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a b s t r a c t

Coniferous trees can suffer significant damage from seedling diseases caused by Fusarium spp. and from
pitch canker, which is caused by Fusarium circinatum Nirenberg & O'Donnell. These fungi can be
responsible for both pre- and post-emergence damping-off, and latent infections can result in failure of
transplanted seedling to become established. Fusarium oxysporum Schlechtend.: Fr. has long been
recognized as the most important cause of root and hypocotyl rot in seedling nurseries, but phylogenetic
analysis suggests that the most virulent strains are more properly assigned to the recently described
Fusarium commune Skovgaard, O'Donnell et Nirenberg. Management of Fusarium diseases in bare-root
seedling nurseries has relied primarily on preplant soil fumigation. Because regulations will increas-
ingly limit availability of the most efficacious fumigants, alternative management practices are being
explored. This includes greater attention to sanitation, maintaining a robust microbial community that
will inhibit root-infecting pathogens and avoiding practices that predispose trees to disease, such as
excessive fertilization and poorly drained soils. F. circinatum Nirenberg & O'Donnell can be a problem in
seedling nurseries but is also damaging to mature trees in plantations, seed orchards, landscape plant-
ings, and native forests. A critical element of management is limiting spread of disease from existing
infestations. To this end, branches and logs removed from infected trees should be disposed of locally.
Seeds and seedlings can both carry the pathogen and so should not be moved from infested to non-
infested areas. Quarantine restrictions should be maintained to prevent introduction of F. circinatum
into countries where it is not yet established. Infections caused by F. circinatum are associated with
wounds resulting from silvicultural practices, such as pruning and seed harvesting, weather related
injuries and insect activity. In managed plantings, the risk of disease can be reduced by limiting pruning
operations to cool, dry periods, which are less conducive to infection, and by judicious control of insects
that can serve as wounding agents and vectors. Variation in susceptibility to pitch canker has been
documented in a number of commercially important pine species, offering the prospect for greater
utilization of genetic resistance for management of this disease in the future.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Anumber of Fusarium species are recognized as causes of disease
of coniferous trees, some of which have significant economic and/or
ecological impacts. This includes fungi that cause damping-off and
root rot in seedlingnurseries, andpoorestablishmentof out-planted
seedlings (Jones et al., 2014). Fusarium circinatum Nirenberg &
O'Donnell is among those species that are damaging to seedlings,
but it is also a pathogen of mature trees, causing the disease known
as pitch canker. Pitch canker affects planted pines in many parts of
the world, and will be the focus of this review, along with root and
hypocotyl rot caused by Fusarium oxysporum and Fusarium

commune. Only brief mentionwill be made of Fusarium species that
have been associated with seedling diseases but which have not yet
been extensively studied. Also excluded is Fusarium torreyae T. Aoki,
J. A. Smith, L. Mount, Geiser and O'Donnell, a recently described
pathogen of Torreya taxifolia Arn. (Aoki et al., 2013). Although of
potentially great ecological significance, the recent discovery of
F. torreyae precludes development of a body of literature germane to
management, which is the focus of this review.

2. Seedling diseases

2.1. Introduction

Seedling diseases caused by Fusarium spp. are problematic in
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bare-root nurseries and in container culture. Whereas bare-root
nurseries rely on preplant fumigation to suppress soilborne path-
ogens, container operations can use pathogen-free growing media.
Of course good sanitation practices are essential to avoid contam-
ination of media and containers, but with regular monitoring, it
should be possible to address problems that do arise relatively
quickly. The impending loss of efficacious fumigants makes these
advantages more compelling. However, owing to lower cost per
seedling, bare-root nurseries still account for most of the conifer
seedlings grown in North America. Likewise most of the literature
on seedling diseases caused by Fusarium spp. deals with bare-root
production systems, which consequently will be the primary focus
of this review.

2.2. Symptoms and etiology of seedling diseases

Many coniferous trees are affected by Fusarium spp., including
Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), larch (Larix
spp.), true firs (Abies spp.), western white pine (Pinus monticola
Dougl.), easternwhite pine (Pinus strobus L.), ponderosa pine (Pinus
ponderosa Dougl. ex Laws.), and sugar pine (Pinus lambertiana
Dougl.) (Brownell and Schneider, 1983; Enebak et al., 1990; James
et al., 1986; James, 2012). F. oxysporum is the species most
commonly recovered from diseased conifer seedlings, and has been
confirmed as a cause of damping-off (Tint, 1945), as well as hypo-
cotyl- and root rot (Bloomberg, 1971). Damping-off can occur prior
to or shortly after seedling emergence but infected seedlings can
survive for several months or longer, and may or may not eventu-
ally develop symptoms. Root and hypocotyl rot affect older seed-
lings, with most damage to bare-root crops occurring during the
first growing season. Container stock is affected throughout the
growth cycle, with root symptoms often becoming evident when
seedlings are stressed to initiate bud formation (Dumroese and
James, 2005). Hypocotyl rot is characterized by a lesion on the
stem beneath the cotyledons that can extend to the soil line or
below (Brownell and Schneider, 1983). Top symptoms include
stunting, yellowing and necrosis of needles and, in some cases,
wilting. Similar symptoms result from root rot, but in this case the
lesion develops on the tap root rather than the hypocotyl. Dead
seedlings can turn black and decay quickly, and could easily escape
detection in a visual survey (Dumroese and James, 2005). The
symptoms described above can be caused by other pathogenic
fungi, and are not by themselves sufficient to confirm the cause of
disease. One indication that F. oxysporum is involved is the presence
of sporulation in the form of sporodochia, orange to yellow in color,
on the stems of infected plants (James, 2003). A definitive diagnosis
requires identification of the pathogen based on morphological
criteria (Leslie et al., 2006) or molecular markers (Stewart et al.,
2006).

F. oxysporum is commonly found in nursery soils and can be
recovered from roots of seedlings that show no symptoms of dis-
ease (Bloomberg, 1971). Inoculation tests show many of these iso-
lates to be non-pathogenic, whereas others can cause disease to
varying extents. A phylogenetic analysis revealed that isolates
recovered from both diseased and healthy Douglas-fir seedlings,
which were identified as F. oxysporum based on morphological
criteria, were properly assigned to the recently described species, F.
commune Skovgaard, O'Donnell et Nirenberg (Skovgaard et al.,
2003; Stewart et al., 2006). F. commune is similar in appearance
to F. oxysporum and genetic markers are required to reliably
distinguish between these two species. Recent surveys have shown
that F. commune is widespread in North American conifer nurseries
(Kim et al., 2012), where it may be the principal cause of mortality
in Douglas-fir seedlings. Studies conducted by Stewart et al. (2012)
found some isolates of F. oxysporum to be damaging to Douglas-fir

seedlings in inoculation tests, but all were less virulent than isolates
of F. commune, and none were a cause of mortality. Thus, it is now
unclear if F. oxysporum as currently circumscribed is an important
pathogen of Douglas-fir. Further research on this topic will be
required, along with studies to more fully characterize the host
range of F. commune and, in particular, to determine the extent to
which this species is a cause of disease in Pinus spp. and other
conifers.

In addition to F. oxysporum and F. commune, many other species
have been reported to cause seedling disease affecting one or more
coniferous species in North America and elsewhere in the world,
including Fusarium proliferatum (Matsushima) Nirenberg, Fusarium
solani (Mart.) Sacc., Fusarium acuminatum Ellis & Everh., Fusarium
avenaceum (Fr.) Sacc., Fusarium sambucinum Fckl., Fusarium sporo-
trichioides (Sherb.) Bilai, Fusarium subglutinans (Wollenweber &
Reinking) Nelson, Toussoun & Marasas, and Fusarium equiseti
(Corda) Sacc. (Huang and Kuhlman, 1990; James and Perez, 1999;
James et al., 1997; James, 2012). F. circinatum poses a major prob-
lem in pine seedling nurseries in the U.S., South Africa and Chile,
among other locations (Wingfield et al., 2008). In Algeria, Fusarium
redolensWr. (Lazreg and Belabid, 2013a), Fusarium chlamydosporum
Wollenw. & Reinking (Lazreg and Belabidb, 2013b), and F. equiseti
(Lazreg et al., 2014) were recently reported to cause damping-off of
Aleppo pine (Pinus halepensisMill.). Management studies described
below have dealt specifically with disease caused by F. oxysporum
but the findings and recommendations are likely also to be appli-
cable to other pathogenic species of Fusarium.

2.3. Management

Management of Fusarium hypocotyl- and root rot requires
maintaining soil inoculum densities below damaging levels. This
has commonly been accomplished by pre-plant soil fumigation
with a mixture of methyl bromide and chloropicrin. Following in-
jection of the fumigant, treated soil is covered with a plastic tarp.
This procedure is very effective in reducing populations of soil-
borne fungi, including F. oxysporum, as well as nematodes andweed
seeds. However, federal regulations will ultimately prevent the use
of methyl bromide, and consequently, alternative approaches to
control of soilborne pests are being evaluated (Weiland et al., 2013).

Chloropicrin has good fungicidal activity and can be used as a
fumigant without inclusion of methyl bromide (South et al., 1997).
Based on a study conducted at a white pine (P. strobus) nursery in
Wisconsin, Enebak et al. (1990) reported that fumigationwith 100%
chloropicrin at a rate of 196 kg per hectare reduced the soil pop-
ulation of Fusarium spp. as effectively as a 2:1 mix of methyl bro-
mide: chloropicrin applied at the same rate. Inoculum densities
were below 1 colony forming unit per gram in both cases. Similarly,
studies conducted at three nurseries in the southern U.S. found no
significant difference in efficacy between 100% chloropicrin and a
2:1 combination of methyl bromide and chloropicrin (Cram et al.,
2007). Less consistent results are reported from the western U.S.,
where heavier soils require greater attention to proper soil prepa-
ration (Weiland et al., 2013). Notwithstanding challenges, reliance
on chloropicrin as a fumigant in forest seedling nurseries is likely to
increase in the near future, although longer term availability may
ultimately be curtailed by enhanced regulatory restrictions (CDPR,
2011).

Another option for pre-plant treatment of soil is material that
generates methyl isothiocyanate (MITC), which includes both liquid
(metam sodium) and granular (dazomet) formulations. In both
cases, water activation at temperatures above 10 !C is required,
which limits application to summer and fall (Weiland et al., 2013).
Relative to methyl bromide and chloropicrin, the efficacy of MITC-
producing agents is more sensitive to soil texture, with variable
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results in denser soils. The amount of water applied is also critical,
as it affects distribution and residence time of the active ingredient
(Wang et al., 2006), which in turn influences the likelihood of
killing fungal propagules (Nelson et al., 2014). As with other ma-
terials, the efficacy of MITC fumigations is enhanced by covering
treated soil with a plastic tarp immediately after application, with
maximal benefit obtained from material that is totally imperme-
able and hence maximizes retention of the fumigant in soil
(Weiland et al., 2013).

Uncertainty about the continued availability of efficacious fu-
migants has motivated greater attention to other means by which
disease suppression can be achieved. Fungicides with activity
against Fusarium spp. are available and can help to control
damping-off (Linderman et al., 2008) but have not been shown to
reduce damage caused by hypocotyl rot or root rot. Consequently,
more emphasis has been placed on other practices that 1) effect a
reduction in the abundance of pathogenic Fusarium spp. in soil, 2)
enhance the activity of microbes that inhibit plant pathogenic
fungi, and 3) avoid predisposing seedlings to development of
disease.

One way to reduce the inoculum density of root-infecting fungi
is to include a vegetation-free period as a part of the cropping cycle.
During this interval, the number of viable propagules of
F. oxysporum would be expected to decline by attrition, although
this may be offset to some degree by growth on residue from a
previous crop. Hansen et al. (1990) reported that, in the absence of
fumigation, the inoculum density for Fusarium spp. in aggregate
was significantly lower in soil following fallow than in soil that had
been cropped to oats or peas. At one location there was also a
reduction in Fusarium hypocotyl rot where soil was fallowed. Rye
and red clover cover crops were also found to increase mortality
due to damping-off caused by F. oxysporum (Wall, 1984). These
findings indicate that cover crops may be colonized by pathogenic
strains of Fusarium and so increase the risk of disease, and hence
that it may be better to fallow the land between seedling crops. In
fact, Hildebrand et al. (2004) found that, at some nursery locations,
disease caused by Fusarium was no more severe in plots that were
fallowed prior to sowing and not fumigated than in plots fumigated
with methyl bromide and chloropicrin. However, results vary by
nursery, and fallowing alone cannot be expected to keep losses to
root and hypocotyl rot at acceptable levels (James, 2001). Further-
more, fallowing engenders other problems, such as the need for
some form of weed control and loss of soil due to wind erosion.

Drawing on experience from agricultural systems, benefit may
be gained from cover crops containing glucosinolates, which are
converted to isothiocyanates following incorporation of the crop.
Broccoli residue, for example, has been shown to reduce pop-
ulations of Verticillium dahliae (Njoroge et al., 2009). However,
incorporating Brassica juncea after six weeks of growth in a forest
nursery resulted in an increased population of Fusarium spp. and
greater mortality in the subsequent crop of Douglas-fir seedlings
(James et al., 2004). This result was taken to indicate that any direct
or indirect toxic effect of decomposing residue on F. oxysporumwas
outweighed by the benefit of access to a source of nutrients. The
same study also found the application of composted sewage sludge
to increase soil populations of Fusarium spp.

Whereas fallowing or cover cropping aim to reduce inoculum
levels of pathogenic fungi, other measures are intended to modify
the soil environment in ways that will inhibit the propagules that
are present. In principle, this might be achieved by enhancing the
activity of soil microbes that can compete with and/or antagonize
plant pathogenic fungi. Indications that co-occurring microbes can
have suppressive effects on pathogens affecting conifer seedlings
follow from the observation that although decline and death of
seedlings induced by F. oxysporum is common in nurseries, disease

caused by this fungus is not a problem in coniferous forest soils
covered with needle litter. Smith (1967) noted whereas
F. oxysporum was recovered from the roots of 90% of sugar pines
when trees were lifted from nursery soil, this fungus was not
detectable on roots of sugar pines four years after outplanting in the
forest. Similarly, Dumroese et al. (1993) concluded that field per-
formance of Douglas-fir seedlings was not negatively affected by
root infection by Fusarium spp. at the time of transplanting. The
lack of any significant impact of pre-existing infections suggests
that forest soil conditions negatively affect Fusarium spp. Consistent
with this view, F. oxysporum is rarely recovered from forest soils
(Schisler and Linderman, 1984; Axelrood et al., 1998), wherein
chlamydospores are observed to germinate, followed by lysis of the
germ tube. There is evidence for both a chemical (Toussoun et al.,
1969) and biological basis for this effect (Schisler and Linderman,
1984). A role for the microbiota derives from studies showing
that treating soil with steam, propylene oxide or radiation greatly
diminished the stimulatory effect on chlamydospore germination
(Schisler and Linderman, 1984). These findings offer hope that
manipulation of the microbial community in nursery soils might
establish pathogen suppression comparable to what occurs in the
forest.

The composition of the microbial community in soil can be
modified through incorporation of organic amendments, which are
commonly used in forest nurseries to improve the physical and
chemical properties of soil. Most of what is known about the in-
fluence of organic amendments on diseases is based on studies of
agricultural crops. This work has revealed quite variable effects,
with amendments reducing disease impacts in some crop-
pathogen systems and making disease worse in others, suggest-
ing that suppression is often pathogen-specific. Based on an
assessment of over 2000 studies, Bonanomi et al. (2010) concluded
that both microbial biomass and measures of microbial activity
(e.g., quantifying hydrolysis of fluorescein diacetate) tend to be
positively correlated with suppressiveness. This may reflect direct
antagonism of the pathogen as well as competition for resources. In
forest nurseries, Hildebrand et al. (2004) reported a benefit of
amending soil with aged sawdust. This effect was attributed in part
to the complex nature of the nutrients in sawdust (mostly lignin
and cellulose), which would be more readily utilized by microbes
other than plant pathogenic fungi. In line with this view would be
the expectation that amendments with high C:N ratios, such as
composted pine bark, would provide more suppression than ma-
terials with low C:N ratios.

Efforts to impose biological barriers to pathogen activity have
included the use of individual microbial taxa to protect seedlings
from disease. Linderman et al. (2008) tested a number of com-
mercial products under greenhouse conditions, including formu-
lations of Bacillus spp., Streptomyces spp., Trichoderma harzianum
Rifai and Gliocladium virens Miller, Giddens and Foster. None of the
tested products provided effective control of damping-off of
Douglas-fir seedlings caused by F. oxysporum. More promising re-
sults were obtained using a strain of T. harzianum obtained from a
native soil in Idaho that was incorporated into soilless media
(Mousseaux et al., 1998). In this case, damping-off of Douglas-fir
seedlings caused by F. oxysporum was significantly reduced when
roots encountered the pathogen after growing through a layer of
medium in which T. harzianum was present but the pathogen was
not. In contrast, mortality was not lowered when T. harzianum and
F. oxysporum were both uniformly distributed throughout the me-
dium. The value of prior colonization was also evident in a study
conducted by Dumroese et al. (2012), in which Douglas-fir seed-
lings grown in a medium infested with a non-pathogenic strain of
F. oxysporum prior to transplantation into a medium containing
F. commune (¼ F. oxysporum sensu lato) manifested no symptoms of
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disease. These findings may indicate that some measure of bio-
logical control can be obtained in container culture of seedlings. On
the other hand, field application of biological agents has generally
not proven to be efficacious (Hildebrand et al., 2004; James et al.,
2004).

The severity of Fusarium hypocotyl- and root rot will be influ-
enced by the conditions under which seedlings are grown.
Dumroese and James (2005) noted the importance of avoiding
stress induced by water-saturated soils, which can render seedlings
more prone to disease. Accordingly, nurserymanagers should strive
to maintain well-drained soils through deep tillage to disrupt
hardpans, adding organic matter to improve aeration and water
penetration, avoiding compaction that can result from operating
equipment on wet soils, and monitoring soil moisture so irrigation
is supplied only when needed. Seedlings should not be over-
fertilized because excess nitrogen can promote succulence and in-
crease susceptibility to disease caused by F. oxysporum (Tint, 1945;
James, 1997). Nitrogen should be supplied only in amounts that are
balanced with respect to other mineral nutrients, particularly po-
tassium and phosphorus. Timing is also important, and evidence
suggests that post-emergence rather than pre-plant application can
reduce disease risk (Hildebrand et al., 2004). The form of nitrogen
may have an effect, with ammonium being more conducive to
disease than nitrate, but this may be due at least in part to an effect
on soil pH (Woltz and Jones, 1981). Disease tends to be more severe
under relatively acidic conditions because micronutrients are more
available to F. oxysporum and because bacteria are less active.
Consequently, maintaining soil pH near neutrality may contribute
to management of root- and hypocotyl rot.

As is the case with all soilborne diseases, sanitation is essential
for effective management of seedling diseases in forest nurseries. F.
oxysporum can quickly become re-established in fumigated soils,
given the reduced numbers of competing microbes (Marois et al.,
1983). Therefore it is important to avoid introducing the path-
ogen into production areas by moving soil from infested sites.
Another vehicle for introduction of inoculum is seed, which can
carry propagules of F. oxysporum and other species of Fusarium
(Graham and Linderman, 1983; James, 1987; Mason and Van
Arsdell, 1978). The risk of introducing F. oxysporum on seed can
be reduced by harvesting cones directly from trees rather than
fallen cones, and avoiding seed from squirrel caches, which may
carry higher levels of inoculum of F. oxysporum (Dumroese and
James, 2005). Imbibing seeds in running rather than still water
can help to reduce the amount of inoculum that is retained on seed
(James and Genz, 1981). Various treatment protocols utilizing
ethanol, sodium hypochlorite, or hydrogen peroxide have been
shown to significantly reduce seedborne inoculum, while main-
taining a high rate of germination (Dumroese et al., 1988). Other
appropriate sanitation measures include frequent cleaning of all
seed handling equipment and periodic removal of symptomatic
seedlings, which can add inoculum to the soil. Culled seedlings
should be burned or otherwise disposed of in a manner that
eliminates inoculum or at least ensures that it does contaminate
production areas.

At present, conifer seedling production in North America re-
mains dependent on pre-plant fumigation and it seems likely that
this practice will continue as long as efficacious materials are
available (Weiland et al., 2013). No alternative measures can pro-
vide comparable levels of disease control. Ideally, where fumigation
is to be discontinued, a final treatment of the soil with the best
available material could be employed to reduce inoculum to the
lowest possible levels. Thereafter, an integrated approach that
emphasizes good sanitation, coupled with cultural practices that
maintain a robust microbial community in soil and promote
vigorous growth of seedlings could minimize opportunities for

pathogens to become established and increase to levels that result
in reduced yield and quality of seedlings. Prospects for effective
management would certainly be enhanced by development of lines
that are less susceptible to Fusarium root- and hypocotyl rot. To
date, however, it appears that no such efforts have been initiated
(Weiland et al., 2013).

If economic losses to soilborne diseases cannot be kept to an
acceptable minimum, nurseries may elect to produce seedlings in
containers using soilless media. This is already a common practice
in the Southern Hemisphere, where many large nurseries grow
seedlings in Fusarium-free media such as pine bark, coco peat,
vermiculite or perlite. Still, sanitation remains critically important,
with seed, irrigation water, and contaminated containers being the
primary means by which pathogens may be introduced (Morris
et al., 2014).

3. Pitch canker

3.1. Distribution and host range

Pitch canker, caused by F. circinatum, was first recognized as a
disease in the state of North Carolina in the U.S. in 1945 (Hepting
and Roth, 1946). The pathogen was isolated from cankers that
were characterized by extensive production of resin, which
inspired the name “pitch canker” for the disease. Pitch canker
subsequently becamemorewidespread in the southeastern U.S. (SE
U.S.), where it continues to cause problems for production of pines
in plantations, seed orchards, and seedling nurseries (Dwinell et al.,
1985; Storer et al., 1997). The diseasewas discovered in California in
1986 (McCain et al., 1987), followed by confirmed reports from
Japan (Kobayashi and Muramoto, 1989), South Africa (Viljoen and
Wingfield, 1994), Mexico (Guerra-Santos, 1999), Spain (Landeras
et al., 2005), South Korea (Lee et al., 2000), Chile (Wingfield et al.,
2002), Italy (Carlucci et al., 2007), Portugal (Braganca et al.,
2009), Colombia (Steenkamp et al., 2012), and Brazil (Pfenning,
2014).

The host range of F. circinatum extends to more than 60 species
of Pinus (Hepting and Roth, 1953; Muramoto et al., 1993; Guerra-
Santos, 1999; Hodge and Dvorak, 2000; Lee et al., 2000; Gordon
et al., 2001; Enebak and Carey, 2003; Enebak and Stanosz, 2003)
and also includes Douglas-fir, the only conifer outside the pine
genus known to be susceptible (Gordon et al., 2006a). Under
experimental conditions, F. circinatum is capable of colonizing
maize (Zea mays L.) asymptomatically (Swett and Gordon, 2015),
and natural infections of grass hosts have been confirmed in the
U.S. (Swett and Gordon, 2012) and in South Africa (Swett et al.,
2014). No symptoms have been observed on infected grasses,
suggesting the relationship is commensal. The significance of an
association with grasses has yet to be established but could influ-
ence disease development, as described below.

3.2. Symptoms and identification of the pathogen

A typical symptom of pitch canker in mature trees is dead
branch tips. Branches die as a result of a girdling lesion at the site of
infection, which is often a cone node or non-cone branchwhorl, but
infections may also occur in inter-nodal regions. The pathogen
appears to grow more rapidly in succulent, current year growth
than in older, more lignified tissue. The earliest symptom is wilting
of needles distal to the infection site, which can be recognized by an
accumulation of resin on the branch surface. Wilted needles lose
their lustrous green color and eventually become chlorotic, before
turning red and finally brown; abscission tends to occur quickly and
uniformly, leaving naked tips. The progression of symptoms varies
with the season and age of the infected branch. Young, succulent
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branches may droop, giving the appearance of a Shepherd's crook,
whereas older, lignified branches remain stiff as the needles fade
and die. Individual infections do not progress very far axially along
the infected stem, probably because of the accumulation of host-
produced resin. Although resin does not prevent growth of
F. circinatum (Slinski et al., 2015), it will restrict the flow of water,
leading to desiccation of the infected tissue and the pathogen.

Pitch canker intensifies through repeated infections. In addition
to tip dieback, larger diameter branches may eventually die owing
to the coalescence of multiple lesions. This can occur as well on the
main stem, leading to top-kill and, in some cases, death of the
entire tree. Infections on the trunk of the tree often produce
copious amounts of resin, which can coat large areas of the bark.
Resin streaming on the main stem typically occurs on trees that
have already sustained extensive canopy dieback (Gordon et al.,
2001) but can be an early symptom in some cases. The pattern of
symptom development may be a reflection of the means by which
infection courts are established. The death of branch tips would
commonly be associated with infections mediated by twig beetles
(Pityophthorus spp.) (Sakamoto et al., 2007; Storer et al., 2004)
whereas the early appearance of cankers on the main stem may
indicate infections were initiated by engraver beetles (Ips spp.) (Fox
et al., 1991).

In addition to affecting vegetative tissues, the pitch canker
fungus can infect and kill both female strobili and mature cones
(Dwinell et al., 1985; Barrows-Broaddus, 1990). Infected cones can
be misshapen and stunted, and often abort before reaching matu-
rity (Correll et al., 1991). F. circinatum can also infect cones without
doing visible damage, and seeds from such cones can carry the
pathogen internally (Storer et al., 1998a). Infected seedsmay ormay
not show visible evidence of deterioration.

Sowing infected seed can result in pre or post-emergence
mortality, but it is also possible for infected seedlings to survive
and remain symptomless for an extended period of time. Symp-
toms on seedlings killed by F. circinatum at or shortly after emer-
gence are not particularly distinctive and laboratory examination is
required to confirm a diagnosis. Culturing on a selective medium
that contains pentachloronitrobenzene allows for reliable recovery
of F. circinatum from infected tissue (e.g., Aegerter and Gordon,
2006). Most often the pathogen is found to be colonizing the root
collar. Depending on the soil in which seedlings were growing and
the condition of the sample, the inclusion of additional antibiotics
(Correll et al., 1991) to suppress bacteria may be advisable.

A diagnostic feature of branches killed by pitch canker is an
accumulation of resin at the junction of living and symptomatic
tissue, which corresponds to the site of infection. Other causes of
tip dieback, such as western gall rust, caused by Endocronartium
harknessii (J. P. Moore) Y. Hiratsuka (Old et al., 1986) and shoot
blight caused by Diplodia pinea (Desm.) Kickx. (Swart and
Wingfield, 1991), typically lack this characteristic symptom.
Paring away the bark at the infection site reveals a discolored, resin-
soaked lesion, fromwhich F. circinatum can be cultured. A selective
medium can be used for this purpose, but water agar is often suf-
ficient. In either case, the pathogen will grow from lesion margins
and produce diagnostic microconidiophores. Where tissue was
recently infected, growth of the pathogen may be apparent after
only 24 h of incubation. The older the infection, the longer it may
take for the pathogen to emerge.

The facility with which F. circinatum can be identified based on
morphological criteria depends on the prevalence of other Fusa-
rium spp. The formation of microconidia in false heads borne on
polyphialides is sufficient to distinguish F. circinatum from
F. proliferatum (Gordon et al., 1996), which can also be associated
with pine seedlings and may be a cause of mortality (James et al.,
1997). Morphological differences between these two species are

readily visualized on carnation leaf agar amended with 1.5% KCl
(Nelson et al., 1983). Some species, however, are more difficult to
separate from F. circinatum based solely on morphological criteria,
and molecular diagnostic methods can help to achieve a definitive
diagnosis (Steenkamp et al., 1999; Schweigkofler et al., 2004;
Ramsfield et al., 2008; Ioos et al., 2009).

3.3. The infection process

Canopy dieback caused by pitch canker is associated with
wounding that creates infection courts. In seed orchards, wounds
caused by mechanical shakers and by tearing cones away from
branches are prone to infection by F. circinatum (Dwinell et al.,
1985). Infection courts can also be created by pine-associated in-
sects. In the SE U.S., the deodar weevil (Pissodes nemorensis Germar)
(Blakeslee and Foltz, 1981) and pine tip moths (Rhyacionia spp.)
(Runion et al., 1993) are potentially important wounding agents
and/or vectors of pitch canker. In California, several species of
Pityophthorus and Ips have been shown to vector pitch canker
(Gordon et al., 2001), as have Conophthorus radiatae Hopkins (cone
beetle) and Ernobius punctulatus Fall. (dry twig and cone beetle)
(Hoover et al., 1995, 1996). Also in California, Aphrophora canadensis
Walley (spittle bug) is an effective wounding agent (Storer et al.,
1998b) and numerous other insects carry the pathogen and may
serve as vectors. In South Africa, P. nemorensis was found to be
infesting trees where the first outbreak of pitch canker on adult
pines was documented in that country (Coutinho et al., 2007), and
this insect has been shown to facilitate infection in greenhouse
studies (Gebeyehu and Wingfield, 2003). In Spain, Ips sexdentatus
Boerner and Pityophthorus pubescens Marsham among several
other pine-associated insect species are reported to carry spores of
F. circinatum (Rom!on et al., 2007).

The likelihood of infection may be influenced by the nature, size
and age of awound, and by ambient conditions during the period of
wound susceptibility. Pruning wounds on Pinus radiata D. Don
(Monterey pine) became less susceptible over time but a 30%
infection rate was recorded even 28 days after cuts were made
(Sakamoto and Gordon, 2006). In Pinus taeda L. (loblolly pine),
pinhole wounds (made with a dissecting needle to a depth of
3e5 cm)were readily infected, whereaswoundsmade by removing
needle fascicles or lateral branches became infected at a much
lower rate (Kuhlman, 1987). In P. radiata, wound size had a signif-
icant effect on infection frequency, with 1.6 mm diameter wounds
sustaining a higher infection rate than wounds 0.5 mm in diameter
(Sakamoto and Gordon, 2006). In P. taeda and P. elliotii Engelm.
(slash pine), pinhole wounds remained susceptible for 21 days,
although infections occurred at a much reduced rate (20%) when
compared to fresh wounds (70%) (Kuhlman, 1987). In P. radiata,
mean infection rates for wounds 0.3 mm in diameter and 1 mm
deep decreased from nearly 82% on day zero to 12.5% two days later
(Inman et al., 2008). The interval of wound susceptibility defines
the period within which spores of F. circinatum must germinate,
and subsequent growth must be sufficient to establish an infection.
Whether or not this occurs will be strongly influenced by ambient
temperature and moisture availability. Spore germination and
growth both proceed very slowly at 10 !C and more rapidly as
temperature increases up to 25 !C (Inman et al., 2008). For this
reason, infection rates tend to be lower in winter than during
warmer periods (Inman et al., 2008). However, higher tempera-
tures will favor infections only if wounds are deep enough to reach
moisture within the plant, or if ambient humidity is high and/or
freemoisture is present. Thus, infectionsmediated by Pityophthorus
spp., which create only very shallow wounds on healthy branches,
occur at a higher frequency when relative humidity is at or close to
100% (Sakamoto et al., 2007). On the other hand, where inoculum is
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applied to deeper wounds created mechanically, the effect of
ambient humidity on infection frequency appears to be diminished
(Sakamoto and Gordon, 2006). The temperature and moisture re-
quirements for infection are consistent with the widespread
occurrence of pitch canker in the SE U.S., where rainfall during
warm periods is common. Conversely, in California, where most
areas receive rainfall only during the coolest months of the year,
pitch canker is restricted to the coast, where moderate tempera-
tures coincide with high humidity and/or condensation provided
by moist marine air.

Based on the assumption that environmental requirements for
infection impose limits on the distribution of pitch canker, the
model CLIMEX was used to characterize the risk of disease on a
global scale (Ganley et al., 2009). Predictions of the model were
consistent with the distribution of pitch canker in North America,
where the disease has been established long enough to have
approached ecological limits on its geographic range. The model
further predicts that pitch canker constitutes a limited risk to
continental Europe, although pockets of optimal climate were
found in Spain, Portugal, France, Italy and Georgia. Climate was
found to be suboptimal in Chile, where pitch canker is a problem in
nurseries but not as yet in plantations. In contrast, regions within
Australia and New Zealand, where the highly susceptible Monterey
pine is widely planted, appear to have a climate that would be
optimal for the disease, should the pathogen become established.
CLIMEX has also been used to predict how climate change may
influence the risk of pitch canker in Australasia in the future
(Ganley et al., 2011).

An important caveat to conclusions drawn from models based
on climate limitations is that wounding agents may negate envi-
ronmental limitations on infection. Insects that colonize healthy
tissue, such as the cone beetle (C. radiatae), can allow the pathogen
to access moisture within a tree, effectively shielding the fungus
from limiting effects of dry ambient conditions. Furthermore,
weather will have little or no effect on the activity of F. circinatum as
a soilborne pathogen. Thus, countries, or regions within countries,
with a climate deemed unsuitable for pitch canker may neverthe-
less sustain serious damage from seedling mortality in nurseries
and a higher rate of transplant failure as a consequence of latent
infections.

3.4. Management of pitch canker

F. circinatum can infect and kill susceptible pines at any stage of
development, and affects commercial production of trees in seed-
ling nurseries, plantations and seed orchards. Pitch canker can also
be damaging to landscape trees and to trees in native forests.
Accordingly, management considerations will be presented sepa-
rately for planted and native stands of susceptible species.

3.4.1. Seedling nurseries
F. circinatum is not a common resident in soil and so is not likely

to be a problem in seedling nurseries unless introduced with
contaminated soil or seed. If the pathogen is not already established
in soil nearby, seed is the most likely vehicle for introduction. F.
circinatum has been confirmed to occur both on andwithin seeds of
several pine species (Carey et al., 2005; Dwinell et al., 1985; Storer
et al., 1998a). Superficial contamination of seed is common in areas
where pitch canker occurs, regardless of the disease status of the
tree from which cones are obtained. Such infestations are pre-
sumably due to deposition of airborne microconidia and macro-
conidia, both of which F. circinatum can produce on infected host
tissue. Spores might germinate on seed, but whatever subsequent
growth occurs appears not to extend beyond the seed coat because
topical treatments with various anti-microbial materials will

eliminate the pathogen. For example, seeds collected from healthy
P. radiata in stands affected by pitch canker commonly carry the
pathogen, but the incidence of infestation can be reduced to zero by
immersion of seeds in an aqueous solution of 1.0% sodium hypo-
chlorite (Storer et al., 1998a).

Seed from cones on infected branches may sustain infestations
that survive exposure to surface acting materials such as sodium
hypochlorite (Storer et al., 1998a). Internally infested seeds typi-
cally suffer highmortality rates from both pre- and post-emergence
damping-off. However, some seed treatments will significantly
reduce the rate of mortality, which indicates that internally infested
seed is capable of producing a healthy seedling if growth of the
pathogen can be suppressed. Both internal and external in-
festations of P. radiata seed were eliminated by treatment either
with benomyl or a combination of benzimidazole, carboxin and
thiram, which increased seedling emergence to 53 and 57%,
respectively, compared to 43% for untreated seed (Gordon, un-
published data). No seedlings emerging from treated seed were
infected with F. circinatum. Runion and Bruck (1988) found that
thiabendazole suspended in 10% dimethyl sulfoxide significantly
reduced but did not eliminate infestations of F. circinatum in seed of
Pinus palustrisMill. An alternative to chemical seed treatments is to
soak seeds in hot water prior to sowing. Agustí-Brisach et al. (2012)
reported that brief exposure to water at temperatures above 51 and
below 53 !C eradicated F. circinatum from infested seed in most
cases, and all seedlings emerging from treated seed were free of the
pathogen.

Although seed treatments can reduce the risk of introducing
F. circinatum, it is nevertheless advisable to avoid moving seed
collected in infested areas to regions where pitch canker does not
occur. Seed appears to have been an important vehicle for move-
ment of F. circinatum over long distances. For example, genetic re-
lationships between populations suggest that Mexico is a likely
source of the pitch canker infestation now found in South Africa
(Wikler and Gordon, 2000), and the introduction most likely
occurred through importation of infested seed (Britz et al., 2001). A
restriction on seed importation should be applied to pines
regardless of their susceptibility to pitch canker because resistance
to the disease would not preclude deposition of airborne spores on
seed. If pine seed is to be imported into non-infested countries,
even seed originating from areas presumed to be free of pitch
canker should be subjected to appropriate fungicidal treatments.
Furthermore, one should never assume that any seed treatment
will be completely effective and consequently imported seed
should be sown and maintained under quarantine conditions,
where any occurrence of seedling disease can be investigated to
determine if F. circinatum was the cause.

The consequences of sowing seed carrying F. circinatum include
not only a loss of seedlings due to damping-off but also the possi-
bility that soil will become contaminated with the pathogen
(Dwinell and Barrows-Broadus, 1978; Gordon et al., 2001).
Although F. circinatum does not produce chlamydospores or other
structures adapted to survival in soil, it has been shown to persist
for as long as one year under controlled conditions (Gordon, 2011).

Where the seedling phase of pitch canker already occurs,
management must emphasize sanitation to eliminate sources of
inoculum. In South African nurseries, F. circinatum has been found
to contaminate planting containers, allowing for infestation of
sterile media and infection of seedlings. Steam treatment of con-
tainers can substantially reduce this risk (Morris et al., 2014). F.
circinatum can also be found in irrigation water, but was shown to
be eliminated through the addition of hydrogen peroxide (VanWyk
et al., 2012). Once seedlings become infected, the pathogen can
spread throughout the nursery via wind borne spores (Fourie et al.,
2014). Thus, every effort must be made to prevent infections from
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becoming established.
Although it remains to be confirmed, it is possible that infected

grasses serve as cryptic reservoirs of inoculum in seedling nurs-
eries. Several grass species have been shown to sustain natural
infections both in South Africa (Swett et al., 2014) and in California
(Swett and Gordon, 2012), and all isolates recovered from grasses
were confirmed to be pathogenic to pines. Under experimental
conditions, F. circinatum can infect roots and grow into the shoot of
corn (Z. mays), wherein it colonizes developing seeds (Swett and
Gordon, 2015). It remains unclear if corn and other grasses can
serve as reproductive hosts for F. circinatum but preliminary studies
show that the fungus will sporulate on senescent leaves removed
from inoculated plants (Swett et al., 2013). Further research is
needed to determine if sporulation on infected grasses occurs in
nature.

Seedlings that sustain infections may remain symptomless for
up to two years (Swett, 2013). Such latent infections can eventually
become active and cause disease. This has become a significant
problem for Pinus patula Schiede: Schltdl.& Cham., which is widely
grown in South Africa. Plants that leave the nursery with latent
infections often fail to become established in plantations, and losses
to this problem are so great as to threaten the continued use of
P. patula in commercial forestry in South Africa (Mitchell et al.,
2012a; Jones et al., 2014).

To the extent that infections remain cryptic, seedlings can serve
as a vehicle for dissemination of the pathogen. In California, for
example, it is likely that pitch canker first became established in
nurseries, fromwhich cryptically infected seedlings were moved to
“choose and cut” Christmas tree farms. Some infected trees even-
tually developed symptoms of pitch canker and died, and soil at
these sites likely became contaminated, which may have caused
infections in subsequent plantings (Gordon et al., 2001). Also, pre-
symptomatic trees that were sold allowed infected material to be
further distributed. Depending on how such trees were ultimately
disposed of, theymay have served as breeding sites for bark beetles
that could acquire the pathogen and introduce it into nearby
landscape pines (Gordon et al., 2001).

The potential for seedlings to sustain latent infections poses a
challenge for management, because visual inspections are not
sufficient to identify trees that may be carrying F. circinatum.
Furthermore, greenhouse studies have shown that extensive colo-
nization of the root system by F. circinatummay not result in visible
damage. Shoot symptoms become apparent only after the fungus
grows into the root collar and girdles the stem. Thereafter,
F. circinatum grows more extensively in roots and can be isolated
from necrotic tissue. Thus it appears that rotting of roots is a
consequence of seedling death and not the cause (Swett and
Gordon, 2013). If this is typical of how disease develops in seed-
ling nurseries, inspection of roots may not be a reliable means of
identifying cryptic infections.

Several measures can reduce the risk of shipping infected
seedlings. Most important is to avoid introducing the pathogen to a
nursery by using only seed that is certified to be pathogen-free. This
can usually be accomplished by sourcing seed from areas where
pitch canker does not occur. If necessary, seed can be tested for the
presence of the pathogen either by cultural methods or by detec-
tion of a conserved DNA sequence using quantitative PCR (Ioos
et al., 2009; Dreaden et al., 2012). Because the pathogen does not
survive well in soil, periodic intervals without a susceptible pine
crop may help to maintain inoculum densities below damaging
levels. Although soil fumigation can be effective in killing pathogen
propagules in soil, suppression of the resident microbiota may
render fumigated soil more conducive to establishment of subse-
quent pathogen introductions (Marois et al., 1983). Thus, manage-
ment practices that maintain a robust microbiota may better serve

to reduce the risk of establishment of the pitch canker pathogen. On
the other hand, where a localized infestation occurs, eradicative
measures may be appropriate. In these situations, infected trees
should be removed, along with as much of the root system as
possible. All affected plant material should be burned or placed in
sealed containers for disposal off-site. In the course of this activity,
care should be taken not to expand the infested area by movement
of pathogen-contaminated soil. The affected site should be treated
with a material that will kill the pathogen in soil. Materials that
generate MITC such as Basamid or Vapam can be effective for this
purpose, and may be preferable to more potent fumigants because
MITC has a less suppressive effect on the bacterial component of
the microbiota.

Early detection of an infestation can help to minimize the
damage. To this end, it is advisable to monitor the health of a
seedling crop for the occurrence of dead or symptomatic plants.
Symptoms on emerging seedlings are unlikely to be diagnostic, so
laboratory tests should be undertaken to determine the cause of
death. This can be accomplished by cultural methods or the use of
procedures based on diagnostic DNA sequences (Wingfield et al.,
2008). Recovery of F. circinatum from any seedling indicates that
some symptomless seedlings may also be infected. Thus, further
sampling should be undertaken to determine the extent of the
infestation. If modest in scope, affected area(s) can be treated as
described above but if more extensive, destruction of the crop may
be justified. If any seedlings are to be shipped from a site where
pitch canker has been confirmed to occur, a representative sample
of seedlings should be tested for the presence of latent infections.
The size of the sample should be scaled according to the detection
threshold deemed to provide the desired level of safety. The po-
tential for the pitch canker pathogen to infest seed and become
established in seedling nurseries should be a principal focus of
attention for regulators concerned with exclusion of the pathogen
from non-infested areas. For this purpose, restrictions on seed
imports should be considered along with appropriate quarantine
and inspection procedures to ensure rapid detection of any
incursions.

3.4.2. Plantations, seed orchards and other managed plantings
A key element inmanagement of pitch canker in plantations and

seed orchards is minimizing opportunities for infection. To this end
suppressing the activity of insects that can serve as wounding
agents can be beneficial. Runion et al. (1993) reported that soil
applications of carbofuran to one-year old P. taeda significantly
reduced damage by pine tip moth (Rhyacionia spp.) and the inci-
dence of infection by F. circinatum. Wounds created by pruning are
potential infection sites (Sakamoto and Gordon, 2006), and Bezos
et al. (2012) found a significant relationship between pruning and
the number of cankers per tree. The risk of infection may be
reduced if pruning and other procedures that wound trees are
conducted when temperatures are not favorable for insect activity
and/or for infection by F. circinatum.

Whereas pruning creates wounds that can become infected,
judicious removal of infected branches might contribute to disease
management. Where canopy dieback is limited to small-diameter
branches, it should be possible to rid a tree of disease by pruning.
Of course pre-symptomatic infections will be missed and new in-
fections can occur. Consequently, multiple rounds of pruning might
be required to eliminate all infections and maintain a tree in a
symptom-free condition. To assess the potential benefit of erad-
icative pruning, all symptomatic branches were removed from a
stand of 51 trees, of which only four had symptoms of pitch canker
(Gordon et al., 2001). In five successive rounds of pruning over a
period of 43 months, 1185 branches were cut from symptomatic
trees. At the end of this period, 48 of the 51 trees had symptoms of
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pitch canker. Similar results were obtained at three other locations,
showing that eradicative pruning was not effective in eliminating
the disease or even in reducing its incidence or severity. It is
possible that disease would have progressed more rapidly in the
absence of pruning, but it is doubtful the benefit gained would
justify operational costs in most situations. A valuable landscape
tree might be an exception. If pruning restores the esthetic value of
a tree, costs might be repaid if the tree recovers and the expense of
removal and replacement is thereby avoided.

Although fungicides with activity against F. circinatum are
available, no cost-effective strategy for the use of anti-fungal ma-
terials tomanage pitch canker has yet been developed. Applications
of the fungicide thiabendazole were shown to reduce the incidence
of pitch canker, but the magnitude of the benefit was judged
insufficient to justify the cost of application (Runion et al., 1993).
Comprehensive control of pitch canker using fungicides would be
difficult to achieve because nearly all aerial surfaces would require
protection for an extended period of time, and the cost of frequent
fungicide applications would likely be prohibitive. Various mate-
rials can induce resistance to pitch canker, and chitosan has been
shown to significantly reduce lesions lengths resulting from in-
oculations of P. patula with F. circinatum under controlled condi-
tions (Fitza et al., 2013). This approach may have utility in managed
plantings, provided the diversion of resources to defense does not
engender a significant reduction in growth.

As noted above, F. circinatum appears to grow more aggressively
on succulent than on lignified tissue, which may help to explain the
observation that trees managed for rapid growth are more sus-
ceptible to pitch canker (Fisher et al., 1981; Fraedrich and Witcher,
1982). Accordingly, the benefits of fertilization to promote pro-
ductivity must be balanced against the countervailing effect of
enhanced susceptibility to disease. In addition to applied fertilizers,
susceptibility to pitch canker may be influenced by proximity to
volatile sources of nitrogen, such as ventilated poultry farms
(Lopez-Zamora et al., 2007). Drought stress may also render trees
more susceptible to pitch canker (Dwinell and Phelps, 1977). A
protracted drought in California from 1987 to 1991 is believed to
have contributed to mortality in P. radiata stands on soils with poor
water holding capacity (Owen and Adams, 2001). Accordingly,
matching stocking densities to the available water supply should
reduce the impact of pitch canker. Stress may help to explain the
observation that pitch canker is more severe in plantings started
with seed from non-local provenances. Thus, genotypes that are
not well-adapted to a planting site may be more prone to damage
from the disease (Dwinell et al., 1985).

Genetic resistance offers an attractive approach to disease
management because it can be highly effective, requires no inputs
during the production cycle and engenders no adverse environ-
mental impacts. Pine species show a wide range of variation in
susceptibility to pitch canker, and greenhouse tests of young trees
can provide results that are predictive of field performance. For
example, lesion lengths resulting from branch inoculations on four
pine species maintained in a greenhouse were strongly correlated
with the incidence of pitch canker on the same four species in a
landscape, where theywere exposed to the pathogen under natural
conditions (Gordon et al., 1998a). Among species grown in planta-
tions in the SE U.S., inoculations of one year-old seedlings revealed
P. taeda to be the most resistant, with shortleaf pine (Pinus echinata
Mill.) and Virginia pine (Pinus virginiana Mill.) being the most
susceptible, and Pinus elliottii ranked as intermediate (Dwinell,
1978). Even for susceptible species, such as P. elliottii and
P. radiata, intraspecific variation in susceptibility has been
demonstrated (Gordon et al., 1998b; Matheson et al., 2006;
Rockwood et al., 1988; Roux et al., 2007; Storer et al., 1999), and
can be exploited to develop planting stock with higher levels of

resistance than is currently available. In P. radiata, families that
manifested rapid growth were, in some cases, also among the most
resistant to pitch canker (Matheson et al., 2006). Consequently, it
may be possible to develop families and genotypes that are less
prone to damage caused by pitch canker without compromising
commercially important characteristics. Likewise, there appears to
be considerable opportunity to select resistant families of P. patula,
which is widely grown in South Africa (Mitchell et al., 2012b). Other
species, such as P. tecunumanii Eguiluz & J. P. Perry (low elevation
provenance) are also being tested for resistance to infection by the
pitch canker fungus (Mitchell et al., 2012c) and for possible future
deployment.

An alternative to genetic improvement through family selection
within species is to develop more resistant germplasm through
hybridization. This option has been pioneered by CAMCORE (http://
www.camcore.org/overview/history.php) at North Carolina State
University, where various species combinations are being tested. In
countries such as South Africa and Colombia, where P. patula is a
favored tree, hybrids between P. patula and P. tecunumanii (low
elevation provenance) have shown promise (Kanzler et al., 2014).
To the extent that plantation forestry can make greater use of
resistant trees, the impact of pitch canker can be reduced
accordingly.

It is possible that deploying resistant genotypes will select for
novel pathotypes that compromise the efficacy of genetic resis-
tance in the future. In P. radiata, resistance to pitch canker appears
to be a quantitatively inherited trait (Matheson et al., 2006), which
should reduce the likelihood that a change at a single genetic locus
(through mutation or selection of a rare variant allele) in
F. circinatum would be sufficient to negate genetic resistance.
However, incremental changes in the pathogen population could
occur over the course of several generations (Slinski, 2012) if the
sexual cycle is operative in nature. Although out-crossing is readily
accomplished in a controlled environment (Britz et al., 1998;Wikler
et al., 2000), population studies have not revealed any indications
that sexual reproduction occurs in nature (Gordon et al., 1996,
2006b; Iturritxa et al., 2011; Berbegal et al., 2013; Steenkamp
et al., 2014). Of course, changes in local populations of
F. circinatum could also result from the introduction of exotic strains
that differ in virulence. For this reason, movement of infested
material should be avoided, even into areas where pitch canker is
already present.

3.4.3. Native forests
Several lines of evidence suggest the pitch canker pathosystem

may have originated in Mexico (Gordon et al., 2001), where the
disease affects a number of pine species in native forests (Guerra-
Santos, 1999). That pitch canker appears to cause relatively little
damage to native pines suggests the pathogen may be of relatively
long residence in Mexico, consistent with an origin of the pathos-
ystem in that part of the world. Further support for this hypothesis
is based on interfertility of F. circinatumwith Fusarium temperatum,
a commensal associate of a grass species (Z. mays ssp. mexicana
(Schrader) Iltis) that co-occurs with pines in Mexico and Central
America (Desjardins et al., 2000; Friel et al., 2007). Other close
relatives of F. circinatum are also commonly associatedwith grasses.
Thus, the ability of F. circinatum to colonize corn (Swett and Gordon,
2015) and other members of the grass family (Swett and Gordon,
2012) may be seen as retention of ancestral characteristics,
following a host jump from grasses to pines.

If this hypothetical origin of pitch canker is correct, F. circinatum
must have been moved from Mexico to the SE U.S. (most likely on
seed), where the disease was first described (Hepting and Roth,
1946). Thereafter, pitch canker developed into an increasingly
serious and widespread disease of managed commercial plantings.
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The exception was in California, where pitch canker became
established in native forests of P. radiata, P. muricata D. Don (bishop
pine) and P. attenuata Lemmon (knobcone pine) (Gordon et al.,
2001). In 1996, monitoring plots were established to characterize
the dynamics of disease development in P. radiata in California.
Data gathered over a three year period showed that P. radiata in
managed stands (landscape trees in urban areas or in proximity to
golf courses) had more severe disease than trees in native stands,
independent of geographical location (Wikler et al., 2003). All the
managed stands were fragmented, whereas trees inwild-land plots
were mostly within relatively large, contiguous stands. Thus, many
more trees in managed stands occupied edges, which may render
them more prone to stress and may also enhance their exposure to
inoculum. Disease was more severe in plots close to the coast than
in plots located farther inland (Wikler et al., 2003). This difference
remained apparent in 2013 (Gordon, unpublished data), and is
likely due to greater frequency and duration of fog closer to the
ocean. Farther inland, moisture is less available when temperatures
are within a range that will support a high infection frequency. This
concept is supported by studies under controlled conditions that
document a significant effect of ambient humidity on the frequency
of infections mediated by twig beetles (Sakamoto et al., 2007).
Overall, the impact of pitch canker on native P. radiata forests has
moderated in recent years and the rate of mortality has been
relatively low. This likely reflects the operation of systemic induced
resistance (Bonello et al., 2001), which has allowed many infected
trees to recover from pitch canker (Gordon et al., 2011).

The low rate of mortality observed in native stands of P. radiata
contrasts with a much more dramatic impact of pitch canker on
landscape plantings of this species. Extensive mortality occurred in
stands that were located outside the native range of P. radiata, and
most tree deaths occurred during a protracted drought between
1987 and 1991. Thus, the impact of pitch canker was likely aggra-
vated by stress, and hence native populations may also suffer high
mortality where and when drought stress occurs in stands affected
by pitch canker. Disease development in a native population of
P. muricata appears to be consistent with this expectation. At Pt.
Reyes National Seashore on the California coast north of San
Francisco, a stand replacement fire occurred in 1995. Thereafter,
abundant regeneration resulted in dense stands of P. muricata that
far exceeded historic stocking levels. Consequently, trees were
likely subjected to drought stress, and this may have facilitated the
rapid development of pitch canker that was observed to occur
between 2007 and 2009. Since that time disease severity has
continued to increase. Based on plots that were established at the
periphery of infection centers, mean disease severity (as a percent
of maximum) rose from 2% in 2011 to 6% in 2012 and 11% in 2013
(Gordon, unpublished data).

Management of pitch canker in native populations should focus
on minimizing impacts of the disease. Where pitch canker is
recently established, efforts should be made to limit opportunities
for expansion of the infestation. To this end, branches removed
from infected trees should be disposed of locally either by burning
or chipping and composting. Chipping will dramatically reduce
insect emergence but will not preclude survival of F. circinatum for
one year or more (McNee et al., 2002), and hence there is a need for
further treatment. As noted above, Agustí-Brisach et al. (2012)
documented that F. circinatum was killed by temperatures above
50 !C under controlled conditions. Consistent with that result,
exposure to moist heat (50 !C or higher) for ten days was found to
eliminate the pathogen in branches taken from infected trees
(Gordon, unpublished data). Thus proper composting can render
infested material pathogen-free.

Whereas composting will be appropriate for small diameter
branches and chipped wood, this will not be an option for logs. F.

circinatum can survive in logs cut from diseased trees for up to 18
months. Consequently, logs known or suspected to have cankers
should not be transported out of an infested area without treat-
ment, such as exposure to high temperatures (minimum contin-
uous core temperature of 70 !C for more than 4 h) or fumigation
with an effective material such sulfuryl fluoride.

Stands affected by pitch canker should be managed to promote
regeneration and to achieve stocking densities that reduce the
likelihood of water stress. Regeneration is desirable because intra-
specific variation in susceptibility to pitch canker is common in
pines, so natural selection may serve to increase the frequency of
relatively resistant individuals within a population over time.
Where mortality is extensive, it may be necessary to suppress the
growth of invasive plant species, which might otherwise cover
open ground to the exclusion of pine seedlings.

4. Conclusions

An overarching goal in managing diseases of conifers caused by
Fusarium species should be to enhance genetic resistance in sus-
ceptible species. Whereas breeding for resistance to pitch canker
has shown great promise, comparable efforts to develop resistance
to Fusarium root- and hypocotyl rot have not been undertaken
(Weiland et al., 2013). In part, this differential can be attributed to
the fact that pre-plant fumigation has historically provided
adequate control of root diseases. The impending loss of efficacious
fumigants should inspire more attention to development of resis-
tant lines of commercially important species. These efforts will be
aided by the recent recognition of F. commune as a principal cause
of root rot in Douglas-fir (Stewart et al., 2006), which should help to
resolve ambiguities concerning the etiology of this disease.

Notwithstanding the global distribution of pitch canker, many
areas where susceptible species are grown are as yet unaffected.
Consequently, quarantine restrictions remain important. The
principal risk lies with movement of infected or infested plant
material, such as seed, seedlings, scion wood or logs. The inter-
ception of infected Douglas-fir cuttings in New Zealand (Vogler
et al., 2004), where the highly susceptible P. radiata is widely
planted, illustrates how vigilant attention to quarantine procedures
can prevent introductions.
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