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Abstract Many bark beetles live in a symbiosis with
ophiostomatoid fungi but very little is known regard-
ing these fungi in Spain. In this study, we considered
the fungi associated with nine bark beetle species and
one weevil infesting two native tree species (Pinus
sylvestris and Pinus nigra) and one non-native (Pinus
radiata) in Cantabria (Northern Spain). This included
examination of 239 bark beetles or their galleries.
Isolations yielded a total of 110 cultures that included
11 fungal species (five species of Leprographium
sensu lato including Leptographium absconditum sp.
nov., five species of Ophiostoma sensu lato including
Ophiostoma cantabriense sp. nov, and one species of
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Graphilbum). The most commonly encountered fun-
gal associates of the bark beetles were Grosmannia
olivacea, Leptographium procerum, and Ophiostoma
canum. The aggressiveness of the collected fungal
species was evaluated using inoculations on two-year-
old P. radiata seedlings. Leptographium wingfieldii,
Leptographium guttulatum, and Ophiostoma ips were
the only species capable of causing significant lesions.

Keywords Ophiostoma - Leptographium - Root-
feeding beetles - Two new fungal species

Introduction

Bark beetles (Coleoptera: Scolytinae) that infest
coniferous trees carry many different ophiostomatoid
fungi including species related to Ophiostoma, in the
Ophiostomatales; and those related to Ceratocystis in
the Microascales. Some of these fungi (i.e.: Grosman-
nia clavigera (Owen et al. 1987), Leptographium
terebrantis (Parmeter et al. 1989), L. wingfieldii
(Lieutier et al. 1989; Jankowiak 2006), Ophiostoma
ips (Raffa and Smalley 1988; Fernandez et al. 2004),
0. minus (Yamaoka et al. 1990; Jankowiak 2006),
Ceratocystis laricicola (Redfern et al. 1987) and C.
polonica (Christiansen and Solheim 1990) can result
in lesions when inoculated onto trees. However, with
the exception of L. wageneri that causes black stain
root disease (Harrington and Cobb 1988; Jacobs and
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Wingfield 2001), they are not considered primary
pathogens and their role in killing trees has been
questioned (Six and Wingfield 2011). In this regard,
fungi such as Ophiostoma ips, O. minus, O. piceae, O.
piliferum and O. pluriannulatum are best considered
as agents of sapstain (Seifert 1993), leading to
significant financial losses to the forestry industry that
can amount to as much as 50 % reduction in the price
of wood used for furniture or construction (Maderas
Elorriaga Company pers. comm.).

Knowledge of the ophiostomatoid fungi in the
Iberian Peninsula is very limited (De Ana Magan
1982; 1983; Fernandez et al. 2004; Villarreal et al.
2005; Romon et al. 2007; Bueno et al. 2010; Pestaiia
and Santolamazza-Carbone 2010; Romon et al. 2014),
and only three studies have dealt with their taxonomy.
For example, a new species, Leptographium gallaei-
ciae, was described invalidly from stressed Pinus
pinaster trees (De Ana Magan 1983). Duong et al.
(2012) suggested that this species belongs to the
Grosmannia serpens complex, but validation of the
name will be possible only if the original material can
be located (De Beer et al. 2013). Other fungi in this
group, Ophiostoma sejunctum (Villarreal et al. 2005),
Ophiostoma nebulare, Ophiostoma euskadiense and
Graphilbum crescericum (Romoén et al. 2014) were
described only very recently, suggesting that these
fungi have been incompletely studied in the area.

The primary aim of this study was thus to conduct
surveys of fungi associated with several beetles colo-
nizing native and introduced conifers in Spain and to
consider their identity. A second objective was to
consider the aggressiveness of these fungi on P. radiata
seedlings as an indication of their relative ability to
colonise infected trees.

Materials and methods
Collection of samples and isolation of fungi

During 2012, beetles and galleries of Hylurgops
palliatus, Hylastes attenuatus, Hylastes angustatus,
Hylastes ater, Hylurgus ligniperda, Orthotomicus
laricis, Orthotomicus erosus, Tomicus piniperda,
Gnatothrichus materiarius (Coleoptera: Scolytinae)
and Hylobius abietis (Coleoptera: Entiminae) were
collected from trap logs in three mature stands of P.
sylvestris, P. nigra and P. radiata in Cantabria
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province (northern Spain). In April 2012, five almost
totally buried trap logs, 0.5 m long and 0.2 m in
diameter (bark thickness about 1 cm), were set out in
each stand. After seven weeks, the logs were
inspected. All beetles from a single gallery were
removed using sterilized tweezers, placed individually
in sterile Eppendorf tubes, and identified using a
MOTIC dissecting microscope and several taxonomic
keys (Balachowsky 1949; Griine 1979; Gil and Pajares
1986; Lopez et al. 2007). Complete galleries, includ-
ing the cambium up to 2 cm away from the main
tunnel, were removed and placed in separate, clean
paper bags. The galleries, together with the beetles
present in them, were treated as single samples.

Individual beetles were carefully crushed on the
surface of 2 % MEA (20 g malt extract, 20 g agar and
1,000 ml distilled water), amended with 0.05 % cyclo-
heximide and 0.04 % streptomycin, using sterilised
tweezers. Beetles from different galleries were incu-
bated in separate Petri dishes at 25 °C in the dark for
two weeks. Cultures were purified by transferring
hyphal tips from the edges of individual colonies, or
spore masses from the apices of emerging ascomata or
conidiophores to fresh 2 % MEA. Beetle galleries were
maintained in humid chambers at 25 °C and 70 % RH
in the dark for three weeks. Spore masses accumulating
at the apices of ascomata or conidiophores produced in
the galleries, were carefully transferred onto 2 % MEA
using a sterile needle. From each sample, only one
isolate per fungal taxon was recorded and subsequently
used for frequency calculations. Frequencies of occur-
rence of fungi were computed using the formula of
Yamaoka et al. (1997) where F = (NF/NT) 100 (%)
and F represents the frequency of occurrence (%) of the
fungus, NF represents the number of samples from
which fungi were isolated, and NT represents the total
number of samples from which isolations were made.
All cultures were accessioned in the culture collection
(CMW) of the Forestry and Agricultural Biotechnology
Institute (FABI), University of Pretoria, Pretoria, South
Africa. Cultures of new taxa were deposited in the
collection of the Centraalbureau voor Schimmelcul-
tures (CBS), Utrecht, The Netherlands.

PCR amplification, sequencing and phylogenetic
analyses

Eppendorf tubes (2-ml) containing 1 ml of malt
extract broth at 2 % were inoculated by transferring
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hyphal tips from the edges of individual colonies.
After 4 days of incubation at 25 °C, DNA was
extracted using Prepman Ultra Sample Preparation
Reagent (Applied Biosystems). PCR amplification
was performed with primers ITS1-F (5'-CTTGGTCA
TTTAGAGGAAGTAA-3') and ITS4 (5-TCCTCCG
CTTATTGATATGC-3") (White et al. 1990). DNA
was amplified in 50 pL PCR reaction volume with
5 uL of 10X Reaction Buffer, 5 uL. of MgCl,
(25 mM), 5 pLL of dNTPs (10 mM), 1 pL. of each
primer (10 uM), 1.5 pL. of DNA solution and 0.5 pL.
of Super-Therm Taq polymerase. Reactions were
performed on a GeneAmp PCR System 9700 (Applied
Biosystems) with an initial denaturation step of 2 min
at 95 °C. This step was followed by 40 cycles of
denaturation at 95 °C (30 s), annealing at 52-55 °C
(30 s) and elongation at 72 °C (1 min). A final
extension was conducted for 8 min at 72 °C.

In the case of the purported new Ophiostoma sp.,
amplicons were also obtained for the B-tubulin gene
region using primers T10 (5'-ACGATAGGTTCACC
TCCAGAGAC-3') or Bt2a (5-GGTAACCAAATCG
GTGCGCTTTC-3') with Bt2b (5-GGTAACCAAAT
CGGTGCTGCTTTC-3') (Glass and Donaldson
1995). A portion of the calmodulin gene region was
also amplified with primers CL1 (5'-GARTWCAAG
GAGGCCTTCTC-3') and CL2A (5-TTTTGCATCA
TGAGTTGGAC-3") (O’Donnell 2000). PCR condi-
tions to amplify the calmodulin gene region were the
same as those for ITS1-5.8S-ITS2, whereas for the
B-tubulin gene region an initial denaturation step of
4 min at 95 °C, followed by 35 cycles of denaturation
for 1 min at 95 °C, annealing for 1 min at 47-52 °C
and elongation for 1 min at 72 °C, with a final
elongation step of 7 min at 72 °C were included.

In the case of the purported new Leptographium sp.,
the internal transcribed spacer region two and partial
large subunit (ITS2-LSU) of the ribosomal DNA were
amplified using the primers ITS3 (5'-GCATCGATGA
AGAACGCAGC-3') and LR5 (5-TCCTGAGGGAA
ACTTCG-3") (White et al. 1990). The beta-tubulin
gene region was also amplified as described above.
Furthermore, part of the elongation factor 1-alpha (EF1-
o) gene was amplified using the primers EFIF (5'-
TGCGGTGGTATCGACAAGCGT-3') and EF2R (5'-
AGCATGTTGTCGCCGTTGAAG-3") (Jacobs et al.
2004). PCR conditions for ITS2-LSU and EFl-o
amplification were the same than those for ITS1-5.85-

ITS2 except respective annealing temperatures of 55 and
60 °C.

PCR products were visualized under UV illumina-
tion on a 1 % agarose gel stained with Gelred
(Biotium), run in a Wide Mini-Sub Cell GT Electro-
phoresis System (BioRad) and then digitalized in a
White-Ultraviolet Transilluminator Gel Documenta-
tion System (UVP). Amplification products were
purified using the High Pure PCR Product Purification
Kit (Roche), sequencing prepared with ABI Prism Big
Dye Terminator Cycle Sequencing Ready Reaction
Kit, precipitated by sodium acetate-cold ethanol
protocol in an Eppendorf 5415R centrifuge, and dried
in an Eppendorf 5301 concentrator.

Sequencing was performed on an ABI PRISM 377
Autosequencer. Forward and reverse sequences were
aligned and consensus sequences determined using
ContigExpress, Vector NTI Advance 11.5.0 (Invitro-
gen). BLAST searches were conducted for preliminary
identifications, after which datasets that included all
most up-to-date GenBank sequences were compiled in
MEGAS (Tamura et al. 2011). Sequences were aligned
online with MAFFT6 (Katoh et al. 2002), using the
FFT-NS-i option. Datasets were analysed using max-
imum likehood (ML), maximum parsimony (MP) and
Bayesian inference (BI). DNA alignments were con-
verted to appropriate file formats for analyses by using
ALTER (Glez-Pena et al. 2010). ML analyses were
performed using PhyML3.0 (Guindon et al. 2006) after
determining the substitution model in jModelTest
(Posada 2008). Support for the nodes was estimated
from 1,000 bootstrap replicates. MP analyses were
conducted using PAUP (Phylogenetic Analysis Using
Parsimony) v4.0b10 (Swofford 2003). Random step-
wise addition heuristic searches were performed with
tree-bisection-reconnection (TBR) branch swapping
active. Alignment gaps were treated as a fifth character
state. Ten trees were saved per replicate and branches of
zero length were collapsed. Confidence levels were
estimated by performing 1,000 bootstrap replicates
(Felsenstein  1985) with fast-stepwise addition. BI
analyses were carried out with MrBayes3.1.2 (Ronquist
and Huelsenbeck 2003). Markov Chain Monte Carlo
chains were run for five million generations using the
best fitting model selected by the Akaike Information
Criterion in MrModeltest2.3. Trees were sampled every
100 generations. Burn-in values were determined using
Tracerl.4. All sampled trees lower than the burn-in
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values were discarded and a 50 % majority rule
consensus tree was then constructed.

Biodiversity

The Shannon—Weaver diversity index was used to
compare the diversity of fungal taxa on different
insects. This index H = —X(P; x In P;) combines
measurements of richness with those of evenness so
that rare species carry less weight. P; is the proportion
of the total sample represented by species i (Hill et al.
2003). Evenness (E), a measure of the relative
abundance of species, is expressed as E = H/H .y
where H,,,, = —In(S). Dominance or subordinance in
fungal communities was judged using Camargo’s
index (1/S) (Camargo 1993), where S represents
species richness (the number of competing species in
the community) and dominant species have the
relative abundance P; > 1/S.

Culture characteristics

Isolates representing the same species were grown and
crossed in all possible combinations on 2 % agar to
which autoclaved pine twigs had been added and on
oat meal agar to induce production of ascomata. Slide
cultures were made to observe asexual state structures
and these were mounted in lactophenol on glass slides
and examined with a Zeiss Axioskop microscope.
Fifty measurements were made for each taxonomi-
cally characteristic structure. All qualitatively and
quantitatively informative characters including those
of mycelium, conidiophores, and conidia were char-
acterized and compared with the closely related
species using relevant taxonomic keys and proto-
logues. Measurements are presented in the format
(minimum—) mean minus standard deviation—mean
plus standard deviation (—maximum).

For each purportedly new taxon as well as phylo-
genetically closely related species, the optimal growth
temperature for two isolates was determined by
growing them at temperatures ranging from 5-35 °C
at 5 °C intervals in Sanyo MIR-253 incubators. A
5 mm diameter agar disk was taken from the actively
growing margin of a fresh colony of each isolate and
inoculated onto the agar surface of six 2 % MEA
replicate plates for each temperature. Colony diame-
ters were measured after 8 days and mean minimum,
optimum and maximum growth temperatures were
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Fig. 1 Phylogram based on ML analyses of ITS1-5.8S-ITS2 »
rDNA sequences, showing where fungal associates of pine bark
beetles in Spain groups within the Ophiostomatales. Spanish
isolates of known species are shaded, while those of novel taxa
are printed in bold type. ML and MP bootstrap support values
(1,000 replicates) are indicated at the nodes. BI probabilities
(above 90 %) are indicated by bold lines at the relevant
branching points. *Bootstrap values lower than 75 %, T ex-type
isolates, Scale bar total nucleotide difference between taxa, ML
maximum likelihood, MP maximum parsimony, B/ Bayesian
inference

calculated. Mean growth was compared among iso-
lates using ANOVA and Tukey’s test.

Pathogenicity tests

Other than one isolate for each of L. wingfieldii and O.
saponiodorum, two randomly selected isolates of each
of the remaining nine collected fungal species were
used in a pathogenicity test on two-year-old P. radiata
seedlings. The plants were placed in a greenhouse
under natural lighting conditions and they were
watered three times a week during the experiment.

On 29 July 2013, 24 seedlings were inoculated with
each of the 20 selected isolates plus control (sterile
agar). The inoculations of the 504 seedlings were
made by cutting a bark flap (4 x 8 mm) with a sterile
scalpel, placing inoculum on the exposed surface and
covering it with the bark flap and a Parafilm strip.
Inoculum was taken for the margins of 14-day-old
cultures growing at 25 °C and consisted of a 5 mm
disc of fungus growing on 2 % MEA or sterile agar in
the case of the controls.

After 6 weeks, inoculated plants were harvested
and the bark was removed from the inoculum site. The
lengths of the necrotic lesions were measured and the
percentages of yellowing seedlings were determined.
The data were analysed using analysis of variance
(ANOVA). Treatment differences were further eval-
uated by Tukey’s test.

Results

Sequencing and phylogenetic analyses
ITS1-5.8S-ITS2 sequences of the isolates obtained
from bark beetles in Spain confirmed the presence of

nine known species and two undescribed species
(Fig. 1). The amplified ITS regions of isolates
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O. brunneum AY924381 T
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~ O. abietinum AF484453 T
O. cantabriense CMW39766 SPAIN T N
O. cantabriense CMW39767 SPAIN
98/ 77175 | O. cantabriense CMW39768 SPAIN

0. caﬂtabn'ense CMW‘39769 SPAIN

Ophiostoma sensu lato

8202

6/98

80/

S. lignivora EF127890 T - j—
fospornum HM363177

STB7 D0539535 S .
G. pemcﬂlalaAJ538338 ‘

100 AJ538337
7780 ™ G. alerblmeAY649778 —

Leptographium sensu lato Graphiltbum

05100 | AY64S7B3 oo
L absconditum CMW39763 SPAIN T AXON B
95/100 | L absconditum CMW39764 SPAIN -

e ——

0.1

@ Springer



1172 Antonie van Leeuwenhoek (2014) 106:1167-1184

representing the two new taxa (A, B) were respectively el
543 and 598 bp in size. ITS sequences of taxa A and B 3 R
grouped in Ophiostoma sensu lato and Leptographium = I R
sensu lato respectively. - o _
The ITS sequences of taxon A showed that it @ 5 A
grouped close to O. abietinum and related species in § é é
the Sporothrix schenckii—O. stenoceras complex, but i : ot
it did not sufficiently distinguish between these £le - o e
species. Amplicons for the B-tubulin and calmodulin e 2 &3
regions for these isolates (Table 1) were 231 and % § § g g
. O | X N E E [
574 bp respectively. ITS sequence accounted for a
total of 5, 3 and 6 substitutions between taxon A and O. sl 9 g5
abietinum, O. lunatum and O. fusiforme. Similarly, E E E E E
beta-tubulin sequences (Fig. 2a) accounted for a total i E § E E Lo
of 6, 4 and 4 substitutions between taxon A and O.
abietinum, O. lunatum and O. fusiforme. Calmodulin ﬁ 7 ﬁ E E E
sequences (Fig. 2b) respectively accounted for a total - % % 2& R R
of 9, 9 and 9 substitutions between taxon A and O. El% 2 LLLl
abietinum, O. lunatum and O. fusiforme. Taxon A o
accounted for a total of 4, 6 and 27 differences from § E £ £ £ £ g
the recently described O. euskadiense (data not S|la & 555
shown) respectively for ITS, beta-tubulin and cal- -§‘ e & s5s5s23
modulin sequences. ‘f *§ E E EE EE
The ITS sequences of taxon B showed that it was £z z :‘_. z z z z E
closely related to L. lundbergii. The ITS2-LSU and ~_§ =
elongation factor 1-alpha sequences were 570 and § > 2 § é § Vé)
587 bp respectively. A beta-tubulin sequence could % é '§§ § ;i ;i ; §0 g
not be obtained for this taxon. For each of the sequence i E §§ gé ; : 5 : é
datasets, ML, MP and BI resulted in trees with similar £18 s o ;i S S S é %
topologies. Phylograms obtained with ML are pre- 213 :‘iE ;i: SSS83|z
sented for all the datasets (Figs. 1, 2, 3) with nodal g|5[F © ©o9S9S é
support obtained from ML, MP and Bl indicated on the El. 2
trees. GenBank accession numbers of published 8 é % % %' % % % 2 . E
sequences are shown in the phylogenetic trees, while gl=l° ° ©°e°es g E <
accession numbers of sequences obtained in the g - g 3 E
present study are presented in Table 1. Statistical = E 8 8 Zo88|% % &
values resulting from the respective phylogenetic 218 £ 8 238823 :% g E
analyses are presented in Table 2. DNA sequence § ) é g E
matrices are available from TreeBase ID15019. Sl CI-
Slele v zeBg|ezd
25| N N = &~ =~ |Mm E ©
Culture characteristics é Ofa & &a=a=8a E g %
E _ |59 ¢
Taxon A did not grow at 10 °C, whereas the closely ; 5_ @; Eﬁ § %
related species O. abietinum and O. fusiforme colon- g g g e § 3
ised similar areas, and it was the only species able to gﬁ ? ? g» g: E 2
grow at 35 °C together with O. fusiforme to a lesser 5 E 3 s £ 23
extent (Fig. 4). The colony diameters of Taxon B were - 5 %’ e ; 8
generally smaller than those of closely related Lepto- = g % :.‘g § 4 ) ‘3
graphium species, except at 20-25 °C where they all elals K hbialie
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Fig. 2 Phylogram based on a
ML analyses of -tubulin (a),

and calmodulin (b)

sequences. ML and MP B_tubu"n
bootstrap support values

(1,000 replicates) are

indicated at the nodes. BI
probabilities (above 90 %)

are indicated by bold lines at

the relevant branching

points. *Bootstrap values

lower than 75 %, T ex-type

isolates, Scale bar total

nucleotide difference

79

Sporothrix sp.1 CMW9488
_| Sporothrix sp.1 CMW9491
O. abietinum HM067820 T
Sporothrix sp.2 CMW9487
Sporothrix sp.2 CMW9489
— O. cf. abietinum CMW397

between taxa, Bold new
species, ML maximum
likelihood, MP maximum
parsimony, Bl Bayesian
inference

_| O. cf. abjetinum EU785433

O. cf. abietinum EU785434
O. fusiforme AY280464

804{

" O. fusiforme AY280465

O. lunatum AY280466
O. cantabriense CMW39766 SPAIN
O. cantabriense CMW39767 SPAIN

94/84 | O. cantabriense CMW39768 SPAIN

O. cantabriense CMW39769 SPAIN
| O. stenoceras DQ296074 T

0.05

b

Calmodulin

1001100 | O, stenoceras AY280472

O. cantabriense CMW39766 SPAIN
O. cantabriense CMW39767 SPAIN
98/100| O, cantabriense CMW39768 SPAIN
O. cantabriense CMW39769 SPAIN
O. lunatum JQ511970 T
O. fusiforme JQ511971
-|— O. fusiforme JQ511967 T
O. abietinum JQ511966 T

O. cf. abietinum JQ511965
1007100 | | O- cf. abietinum JQ511964
751" Q. cf. abietinum JQ511963
gsL' Sporothrix sp.1 JQ511958
Sporothrix sp.1 JQ511959
95/98 Sporothrix sp.2 JQ511960
W' Sporothrix sp.2 JQ511961
— O. stenoceras JQ511955

0.05

covered the entire surface of the Petri dishes. Taxon B
was the only Leptographium sp. able to grow at 30 °C.
The optimum temperatures for growth of Taxon A and

100100 | O, stenoceras JQ511956 T

Taxon B were 30 and 20 °C respectively, with the
cultures having an average diameter of 34 and 63 mm
respectively in 8 days.
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m— L pruniAB091219 T
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ITS21L.SU

L. gracile HQ406840 T EF1-a
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<« Fig. 3 Phylogram of species in Leptographium sensu lato
based on ML analyses of ITS2-LSU and EF1-a sequences. ML
and MP bootstrap support values (1,000 replicates) are indicated
at the nodes. BI probabilities (above 90 %) are indicated by bold
lines at the relevant branching points. *Bootstrap values lower
than 75 %, T ex-type isolates, Scale bar total nucleotide
difference between taxa, Bold new species ML maximum
likelihood, MP maximum parsimony, B/ Bayesian inference

Biodiversity and aggressiveness

The collected fungi included, in order of total relative
abundance, Grosmannia olivacea, Leptographium
procerum, Ophiostoma canum, Taxon A, O. nebulare,
0. ips, Graphilbum crescericum, L. guttulatum, Taxon
B, L. wingfieldii and O. saponiodorum (Table 3).
Grosmannia olivacea was the most frequently
encountered fungus on O. laricis, H. attenuatus,
H. palliatus, H. angustatus and H. ligniperda colo-
nizing P. sylvestris; and on O. laricis and H. ater
colonizing P. nigra. No isolates of G. olivacea were
obtained from P. radiata. Leptographium procerum
was most commonly found on H. angustatus and
H. palliatus colonizing P. radiata. The frequency of
occurrence of O. canum from H. palliatus colonizing
P. radiata was 27.3 % and from T. piniperda
colonizing P. sylvestris was 25.0 %. Taxon A
occurred on 3.6 and 10.3 % of H. attenuatus and
O. laricis individuals infesting P. sylvestris, respec-
tively. Ophiostoma nebulare, a recently described
species from H. attenuatus infesting P. radiata in
Basque Country (northern Spain) (Romon et al. 2014),
occurred on 9.1 and 6.2 % of H. palliatus and
H. attenuatus individuals respectively colonizing
P. radiata. Ophiostoma ips was the most frequently
encountered fungus on O. erosus colonizing the native
pine species included in the present study. Graphilbum
crescericum, rtecently described from H. ater,
O. erosus and H. palliatus infesting P. radiata in
Basque Country (northern Spain) (Romon et al. 2014),
occurred on 3.6 and 3.2 % of H. attenuatus and
O. laricis individuals colonizing P. sylvestris and
P. nigra respectively. Leptographium guttulatum was
the most frequently encountered fungus on 7. pini-
perda colonizing P. radiata, whereas L. wingfieldii
was present on 25 % of the T. piniperda specimens
colonizing P. sylvestris. Taxon B occurred on 3.2 % of
O. laricis individuals infesting P. nigra, whereas
O. saponiodorum occurred on 7.1 % of H. ater

colonizing the same host tree species. No fungal
species was isolated from the weevil H. abietis
(Table 3).

The fungal community associated with 7. pini-
perda colonizing P. sylvestris had the greatest
diversity. In contrast, the highest level of species-
richness was obtained for the community associated
with O. laricis colonizing P. nigra, which included
six species dominated by G. olivacea. The same
fungal species dominated the communities associated
with O. laricis colonizing P. sylvestris, H. ater
colonizing P. nigra and H. angustatus colonizing
P. sylvestris (Table 3). The fungal communities
associated with buried P. sylvestris, P. nigra and
P. radiata baiting logs had mean diversities of 0.47,
0.21 and 0.13 respectively.

In the pathogenicity tests, L. wingfieldii, L. guttul-
atum and O. ips caused plants to have yellow needles
after 2 weeks (Fig. 5a). None of the other inoculated
fungi nor the control treatment gave rise to external
symptoms on the plants. They also induced lesions of
similar size to those on the plants inoculated with
sterile agar as controls. Average lesion lengths for the
three most aggressive species were 18.1 (£9.5), 10.8
(£9.7) and 5.4 (£7.3) cm respectively (Fig. 5b).

Taxonomy

Based on sequence comparisons, morphology and
growth comparisons in culture, two groups of isolates
from bark beetles colonizing pines in Spain were
found to represent undescribed species of Ophiostoma
and Leptographium in the Ophiostomatales. They are
described as follows:

TAXON A

Ophiostoma cantabriense P. Romon, Z. W. De Beer &
M. J. Wingf., sp. nov. (Figure 6).

MycoBank MB 807054.

Distribution: Cantabria province, Spain.

Host: Pinus sylvestris (Pinaceae).

Etymology: cantabriense, referring to Cantabria
where this species was first collected.

Description: Sporothrix-like asexual state: conid-
iophores (17.5-) 12.3-63.0 (—77.4) pm long; conidia
fusiform (3.9-) 3.9-52 (-5.6) x (1.1-) 1.2-1.7
(—1.7) pm. Sexual state not observed.
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Table 2 Statistics from the different phylogenetic analyses

Dataset Coding genes ~ Maximum Likelihood Maximum Parsimony Bayesian inference

Exons Introns Subst. Pinvar Gamma PIC No. Tree CI RI HI Subst. Burn-
model of length model in
trees

ITS - - GTR+G 0 0.4410 404 100 1,589 0475 0.844 0.525 GTR+G 500

f-tubulin 4-6 4-5 HKY+G 0 0.0990 27 1 30 0.933 0957 0.067 HKY+G 500

Calmodulin  3-6 34 TPMI1uf+G 0 0.2540 94 8 109 0963 0975 0.037 TPMluf+G 500

ITS2-LSU - - TIN+G 0 0.2470 126 100 407 0548 0.881 0452 TrN+G 500

EF1-a 34 23 TrN+G 0 0.3730 117 48 145 0.897 0.940 0.103 TrN+G 500

Subst. Model best fit substitution model; Pinvar proportion of invariable sites; Gamma Gamma distribution shape parameter; PIC
parsimony informative characters; CI consistency index; R/ retention index; HI homoplasy index

SPECIES
[Jo. cantabriense
70 No. avietinum
Elo. fusiforme
| _I% absconditur, aaa aaa a--
NL. undbergii §
60 | EL guttulatum N
£
£ 50
=
[}
&
£
s 40
T
>
c
S 30
o]
(§
20
10
0 |

10 15 20 25 30 35
Temperature (°C)

Fig. 4 Mean growth on MEA (two isolates per tested species,
+standard deviation) of O. cantabriense, L. absconditum and
closely related species (groups respectively with white and dark
bars) at a range of temperatures after 8 days in the dark. Means
with different letter are significantly different within each
species group and temperature (P > 0.05), by ANOVA fol-
lowed by Tukey’s test

Culture characters: Colonies with optimal growth at
30 °C on 2 % MEA, reaching 34 mm diameter in
8 days. Colonies white. Very little aerial mycelium.

Specimens examined. SPAIN, Cantabria. Hylastes
attenuatus beetle infesting a buried log of Pinus
sylvestris, Jun. 2012, P. Romén, PREM 60890 (holo-
type); ex-type culture CMW39766; ibid CBS136529).
SPAIN, Cantabria. Orthotomicus laricis beetle infesting
a buried log of Pinus sylvestris, Jun. 2012, P. Romon,

@ Springer

PREM 60891 (paratype); ex-culture CMW39767; ibid
CBS136530). SPAIN, Cantabria. Orthotomicus laricis
beetle infesting a buried log of Pinus sylvestris, Jun.
2012, P. Romén, PREM 60892 (paratype); ex-culture
CMW39768; ibid CBS136531). SPAIN, Cantabria.
Orthotomicus laricis beetle infesting a buried log of
Pinus sylvestris, Jun. 2012, P. Romén, PREM 60893
(paratype); ex-culture CMW39769; ibid CBS136532).

TAXON B

Leptographium absconditum P. Romén, Z.W. De Beer
& M.J. Wingf., sp. nov. (Figure 7).

MycoBank MB 807055.

Distribution: Cantabria province, Spain.

Host: Pinus nigra (Pinaceae).

Etymology: absconditum, referring to the hidden
status of this species.

Description: Leptographium-like asexual state:
conidiophores (20.2-) 30.2-88.1 (—92.8) um long;
conidia obovoid with truncate bases (7.9-) 8.1-9.6
(=9.7) x (3.2-) 3.44.3 (—4.3) pm. Sexual state not
observed.

Culture characters: Colonies with optimal growth at
20 °C on 2 % MEA, reaching 63 mm diameter in
8 days. Colonies olivaceous. Abundant aerial mycelium.

Specimens examined. SPAIN, Cantabria. Ortho-
tomicus laricis beetle infesting a buried log of Pinus
nigra, Jun. 2012, P. Romé6n, PREM 60888 (holotype);
ex-type culture CMW39763; ibid CBS136527).
SPAIN, Cantabria. Orthotomicus laricis beetle infest-
ing a buried log of Pinus nigra, Jun. 2012, P. Romoén,
PREM 60889 (paratype); ex-culture CMW39764; ibid
CBS136528).
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Fig. 5 Mean yellowing plants percentage (a) and lesion length
(b) of collected fungal species after 6 weeks. Means with
different letter are significantly different (P > 0.05), by
ANOVA followed by Tukey’s test. All isolates accession
numbers belong to the CMW culture collection of the Forestry
and Agricultural Biotechnology Institute (FABI), University of
Pretoria

Discussion

This study includes the first detailed consideration of
the ophiostomatoid fungi associated with root-infest-
ing bark beetles in Spain. Isolations yielded a total of
110 fungal cultures that included nine known ophio-
stomatoid fungal species and two new taxa. Pathoge-
nicity tests showed that several of these fungi are able
to produce lesions in inoculated seedlings and this
gives some indication of their ability to colonise
infected trees.

Ophiostoma cantabriense, described as new in the
present study, resides in the S. schenckii—O. stenoc-
eras complex, which is characterized by species with

orange-section-shaped allantoid ascospores without
sheaths, and sporothrix-like asexual states (De Beer
et al. 2003; De Beer and Wingfield 2013). The
complex includes several species associated with
human sporotricosis (Marimon et al. 2007), soil (De
Meyer et al. 2008), hardwoods (Aghayeva et al. 2004)
or Protea infructescences (Roets et al. 2008; 2010).
Ophiostoma cantabriense, mainly isolated from O.
laricis colonizing P. sylvestris, showed high ITSI1-
5.8S-ITS2 homology with the type strain of Ophios-
toma lunatum (CMW10563, AY280485, Aghayeva
et al. 2004). The main morphological differences
between these species are fusiform, longer conidia and
also larger conidiophores in the new species (Table 4).

Leptographium absconditum formed a discrete
well-supported ITS clade close to L. lundbergii
complex. ITS2-LSU and elongation factor 1-alpha
sequences confirmed this position. Leptographium
lundbergii represents the type of the genus Lepto-
graphium, has broadly truncate conidia, and it is
distinguished from L. truncatum by slow colony
growth, sparse sporulation and larger conidia (Jacobs
etal. 2005). Leptographium absconditum, described in
the present study, was exclusively isolated from the
bark beetle Orthotomicus laricis colonizing Pinus
nigra. The main morphological differences between L.
absconditum and L. lundbergii are growth at 30 °C
and smaller colony diameters between 10 and 15 °C,
smaller conidiophores and larger conidia in the new
species (Table 4).

Grosmannia olivacea was the dominant species
amongst the fungal communities associated with O.
laricis, H. angustatus and H. ater. No isolates of this
fungus were obtained from P. radiata. The same
occurred with O. cantabriense, O. ips, G. crescericum,
L. absconditum, O. saponiodorum and L. wingfieldii,
ratifying the known European distribution of this
fungus in a low but uniform frequency with the bark
beetle T. piniperda colonizing P. sylvestris (Jacobs
and Wingfield 2001). In contrast, L. procerum was
most commonly found on H. angustatus and H.
palliatus colonizing P. radiata. Similarly, O. nebulare
occurred on H. palliatus and H. attenuatus colonizing
P. radiata and L. guttulatum was the most frequent
fungus on T. piniperda colonizing P. radiata.

Various ophiostomatoid fungi known to be associ-
ated with root-feeding bark beetles in Europe where
not encountered in this study. These include Gros-
mannia radiaticola, L. lundbergii, L. truncatum
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Fig. 6 Ophiostoma cantabriense (CMW39766). a—¢ Growing respectively on 2 % MEA, PDA and OA after 8 days at 25 °C; d—e
Sporothrix-like conidiophores in different growing stages. Scale bars = 10 um; f Fusiform conidia. Scale bar = 5 pm

(Jankowiak and Bilanski 2013b), L. guttulatum, O.
quercus, O. ips, O. pluriannulatum, and L. wingfieldii
(Romoén et al. 2007), L. guttulatum, L. lundbergii, G.
serpens, Pesotum spp. (Wingfield and Gibbs 1991),
Graphium aureum, G. penicillata, L. lundbergii, G.
serpens, O. floccosum, O. ips, O. minus, O. piceae, O.
piliferum (Mathiesen 1950; Mathiesen-Kédrik 1953),
all of which are known associates of H. ater and H.
ligniperda. Their absence from the present study could
be due to various factors including time and intensity
of sampling, different host trees or the area sampled. In
this regard, it was also interesting that G. serpens, a
very common associate of several root-infesting
Hylastes spp. and H. ligniperda in some parts of
England (Wingfield and Gibbs 1991), Sweden (Mat-
hiesen 1950; Mathiesen-Kéaarik 1953) and South
Africa (Jacobs and Wingfield 2001), was not

@ Springer

encountered. The absence of fungi such as L. proce-
rum and O. quercus on H. abietis (Jankowiak and
Bilanski 2013a) was also noteworthy.

Many new bark beetle-fungus associations emerged
from this study. To the best of our knowledge, all
isolations made from H. angustatus and G. materia-
rius are new fungus-vector records. All records, except
those for L. procerum and G. olivacea, are new for H.
palliatus, H. ater and H. ligniperda. All fungal species
other than O. ips, were newly recorded from O. laricis.
Tomicus piniperda has also not previously been
associated with G. olivacea (Mathiesen 1950; Mat-
hiesen-Kadrik 1953; Wingfield and Gibbs 1991;
Jacobs and Wingfield 2001; Kirisits 2004; Romén
et al. 2007; Jankowiak and Bilanski 2013b). Ortho-
tomicus erosus, T. piniperda, G. materiarius and H.
abietis are not root-feeding insects and the frequencies
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Fig. 7 Leptograhium absconditum (CMW39763). a—c Growing respectively on 2 % MEA, PDA and OA after 8 days at 25 °C; d—e
Leptographium-like conidiophores in different growing stages. Scale bars = 10 pum; f Obovoid truncate conidia. Scale bar = 5 pm

Table 4 Characters comparison of new species with closely related species (measurements in pm)

O. cantabriense

O. abietinum
Marmolejo &

O. fusiforme
Aghayeva

L. absconditum

L. lundbergii
Jacobs et al.

L. guttulatum
Jacobs et al.

Butin (1990) et al. (2004) (2005) (2001)

Conidiophore length  (17.5-) 5.0-50.0 14.3-53.9 (20.2-) 2.0-4.0 (200.0-)

12.3-63.0 (=72) 30.2-88.1 365.0-465.0

(=77.4) (—92.8) (—810.0)
Conidia shape Fusiform Clavate- Fusiform- Obovoid with Broadly ellipsoid with ~ Oblong to slightly obovoid,

cilindrical guttuliform truncate bases truncate bases conspicuously guttulate

length (3.9-) 4.0-7.5 3.2-59 (7.9-) (6.0-) 4-)

3.9-5.2 (-8) 8.1-9.6 7.0-11.0 5.0-9.0

(—5.6) (=9.7) (—15.0) (—10)
width (1.1-) 1.0-2.0 1.1-1.9 (3.2-) 2.0-4.0 2.0-3.0

1.2-1.7 (=2.1) 3443

(=1.7) (—4.3)
Culture color White White White Olivaceous Olivaceous Olivaceous

Measurements are presented in the format (minimum—) mean minus standard deviation—mean plus standard deviation (—maximum) where possible
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of isolation of their associated fungi must be consid-
ered with caution.

Leptographium wingfieldii, L. guttulatum and O.
ips were much more aggressive than the other fungi
evaluated in the pathogenicity tests. This study
confirms the results of earlier inoculation studies
(Owen et al. 1987; Raffa and Smalley 1988; Lieutier
et al. 1989; Parmeter et al. 1989; Langstrom et al.
2001; Solheim et al. 2001; Fernandez et al. 2004;
Lieutier et al. 2004; Jankowiak 2006) that demon-
strated that L. wingfieldii and O. ips have high levels of
aggressiveness. The aggressiveness in inoculation
tests has not previously been tested for L. guttulatum.
Studies on pathogenicity of the isolates used in this
study should also be conducted on large pine trees with
equivalent inoculation loads. Among the other inoc-
ulated fungi, L. procerum appeared to be non-patho-
genic to P. radiata seedlings; although it has been
associated with the decline of Pinus strobus in various
parts of the United States (Lackner and Alexander
1982; Alexander et al. 1988), and the death of Pinus
tabuliformis trees in China in association with the
introduced red turpentine beetle Dendroctonus valens
(Lu et al. 2009). Besides its aggressiveness in inoc-
ulations, O. ips is an important agent of sapstain
(Seifert 1993) and this is most likely also true for L.
wingfieldii and L. guttulatum as they are frequently
isolated from stained wood.
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