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Abstract Lecanosticta acicola is an ascomycete that causes
brown spot needle blight of pine species in many regions of
the world. This pathogen is responsible for a major disease of
Pinus palustris in the USA and is a quarantine organism in
Europe. In order to study the genetic diversity and patterns of
spread of L. acicola , eleven microsatellite markers and two
mating type markers were developed. An enrichment protocol
was used to isolate microsatellite-rich DNA regions, and 18
primer pairs were designed to flank these regions, of which
eleven were polymorphic. A total of 93 alleles were obtained
across all loci from forty isolates of L. acicola from the USA
with an allelic diversity range of 0.095 to 0.931 per locus.
Cross-species amplification with some of the markers was

obtained with L. gloeospora, L. guatemalensis and
Dothistroma septosporum , but not with D. pini . Mating type
(MAT) markers amplifying both idiomorphs were also
developed to determine mating type distribution in
populations. These markers were designed based on
alignments of both idiomorphs of nine closely related plant
pathogens, and a protocol for multiplex PCR amplification of
the MAT loci was optimised. The MAT markers are
not species specific and also amplify the MAT loci in
Dothistroma septosporum, D. pini , L. gloeospora and
L. guatemalensis . Both types of genetic markers developed
in this study will be valuable for future investigations of the
population structure, genetic diversity and invasion history of
L. acicola on a global scale.

Keywords Mycosphaerella dearnessii . Mating type
markers .Microsatellite . Cross-species amplification .

Fungi . Forest pathogen

Lecanosticta acicola (Thüm.) Syd. (syn: Mycosphaerella
dearnessii M. E. Barr) is a haploid ascomycete causing brown
spot needle blight of various pine species. L. acicola is
thought to be native in Central America where it occurs on
pine species growing in tropical and temperate zones (Evans
1984) and in the South-Eastern USAwhere brown spot needle
blight is the major disease on Pinus palustris Mill. (Sinclair
and Lyon 2005). L. acicola has also been found on other
continents including South America (Gibson 1980), Asia
(Suto and Ougi 1998) and Europe (Anonymous 2008).

The global movement and introductory pathways of
L. acicola are poorly understood (Huan et al. 1995).
Microsatellites are useful genetic markers to detect genetic
variation within and between populations and can be used to
infer migration pathways and histories of the invasions of
plant pathogens (e.g. Fontaine et al. 2013).
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The aims of this study were to develop polymorphic
microsatellite markers for L. acicola that can be used to
determine the genetic diversity of populations, as well as
mating type markers designed to determine mating type
distribution in populations. Cross-species amplifications of
the microsatellite and mating type markers were tested
on the phylogenetically related pine needle pathogens,
Dothistroma septosporum (G. Dorog.) M. Morelet, D. pini
Hulbary, Lecanosticta gloeospora H. Evans and
L. guatemalensis Quaedvlieg & Crous.

To screen for microsatellite rich regions in L. acicola, the
FIASCO technique (Fast Isolation by Amplified fragment
length polymorphism of Sequences COntaining repeats) was
used (Zane et al. 2002). Genomic DNAwas extracted from six
L. acicola cultures from Estonia, Italy, Japan, Slovenia,
Switzerland and the USA following the protocol of Smith and
Stanosz (1995) and quantified using a spectrophotometer.
Equal concentrations of DNA from each isolate were pooled
together and 250 ng of DNAwas used for one-step digestion-
ligation reaction with MseI and AFLP adaptors (Zane et al.
2002). This step was followed by PCR with an optimised
number of 23 cycles to avoid over-amplification that leads to
high clone redundancy. Enrichment of the amplified DNAwas
carried out using biotinylated probes (AC)8 and (GA)8. DNA
containing microsatellite repeats was captured with streptavidin
MagneSphere paramagnetic particles (Promega, Madison, WI,
USA) and washed 4× with SSC solutions for high and 2× for
low stringency (Arthofer et al. 2007). EnrichedDNAwas eluted
with pre-warmed sterile water and amplified by PCR using
adaptor primers. PCR amplicons were purified with
peqGOLD kit (PeqLab, Erlangen, Germany) and cloned using
pT257RVector and JM109 competent Escherichia coli cells
(Fermentas, Vilnius, Lithuania). The FIASCO protocol and
subsequent cloning were performed twice to increase the
number of captured DNA regions containing polymorphic
microsatellites.

In total, over two hundred transformed colonies were
inoculated onto master plates and transferred to Nylon
membranes (Roche, Mannheim, Germany) following the
manufacturers recommendations. This was followed by
hybridisation, washing steps and screening to identify
transformed E. coli colonies containing inserts with simple
sequence repeats. Approximately 60 colonies which were
expected to contain microsatellite regions were selected and
pre-screened with PCR containing (AC)8 and (GA)8
oligonucleotides as primers (Arthofer et al. 2007). Thirty-
nine plasmids showing positive reaction were sequenced and
sequence data analysed using BioEdit version 7.1.3 (Hall
1999). Eighteen primer pairs flanking microsatellite rich
regions were designed using Primer3 Plus (Untergasser et al.
2007).

To screen the microsatellite loci for polymorphisms, PCRs
were performed with DNA extracted from L. acicola isolates

from South Korea, Germany and the USA. PCRs were run in
20 μl reaction volumes consisting of 2 mM MgCl2, 100 μM
dNTPs, 0.2 μM of the forward and reverse primer for each
locus, 0.2 U Taq polymerase (Fermentas, Vilnius, Lithuania),
1× (NH4)2 SO4 buffer (Fermentas) and 2.0 μl of genomic
DNA. PCR cycling conditions consisted of 2 min denaturation
at 94 °C, 35 cycles including 94 °C for 30 s, 55 °C for 45 s and
72 °C for 60 s, and an extension step at 72 °C for 15 min. The
annealing temperature was decreased to 48 °C for the primer
pair MD12. Amplicons were sequenced to verify the presence
of the microsatellite repeat and to determine the polymorphism
of the repeat length. One primer of each of the eleven primer
pairs amplifying polymorphic regions was fluorescently
labelled (Table 1; Applied Biosystems, Cheshire, UK) for
fragment analyses.

The efficacy of the 11 labelled polymorphic microsatellite
markers was tested on a population of 40 isolates of L. acicola
obtained from diseased P. palustris needles collected in
Mississippi, USA. Single PCRs were performed in 8 μl
volumes (as above), and annealing temperatures were
optimised for each primer pair. PCR products were pooled into
two panels for fragment analyses according to Table 1. Pooled
PCR products were loaded on an ABI 3730XL (Applied
Biosystems) and sized with LIZ 500 standard. Alleles were
scored using programs GeneMapper 4.1 and PeakScanner
(Applied Biosystems). A total of 93 alleles were obtained
across all 11 loci ranging from between 2 and 19 alleles per
locus (Table 1). Allelic diversity (Nei 1973), calculated using
PopGene 1.31 (http://www.ualberta.ca/~fyeh/popgene.html),
ranged between 0.095 and 0.931 per locus with an average
heterozygosity of 0.65 over 11 loci. Pairwise linkage
disequilibrium (P <0.05) tested across all loci following 1,000
randomisations using Multilocus v1.3b (Agapow and Burt
2001) showed no evidence of linked loci.

Cross-species amplification of the 11 markers was tested on
other closely related species, including two isolates of
D. septosporum from the Czech Republic, one isolate ofD. pini
from Ukraine and one from the USA, four isolates of L.
gloeospora from Mexico and nine isolates of L. guatemalensis
from Guatemala. Amplification was successful with markers
MD2, MD6, MD7, MD9 and MD10 for D. septosporum ,
whereas none of the markers amplified in D. pini . All markers
except MD1, MD4 and MD8 amplified L. gloeospora.
L. guatemalensis was amplified with all markers except for
MD5, MD8, MD10 and MD12.

In order to develop markers that amplify the MAT regions
of L. acicola , the mating type DNA sequences for each
idiomorph of nine species phylogenetically closely related to
L. acicola (Cercospora beticola , C. zeae-maydis , C. zeina ,
D. septosporum , D. pini , Mycosphaerella eumusae ,
M. fijiensis ,M. musicola and Passalora fulva), obtained from
Genbank (http://www.ncbi.nlm.nih.gov/), were aligned, and
several different sets of degenerate primers were designed in
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the conserved regions of each idiomorph of the MAT gene.
Two of the degenerate primer sets that worked well (Table 2,
Online Resource 1) were further optimised, and PCR
conditions consisted of 7.25 μl H2O, 2.5 μl MyTaq™ Mix
(Bioline; MA, USA), 0.25 μl of each primer, 0.25 μl
MyTaq™ DNA Polymerase (Bioline) and 2 μl of gDNA in
a total volume of 12.5 μl. Cycling conditions consisted of
10 min denaturation at 94 °C, 40 cycles of 30 s at 94 °C, 45 s
at 56 °C, 45 s at 72 °C and a last extension at 72 °C for 10min.
PCR products were sequenced using forward and reverse
primers to confirm correct amplification of the partial MAT
gene, and sequence data were analysed using CLC Main
Workbench 6.0. The primers were redesigned without
degenerate nucleotides (‘specific’ primers) according to the
sequence results obtained (Table 2, Online Resource 1). PCR
conditions were the same as for the degenerate primers except
for the annealing temperature that was increased to 58 °C.

Multiplexing of specific primer sets for both MAT
idiomorphs was optimised to decrease the number of reactions
and time required for large scale population screenings.
Genomic DNA from two isolates of different mating types
was pooled and amplified in a single PCR tube to verify there
is no competition between the primers. Multiplexing was
optimised using Fast Start chemistry: 12.5 μl reaction mix
composed of 7.9 μl H2O, 1.25 μl FastStart PCR Buffer
(Roche, Mannheim, Germany), 0.25 μl 10 mM nucleotide
mix, 0.5 μl of each primer, 0.1 μl FastStart Taq DNA
Polymerase (Roche) and 2μl of gDNAusing the same cycling
conditions as described above. Amplification of both partial
idiomorphs was visualised on 2 % agarose gel under UV light
(Online Resource 2). The population of L. acicola from
Mississippi was screened using multiplex PCR. The MAT
primers were also tested for the amplification success on the

identical isolates of two species of Dothistroma, L. gloeospora
and L. guatemalensis as for the microsatellite markers.

The newly designed ‘specific’ mating type primers
amplified regions of both idiomorphs of the MAT gene and
were confirmed with sequencing. The MAT1-1-1 amplicon of
560 bp in length (GenBank accession no. KF688139)
showed 79 % nucleotide identity and 55 % amino acid
identity with D. pini MAT1-1-1. The 288 bp MAT1-2
amplicon (GenBank accession no. KF688140) showed only
66 % nucleotide similarity with that of D. pini. The correct
amplification of the MAT1-2 was, therefore, confirmed by
the presence of an intron in the conserved amino acid serine,
common to all ascomycetes (Online Resource 1; Arie et al.
1997).

Correct amplification of each idiomorph of the MAT gene
revealed that L. acicola is heterothallic. Amplification of both
partial idiomorphs in a single PCRmix to which DNA of both
mating types were added confirmed that there is no
competition between the primer pairs. The MAT markers
developed for L. acicola in this study successfully amplified
the respective mating type idiomorphs in all 40 isolates tested.
Results revealed the presence of 22 MAT1-1 and 18 MAT1-2
isolates in the collection of isolates fromMississippi, strongly
indicating a sexual mode of reproduction in this population.
Furthermore, both primer sets successfully amplified MAT
sequences from related fungi, including both species of
Dothistroma tested. All four isolates of L. gloeospora were
identified as having the MAT1-1-1 locus and L. guatemalensis
revealed the presence of both mating types (7 isolates possessed
theMAT1-1-1 locus and 2 isolates theMAT1-2 locus). Thus the
MATmarkers are not species specific and are likely to be useful
for identification of mating types in other closely related taxa,
such as the recently described species of Lecanosticta from
Central America (Quaedvlieg et al. 2012).

We have shown that the eleven microsatellite markers
developed in this study are robust and will be useful for future
population studies of L. acicola . In addition, we have also
provided a tool whereby the mating type and mating type
distribution of the isolates in a population can be determined.
This will be applicable for investigations of global population
diversity and structure of L. acicola .
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