of these regions. The partition ho-

Results
Pathogenicity tests. All isolates designated F. oxysporum f. sp. cubense caused disease symptoms typical of fusarium wilt on Gros Michel and/or Bluggoe plantlets. After symptom de-
velopment, the inoculated pathogens were reisolated from ran-
domly selected plants to confirm Koch’s postulates. The two F. oxysporum isolates obtained from heliconia, which were previ-
ously designated as F. oxysporum f. sp. cubense race 3 (68, 78),
did not cause any symptoms on the respective banana hosts.

Morphological characterization. Isolates of F. oxysporum f. sp. cubense developed cultural and morphological traits typical of those described for F. oxysporum (41, 50). No significant differences were found in growth rate between isolates repre-
senting different VCGs, lineages, or clades of F. oxysporum f. sp. cubense. No sclerotium-like structures or sporodochia were produced by any of the isolates after 12 days. Microconidia
were produced in false heads on short monophialides and were
mostly single celled and kidney shaped. All isolates produced microconidia in abundance, with the exception of isolates asso-
ciated with F. oxysporum f. sp. cubense VCGs 0126, 01210, and 01219, which produced few microconidia. Thin, sicker-
shaped macroconidia were sparse or absent in most isolates,
except for one isolate representing each of F. oxysporum f. sp. cubense VCGs 0121, 0126, and 01210. Chlamydospores were
produced by F. oxysporum isolates from heliconia after 12 days,
and for the F. oxysporum f. sp. cubense isolates only after 4 weeks,
and in some cases after 6 weeks. Chlamydospores were
formed singly and sometimes in pairs with a coarse protective wall.

Sequence and phylogenetic analysis. In this study, we se-
quenced ~650 bp, 700 bp, and 1,500 bp of the regions encoding TEF, MtSSU, and IGS, respectively. The length of our F. oxysporum f. sp. cubense MtrR sequences ranged between 1,100 and 1,250 bp. Isolates associated with the same VCG had identical sequences for all of these regions. The partition ho-

Mating typec

Nucleotide sequence accession numbers. Sequences determined in this study have been submitted to Genbank under accession no. FJ664901 to FJ665331.

Table 1—Continued

<table>
<thead>
<tr>
<th>Isolate no.</th>
<th>Other identification no.</th>
<th>Species and forma specialis</th>
<th>VCG</th>
<th>Host or cultivar</th>
<th>Origin</th>
<th>Collector(s)</th>
<th>Pathogenicity</th>
<th>Mating type</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAV 336</td>
<td>CBS 488.76</td>
<td>F. oxysporum f. sp. raphanait</td>
<td></td>
<td>Radish</td>
<td>Germany</td>
<td>W. Gerlach</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAV 341</td>
<td>CBS 794.70</td>
<td>F. oxysporum f. sp. perniciosum</td>
<td></td>
<td>Sliktree</td>
<td>Iran</td>
<td>W. Gerlach</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAV 329</td>
<td>CBS 259.51</td>
<td>F. oxysporum f. sp. lini</td>
<td></td>
<td>Flax</td>
<td>Canada</td>
<td>J.W. Groves</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAV 328</td>
<td>CBS 137.97</td>
<td>F. oxysporum f. sp. gladioli</td>
<td></td>
<td>Freesia</td>
<td>The Netherlands</td>
<td>E. A. Roebroeck,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L. B. O. Lisse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAV 335</td>
<td>CBS 101587</td>
<td>F. oxysporum f. sp. radicis-lycopersici</td>
<td>Tomato</td>
<td>Tomato</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a CAV, Culture Collection at FABI, University of Pretoria, South Africa; numerals only, Culture Collection of the Queensland Department of Primary Industries, Brisbane, Australia; RP, Culture Collection of Randy Ploetz at the University of Florida, Homestead. DNA was supplied by Suzy Bentley from the Queensland Department of Primary Industries, Brisbane, Australia.

b The pathogenicity test was conducted in a hydroponics system (49), and disease severity was measured with a previously developed rating scale (12).

c Mating types were determined by PCR using the primer set Falpha 1 and Falpha 2 for MAT-1 (2) and the primers GFmat2c (76) and FF1 (87) for MAT-2.

The presence of a 148- or 156-bp indel at nucleotide position 901 relative to the R117 primer position in the IGS sequences separated the F. oxysporum f. sp. cubense isolates into three groups. One group of isolates representing F. oxysporum f. sp. cubense VCGs 0120, 0120/15, 01215, 0120, 01210, 01219, 0121, 01213, 01213/16, 01216, and 01218 lacked an insertion at this position and mostly corresponded to those included in clade A (Fig. 1). Isolates representing F. oxysporum f. sp. cubense VCGs 0124, 0125, 0128, 01220, and 01212, and lineage VIII (VCG 01214).

The IGS and MtR (Fig. 2) data did not support the two main clades revealed by the TEF-MtSSU data. The MtR data did, however, cluster the 48 F. oxysporum f. sp. cubense isolates into groups that match the TEF-MtSSU-based lineages (Fig. 1). The IGS sequences also allowed separation of the isolates into groups that broadly match those based on the TEF-MtSSU and MtR data sets. The only exceptions were the divergent placement of F. oxysporum f. sp. cubense VCGs 0121, 0122, 01210, and 01214 in the IGS phylogeny. F. oxysporum f. sp. cubense VCG 0121 formed part of lineage V, based on the TEF-MtSSU data set, whereas it is associated with an excep-
tionally long branch in the IGS tree and was not related to other lineage V members. In the TEF-MtSSU tree, F. oxysporum f. sp. cubense VCGs 0122 and 01210 formed part of line-
ages IV and II, respectively, but grouped together in the IGS tree separate from isolates representing TEF-MtSSU-based lineages IV and II. In the IGS and MtR trees, the lineage VIII taxon, F. oxysporum f. sp. cubense VCG 0124, was nested in a clade of lineage VI isolates but displayed a sister group rela-
tionship with this lineage based on the TEF-MtSSU data.

Continued
A VCGs 0122, 01211, 0129/11, and 0129, which contained the 156-bp insert.

The extended TEF-MtSSU data set that included the *F. oxysporum* f. sp. *cubense* sequences, as well as those for other *F. oxysporum* isolates determined in this study and those obtained from GenBank, separated the isolates into four well-supported clades (Fig. 2). Two of these clades (A and B) correspond with those identified using the smaller TEF-MtSSU data set (Fig. 1) and included a representative set of all of the *F. oxysporum* f. sp. *cubense* isolates examined here. We also included isolates from the phylogenetic analysis by O’Donnell et al. (59), which allowed for a direct comparison between the two studies. Lineages C1, C2, C3, C4, and C5 identified in the previous study (59) correspond to our lineages VII, I, VI, II, and VIII, respectively. However, our results show that *F. oxysporum* f. sp. *cubense* is even more diverse than initially thought as it includes at least three additional lineages (lineages I, III, and V). Clade D included the *F. oxysporum* isolates from heliconia and a single *F. oxysporum* isolate from human tissue. Although clade A consisted predominantly of *F. oxysporum* f. sp. *cubense* isolates, it also included isolates of *F. oxysporum* f. sp. *canarensis* and *F. oxysporum* f. sp. *perniciosum*. Clade B included a number of nonpathogenic *F. oxysporum* isolates, two *F. oxysporum* isolates from human tissue, *Fusarium inflexum*, and several formae specialiae of *F. oxysporum*. Within clade B, an *F. oxysporum* f. sp. *cubense* isolate typed as VCG 01214 appeared to be more closely related to nonpathogenic *F. oxysporum* isolates; other formae specialiae of *F. oxysporum* such as *F. vasinfectum*, *melonis*, and *dianthicus*; and *F. inflexum* than to *F. oxysporum* f. sp. *cubense*. Isolate CAV 1020, representing a novel *F. oxysporum* f. sp. *cubense* VCG from Vietnam, was included in clade B but was also more closely related to nonpathogenic isolates than to known *F. oxysporum* f. sp. *cubense* VCGs.

IGS PCR-RFLP. Of the four regions sequenced, IGS was most useful for identifying the different TEF-MtSSU-based lineages of *F. oxysporum* f. sp. *cubense*, and we selected five restriction enzymes to apply for diagnostic purposes (Fig. 4). Enzyme AvaI allowed separation of clades A and B (Fig. 4A). Within clade B, BbvI separates lineage VII from lineages VI and VIII (Fig. 4B). Among the clade A lineages, BceAI separates lineage V from lineages I, II, III, and IV (Fig. 4C), while Csp61 separates lineages I and II and lineages III and IV (Fig. 4D), and BsrDI separates lineages III and IV (Fig. 4E). No restriction enzyme was able to separate isolates of lineages VI and VIII from one another as well as from lineages I and II. However, isolates from lineage VIII (VCG 01214) harbor a 94-bp deletion within the MrR gene region at position 747 with respect to the forward primer and can therefore be separated from lineage VI by means of conventional agarose gel electrophoresis.

Mating type diagnoses and mating studies. The mating types of the *F. oxysporum* f. sp. *cubense* isolates were identified as MAT-1 and MAT-2 based on the presence of 370- and 700-bp fragments, respectively. Only one MAT amplicon was present per *F. oxysporum* f. sp. *cubense* isolate. MAT-1 was present in *F. oxysporum* f. sp. *cubense* VCGs 0122, 01210, 01219, 01213, 01213/16, 01216, 01214, and 01218, and MAT-2 was present in *F. oxysporum* f. sp. *cubense* VCGs 0120, 01215, 01210/15, 0126, 0121, 0124, 0124/5, 0125, 0128, 01220, 0123, 0129, 01211, 01212, 0127, and 0129/11 (Table 1 and Fig. 1 to 3). Both MAT amplicons were present within clades A and B, as well as within lineages II, IV, V, and VII.

No sexual fruiting structures were produced in any of the crosses between *F. oxysporum* f. sp. *cubense* isolates 8 weeks after incubation. Protoperithecium-like structures were, however, formed in some crossing combinations. These protoperithecial structures were dark purple to black and superficially resembled the perithecia (9) that were produced by crosses between the *F. circinatum* tester strains. Structures that were too small to be protoperithecia were also observed. Protoperithecia were abundantly produced when from the
FIG. 2. ML phylogenetic tree of *F. oxysporum* f. sp. *cubense* inferred from sequences for the IGS region of the rRNA operon data (A) and the MtR (B). A tree with a similar topology was generated using BI and MP (tree scores, confidence interval [CI] 0.779 and retention index [RI] 0.956 for IGS and CI 0.85 and RI 0.98 for MtR). The TEF-MtSSU-based *F. oxysporum* f. sp. *cubense* lineages (I to VIII) identified in Fig. 1 are indicated to the right of the tree. For each taxon, VCG and race designation, geographic origin, and mating type are indicated. Isolates harboring the 156-bp and 148-bp MtR insertions are indicated by "MtR156" and "MtR148," respectively, and those lacking an insertion are indicated by "MtR." Bayesian posterior probabilities (>0.7) and bootstrap values (>70%) for the ML analyses and MP are indicated in that order at the internodes. The tree is rooted with *Fusarium* sp. strain NRRL 28687 for IGS and *F. circinatum* for MtR.
FIG. 3. ML phylogenetic tree of *F. oxysporum* f. sp. *cubense* (*Foc*) and other isolates in the *F. oxysporum* complex inferred from combined TEF and MtSSU rRNA sequence data. A tree with a similar topology was generated using BI and MP (tree scores, confidence interval = 0.73 and retention index = 0.95). The three main clades are indicated at their respective branches with A, B, and C to the right of the tree. For each *F. oxysporum* f. sp. *cubense* taxon, VCG and race designation, geographic origin, and mating type are indicated. Taxa representing other *F. oxysporum* isolates are indicated as a human pathogen or nonpathogenic or with the specific forma specialis. Bayesian posterior probabilities (>0.7) and bootstrap values (>70%) for the ML analyses and MP are indicated in that order at the internodes. The tree is rooted with *Fusarium* sp. strains NRRL 22903 and NRRL 25184.
FIG. 4. PCR-RFLP analysis of the rRNA IGS region for differentiating the lineages of *F. oxysporum* f. sp. *cubense*. For this procedure, DNA obtained from a putative *F. oxysporum* f. sp. *cubense* isolate is used as a template for amplification of the IGS region (A), after which the amplicon is sequentially subjected to digestion with restriction enzymes *Aval* (B), *BceAI* (C), *BbvI* (D), *Csp6I* (E), and *BsrDI* (F). (B) Lane 1, 100-bp marker; lane 2, CAV 847 (lineage I); lane 3, CAV 957 (lineage VI); lane 4, CAV 608 (lineage VII); lane 5, CAV 189 (lineage VII); lane 8, CAV 189 (lineage VIII). (C) Lane 1, 100-bp marker; lane 2, CAV 794 (lineage I); lane 3, CAV 815 (lineage II); lane 6, CAV 810 (lineage V); lane 7, CAV 957 (lineage VI); lane 8, CAV 608 (lineage VII); lane 8, CAV 189 (lineage VIII). (D) Lane 1, 100-bp marker; lane 2, CAV 1100 (lineage III); lane 4, CAV 1100 (lineage III); lane 5, CAV 009 (lineage IV); lane 6, CAV 810 (lineage V); lane 7, CAV 957 (lineage VI); lane 8, CAV 608 (lineage VII); lane 8, CAV 189 (lineage VIII). (E) Lane 1, 100-bp marker; lane 2, CAV 294 (lineage III); lane 3, CAV 189 (lineage VII); lane 8, CAV 608 (lineage VII); lane 8, CAV 189 (lineage VIII). (F) Lane 1, 100-bp marker; lane 2, CAV 794 (lineage I); lane 3, CAV 815 (lineage II); lane 4, CAV 294 (lineage III); lane 5, CAV 933 (lineage IV).

DISCUSSION

This study considered the evolution of the causal agent of fusarium wilt of banana, *F. oxysporum* f. sp. *cubense*, and its various VCGs and races. Based on the DNA sequence information of two nuclear (TEF and IGS) and two mitochondrial (MiSSU and MiR) regions, we demonstrate that *F. oxysporum* f. sp. *cubense*’s ability to cause disease on banana has emerged multiple times, independently in the *F. oxysporum* complex. Within the *F. oxysporum* phylogenetic framework, relationships between the VCGs and races of *F. oxysporum* f. sp. *cubense* are complex, which is consistent with pathogenicity to a specific banana cultivar being a polyphyletic trait. Also, as described more fully below, our data suggest that factors such as coevolution with the banana host, horizontal gene transfer events, and sexual reproduction may have played important roles in shaping the evolutionary history of the causal agent of fusarium wilt of banana.

Species concepts applicable to filamentous fungi (74) may be roughly divided into two broad categories: tree based, such as the phylogenetic species concept, and non-tree based, such as the biological and morphological species concepts (74). Among the taxa under study, the morphological species concept has no utility because the *F. oxysporum* f. sp. *cubense* isolates examined could not be differentiated based on morphological characters. Likewise, the biological species concept is not applicable because no fertility was observed in any crosses between isolates of opposite mating type, and a teleomorph stage for *F. oxysporum* has never been reported (41). On the other hand, a multigene phylogeny separated *F. oxysporum* f. sp. *cubense* isolates into eight distinct and mostly unrelated lineages (Fig. 1 and 3), which is consistent with results from previous studies (8, 37, 55, 59–61). These findings suggest that various *F. oxysporum* f. sp. *cubense* and other *F. oxysporum* lineages probably constitute distinct species for which discriminatory morphological properties may never be identified. The taxonomy of this group therefore requires extensive reevaluation using DNA-based measures of relationships.

The separation of *F. oxysporum* f. sp. *cubense* VCGs into distinct phylogenetic lineages consisting of clusters of related VCGs (Fig. 1, 2, and 3) correlates well with earlier studies using DNA fingerprinting techniques such as RFLPs (38), randomly amplified polymorphic DNAs and DNA amplification fingerprints (4–6), and amplified fragment length polymorphisms (22). This is also true for previous DNA-based phylogenetic studies (59). For all three of the *F. oxysporum* f. sp. *cubense* data sets (TEF-MiSSU, IGS, and MiR) used in the current study, isolates associated with the same VCG had identical sequences and clustered together irrespective of their geographic origin. All three of these data sets also consistently opposite mating type within the same lineage were crossed with one another. No protoperithecium-like structures were produced when individuals from clade A were mated with those in clade B and vice versa. One or two protoperithecium-like structures were observed when *F. oxysporum* f. sp. *cubense* isolates were crossed with the two *F. circinatum* tester strains. The tester strains, when crossed with each other, produced abundant perithecia with fertile ascospores.
clustered the same sets of VCGs into each of the *F. oxysporum* f. sp. *cubense* lineages, with the notable exceptions of *F. oxysporum* f. sp. *cubense* VCGs 0121, 0122, and 01210 in the IGS tree (Fig. 2). These discrepancies may potentially be associated with the specific nature of the IGS region as a relatively quickly evolving region with the potential for more than one sequence to reside within a single genome (1). This could preclude the inference of the true phylogenetic history from relationships based solely on IGS. A similar topological conflict between TEF and IGS was reported in a recent study of *F. oxysporum* isolates (58). In some *Fusarium* species, the inference of the true phylogenetic relationships using nucleus-encoded rRNA regions may also be complicated by the presence of multiple nonorthologous copies (56). Nevertheless, despite these potential limitations, the IGS region has proven to be an excellent marker for diagnoses of *Fusarium* spp. (31, 32, 73), as was apparent from this study in which lineage-specific PCR-RFLP fingerprints could be developed for *F. oxysporum* f. sp. *cubense* (Fig. 4).

The IGS PCR-RFLP fingerprinting method developed in this study presents a quick, easy, and accurate method to identify the lineages of *F. oxysporum* f. sp. *cubense*. These fingerprints also allow separation of *F. oxysporum* f. sp. *cubense* from nonpathogenic isolates of *F. oxysporum* (47). They could, therefore, be used for the early detection and characterization of *F. oxysporum* f. sp. *cubense* in infected planting material, whether symptomatic or not, in water, and in the soil. In laboratories without sequencing facilities and where VCG testers of *F. oxysporum* f. sp. *cubense* cannot be used because of national quarantine regulations, these fingerprints could be of great value in the characterization of the fusarium wilt pathogen of banana. It is, specifically, its ability to rapidly and accurately detect *F. oxysporum* f. sp. *cubense* “tropical” race 4 VCG 01213, 01216, and 01213/16 isolates from lineage V in new regions where this pathogen is introduced that could be invaluable in the isolation and management of this most devastating form of *F. oxysporum* f. sp. *cubense*.

Our results show that isolates representing *F. oxysporum* f. sp. *cubense* races 1 and 2 are scattered among the lineages in clades A and B, while isolates representing *F. oxysporum* f. sp. *cubense* race 4 are restricted to clade A (lineages IV and V), with the exception of VCG 01220 (clade B, lineage IV) from Australia, which caused disease in stressed Cavendish bananas (Fig. 1 and 3) (63). Our phylogeny therefore does not reflect the current race designation within *F. oxysporum* f. sp. *cubense*. Race designations in *F. oxysporum* f. sp. *cubense* and other *F. oxysporum* formae specialae are based on field evaluation and are generally known not to produce stable classifications (13, 15, 46). The classification of *F. oxysporum* f. sp. *cubense* into races in the greenhouse is even more difficult, as virulence is influenced by variables such as temperature, host age, and method of inoculation (13), and different pathogenicity tests used in different laboratories around the world could easily generate discordant results (15). Once universally acceptable greenhouse inoculation techniques have been developed and new potentially differential banana cultivars have been selected for race designation in *F. oxysporum* f. sp. *cubense*, the lineages in this study could serve as candidates for developing a new race structure.

In general, the formae specialae of *F. oxysporum* are not monophyletic (3, 22, 38, 59, 61) (Fig. 3). This is evident from phylogenetic trees where isolates representing different formae specialae grouped together, rather than with representatives from the same forma specialae. In our study, for example, *F. oxysporum* f. sp. *cubense* lineages I and II form part of clade A, where they are more closely related to *F. oxysporum* f. sp. *canariense* and *F. oxysporum* f. sp. *perniciosum* than to other isolates of *F. oxysporum* f. sp. *cubense* (Fig. 3). Also, within clade B, lineage VIII forms part of a group containing formae specialae such as *F. oxysporum* f. sp. *albedinis* (80), *F. oxysporum* f. sp. *ciceris* (28), or *F. oxysporum* f. sp. *canariensis* (70) always represent each others’ closest relatives, thus representing some of the few known instances of monophyletic formae specialae. However, from a genetic point of view, the polyphyletic nature of formae specialae is not surprising. This informal taxonomic rank is based on pathogenicity toward a specific plant host (36) and is largely dependent on the products of the avirulence genes harbored by the fungus (51). Recent studies have shown that these genes are generally subject to strong selection and horizontal gene transfer (83, 85, 89). As a result, the grouping of isolates based solely on host pathogenicity would commonly hide genetic diversity and biological differences (36) and may also artificially cluster unrelated isolates together, as has been demonstrated here and elsewhere (3, 22, 38, 59, 61). This highlights the importance of knowledge regarding pathogen diversity for development of reliable/durable plant resistance.

The occurrence of both mating types in *F. oxysporum* f. sp. *cubense* is reported for the first time in this study. Our results therefore confirm that *F. oxysporum* f. sp. *cubense* would be heterothallic should sexual reproduction take place, as either MAT-1 or MAT-2 sequences (never both) were detected in each of the isolates examined. The fact that in some cases, both MAT-1 and MAT-2 individuals were detected in a single closely related group of isolates implies that different lineages of the fusarium wilt pathogen have sexual origins that could be more recent than initially anticipated. These results, therefore, support the hypothesis that all fungi were originally sexual (42, 43, 82) and that sexual recombination may be followed by phases of clonal propagation of opportunistic varieties (44).

The results of all previous phylogenetic studies (22, 38, 59) demonstrate multiple origins for the evolution of *F. oxysporum* f. sp. *cubense* as a pathogen of bananas. However, the results presented here suggest that coevolution with the plant host in its center of origin in Wallace’s Indo-Malayan region in South-East Asia (69) has played an important role during this process. For example, the majority of *F. oxysporum* f. sp. *cubense* isolates in clade B originate from banana cultivars that represent *Musa balbisiana × Musa acuminata* hybrids with at least one chromosome derived from *M. balbisiana* (e.g., Lady finger and Bluggoe), while those in clade A mostly originate from banana cultivars with pure “A” genomes (i.e., all chromosomes derived from *M. acuminata*; e.g., Cavendish and Gros Michel) (7). It is therefore possible that *F. oxysporum* f. sp. *cubense* lineages I to V derived their ability to cause disease on banana, specifically on *M. acuminata*, from the ancestor of clade A. The ancestor of clade B, on the other hand, appears to have potentially
imparted to its descendants the ability to cause disease to banana cultivars of pure and hybrid background, as well as to plants in the related genus *Ensete*. This is because one member of clade B lineage VIII (VCG 01214) has the capacity to cause disease not only to enset, but also banana cultivars with pure A and mixed A-B genomes (Fig. 1).

In addition to coevolution with the banana host in its center of origin, the evolution of *F. oxysporum* f. sp. *cubense* might also have been influenced by other factors. Although *F. oxysporum* is considered to be strictly mitotic (20, 82), previous research has suggested that genetic exchange among and within individual lineages might occur more frequently than originally thought (82). This possibility is further emphasized by the results of the current study showing that one of the mitochondrial and nuclear regions examined (MtR and IGS, respectively) supported phylogenies that were highly incongruent with the *F. oxysporum* f. sp. *cubense* TEF-MtSSU tree. Therefore, the fact that some *F. oxysporum* f. sp. *cubense* VCGs cluster together in the IGS tree and separate in the TEF-MtSSU tree potentially reflects ancient recombination or genetic exchange between *F. oxysporum* f. sp. *cubense* lineages. Such genetic exchange or recombination could be due to parthenogenesis, a nonsexual mode of genetic exchange, or heterokaryosis, a process that is initiated by fusion of vegetative hyphae (anastomosis) between individuals with very similar genomes and that has been shown to occur in *F. oxysporum* (11, 39). Taylor et al. (82) also demonstrated the possibility of recombination within some of the *F. oxysporum* f. sp. *cubense* clonal lineages. In their study, they reanalyzed previous RFLP data (38) and showed that recombination within some of the clonal lineages may exist. They also concluded that the lack of association between DNA amplification fragment-based DNA fingerprinting groups (6) and VCGs is further evidence for recombination. The findings presented in the current study also support this notion as both mating types were detected in some *F. oxysporum* f. sp. *cubense* lineages, and crosses between many pairs of isolates of the opposite mating type resulted in the production of structures resembling immature perithecia.

Inclusion of isolates representing formae speciales other than *F. oxysporum* f. sp. *cubense*, nonpathogenic *F. oxysporum* isolates, and *F. oxysporum* isolates from human tissue in our phylogenetic analyses illustrates the great diversity that exists within the *F. oxysporum* complex. In this study, a single isolate from Vietnam (CAV 10240) was confirmed as pathogenic to banana and shown to be associated with a novel VCG of *F. oxysporum* f. sp. *cubense* (Fig. 4) (6) grouped separately from all other *F. oxysporum* f. sp. *cubense* isolates (Fig. 3). This result suggests that many distinct lineages of *F. oxysporum* f. sp. *cubense* may remain to be discovered and that additional surveys and research are needed for the full appreciation of the evolution of this pathogen. It also demonstrates that focusing on a single agricultural crop may lead to an overestimation of the clonality (45). Therefore, in order to pinpoint potential species boundaries within *F. oxysporum* and to elucidate the true relationships among the VCGs and lineages of *F. oxysporum* f. sp. *cubense*, the diversity of the *F. oxysporum* complex needs to be fully characterized.

ACKNOWLEDGMENTS

We thank the Banana Growers Association of South Africa, the Technology and Human Resources of Industry Programme, and the University of Pretoria for financial support.

We also thank The Queensland Department of Primary Industries, Brisbane Australia; Randy Ploetz, Tropical Research and Education Centre, University of Florida, Homestead; and the Tree Pathology Cooperative Programme, Pretoria, South Africa, for the use of some of the isolates in this study and for the *F. oxysporum* f. sp. *cubense* VCG determinations. Finally, we thank Grieta Mahlangu from the Tissue Culture Facility at FABI for the tissue culture-derived Gros Michel and Bluggoe banana plantlets that were used in pathogenicity trials.

REFERENCES

