Eur. J. For. Path. 24 (1994) 345–356 © 1994 Blackwell Wissenschafts-Verlag, Berlin ISSN 0300–1237

Department of Microbiology and Biochemistry, University of the Orange Free State, Bloemfontein, South Africa

Pythium and Phytophthora species associated with eucalypts and pines in South Africa

By C. LINDE, G. H. J. KEMP and M. J. WINGFIELD

Abstract

Root and soil samples from *Eucalyptus* and *Pinus* plantations taken during routine surveys of South African forestry areas during 1990–1992, yielded various species of *Pythium* and *Phytophthora*. These include three species of *Phytophthora* and 20 species of *Pythium*. Six of these *Pythium* species have not previously been recorded in South Africa. The pathogenicity of the *Pythium* and *Phytophthora* spp. collected during the surveys was tested on established *Eucalyptus fastigata* and a clone of *E. grandis*.

Key words: Encalyptus - Pinus - Phytophthora - Pythium - pathogenicity.

1 Introduction

South Africa is poorly endowed with natural forests and, therefore, plantations of suitable exotic species have been established for timber and paper production. The forestry industry is one of the largest and fastest growing sectors of the South African economy (ANONYMOUS 1992). Land utilized for forestry extends over an area of 1.5 million ha (VAN DER ZEL 1994) and includes mainly plantations of *Pinus* spp., *Eucalyptus* spp. and *Acacia* spp. *Pinus* and *Eucalyptus* spp. are extensively cultivated in more or less equal proportions and comprise 90 % of the total forestry operation (ANONYMOUS 1990). Because of the monoculture system used, diseases could result in reduced productivity (WESTE 1983; WINGFIELD et al. 1991). Little, however, is known of the root diseases associated with exotic forest-tree species in South Africa.

Various species of *Pythium (P.)* and *Phytophthora (Ph.)* have been associated with damping-off and root diseases of *Pinus* and *Eucalyptus* spp. under nursery conditions (VAARTAJA and SALISBURY 1961; VAARTAJA 1967; MARKS and KASSABY 1974). *Phytophthora cinnamomi* Rands and *Phytophthora cryptogea* Pethybr. and Laff. are the two most important oomycetous pathogens associated with *Eucalyptus* and *Pinus* spp. under field conditions (NEWHOOK 1959; PODGER and BATINI 1971; MARKS and KASSABY 1974; BUMBIERIS 1976; HEATHER et al. 1977; PODGER 1978; HAMM and HANSEN 1982). The importance of *Ph. cinnamomi* in forestry is exemplified by the disease of *Eucalyptus marginata* Sm. in western Australia (PODGER et al. 1965; WESTE 1974; SHEA et al. 1982), littleleaf disease of *Pinus echinata* Mill. and *Pinus taeda* L. in the south eastern USA (LORIO 1966), *Pinus radiata* D. Don. die-back in New Zealand (NEWHOOK 1959), chestnut decline in the USA and Europc (CRANDALL 1950; GRENTE 1961), oak decline in Iberia (BRASIER 1992), and red-oak disease in France (ROBIN et al. 1992).

In contrast to *Phytophthora* spp., *Pythium* spp. are generally not associated with root diseases of established *Eucalyptus* and *Pinus* spp. (MARKS and KASSABY 1974, 1976). This is despite the fact that *Pythium* spp. have frequently been associated with diseased *Eucalyptus* and *Pinus* spp. in the past (DAVISON and BUMBIERIS 1973; PRATT and HEATHER 1973;

U. S. Copyright Clearance Center Code Statement:

0300-1237/94/2406-0345 \$10.50/0

MARKS and KASSABY 1974; OTROSINA and MARX 1975; GERRETTSON-CORNELL et al. 1979). However, PRATT and HEATHER (1973) suggested that *Pythium* and *Phytophthora* spp. can act either singly or in combination with *Ph. cinnamomi* to cause die-back of *Eucalyptus* trees. LORIO (1966) also suggested that *Pythium splendens* Braun, *Pythium vexans* de Bar. and *Pythium irregulare* Buis. in association with *Ph. cinnamomi*, may play an important role in *P. taeda* decline in Louisiana. However, the first evidence of a *Pythium* species, namely *P. splendens*, being pathogenic to *Eucalyptus* under field conditions, was presented in South Africa (LINDE et al. 1994b).

Phytophthora cinnamomi has previously been associated with a root disease of Eucalyptus and Pinus spp. under nursery conditions in South Africa (DONALD and VON BROEMBSEN 1977; DARVAS et al. 1978; VON BROEMBSEN 1981; 1984). Pythium spp., in particular P. irregulare and P. ultimum Trow, are well-known damping-off pathogens of Pinus spp. (DARVAS et al. 1978). P. irregulare has also been associated with the death of Pinus patula Schlecht. and Cham. during establishment (LINDE et al. 1994a). However, Ph. cinnamomi and the more recently recorded P. splendens, are the only oomycetous fungi associated with diseases of established Pinus and/or Eucalyptus spp. under field conditions. Ph. cinnamomi has been associated with root diseases of Eucalyptus fastigata Deane and Maid. and Eucalyptus fraxinoides Deane and Maid. in the south eastern Transvaal (WINGFIELD and KNOX-DAVIES 1980) and Pinus clausa Chapm. and P. radiata in northern Natal and the south eastern Cape Province (WINGFIELD and KNOX-DAVIES 1980; VON BROEMBSEN 1984). P. splendens has been associated with a root disease of 1–2-year-old Eucalyptus grandis Hill ex Maid. seedlings in northern Natal (LINDE et al. 1994b).

The objective of this study was to determine which species of *Pythium* and *Phytophthora* are present in South African eucalypt and pine plantations. Pathogenicity of these species on established *Eucalyptus* trees was also of interest.

2 Materials and methods

2.1 Isolation and identification

During routine surveys in the summer of 1990–1992, soil, as well as root samples, were collected from *Eucalyptus* and *Pinus* trees with root-disease symptoms. Soil and root samples were taken from four trees per site. One soil sample was sampled in the rhizosphere of each diseased tree. For soil samples, the top 5 cm of soil was removed and approximately 1 kg of soil sampled at a depth of 5–25 cm. Root samples consisted of diseased sections of adventitious roots with feeder roots. A total of 424 trees were examined for the presence of *Pythium* and *Phytophthora* species.

The six areas from which samples were collected (Fig. 1) included certain areas with specific root-disease problems: Natal Midland, area 1 (*E. smithii* Donn. ex Smith root disease); Zululand, area 2 (root disease of 1–2-year-old *E. grandis* trees); South eastern Transvaal, area 3 (*E. fastigata* die-back, as well as 1-year-old *E. dunnii* Maid., *E. macarthurii* Deane and Maid., and an *E. grandis* hybrid root disease); Eastern Transvaal Lowveld, area 4 (*E. smithii* root disease). The other areas (Fig. 1) had no specific root-disease problems in pines and eucalypts.

Each soil sample was divided into two parts and separately baited with *Citrus* leaf discs (GRIMM and ALEXANDER 1973). Distilled water was used to flood the soil to a depth of 1-2 cm. A total of 10 *Citrus* leaf discs (5 mm diameter) were floated on the water surface of each sample. After 2 days of incubation at room temperature, half of the leaf discs were transferred to a selective medium for the isolation of *Oomycetes* (TSAO and OCANA 1969), and the other half to a hymexazol medium for the isolation of *Phytophthora* spp. (TSAO and GUY 1977). Roots and root collar segments were thoroughly washed in running tap water and plated onto both selective media. Transfers were made to Difco Corn Meal Agar

346

Pythium and Phytophthora in South Africa

Fig. 1. Forestry areas of South Africa from which samples were collected; 1. Natal Midlands; 2. Northern Natal (Zululand); 3. South eastern Transvaal; 4. Eastern Transvaal (Lowveld); 5,6. North eastern Transvaal (Highveld)

(CMA) for identification. The recovery of each *Pythium* and *Phytophthora* sp. from soil and root samples was quantified by determining the number of trees per area examined from which at least one leaf disc (soil sample) or one root segment (root sample) was infected by a given species of *Pythium* or *Phytophthora*.

Asexual and sexual fruiting structures were stimulated to develop, using non-sterilized Petri's solution (TUCKER 1931). Chilling was used to stimulate zoospore formation and release (MENYONGA and TSAO 1966). Heterothallic species were stimulated to produce sexual structures by crossing with tester strains of known mating types. Isolates were identified based on morphological and cultural characteristics using the key described by STAMPS et al. (1990) for *Phytophthora* spp. and the key described by VAN DER PLAATS-NITERINK (1981) for *Pythium* spp.

The pathogenicity of the *Pythium* and *Phytophthora* isolates (Table 1) was tested on established *E. fastigata* and a clone of *E. grandis*. These host species were included due to their previously reported susceptibility to *Ph. cinnamomi* and *P. splendens*, respectively, in South Africa (WINGFIELD and KNOX-DAVIES 1980; LINDE et al. 1994b).

2.2 Field inoculation trials

Each of 20 species of *Pythium* and three species of *Phytophthora* collected, were artificially inoculated on established *Eucalyptus* trees. A single isolate of each species was used except in the case of *Ph. cinnamomi*, *P. splendens* and *P. irregulare*, where two isolates were included. Inoculum of these species for pathogenicity tests was produced by growing the fungi on CMA for 1 week at 25°C in the dark.

A total of 10 trees each of the two different *Eucalyptus* hosts were inoculated with the fungi during the first week of February, 1992. The trial was repeated at the same time in 1993. Inoculation during summer was conducted because trees are known to be most

347

Species	No,	Host	Origin
Ph. boehmeriae Saw.	12	E. dunnii roots	3
Ph. cinnamomi Rands	1	E. fastigata roots	3
Ph. cinnamomi	2	E. fastigata roots	3
Ph. parasitica Dast.	1	Eucalyptus sp. soil	3
P. acanthophoron Sid.	1	P. elliotti soil	2
P. angustatum Spar.	1	P. elliotti soil	2
P. aphanidermatum (Edson) Fitzp.	1	E. grandis soil	4
P. buismaniae van der Plaats-Nit	1	P. patula soil	4
P. bypogynum Middl.	1	E. grandis soil	2
P. intermedium de Bar.	1	P. elliottii soil	2
P. irregulare Buis.	1	P. patula roots	2
P. irregulare	2	E. grandis roots	6
P. myriotylum Drechs.	1	E. grandis soil	4
P. pyrilobum Vaart.	1	P. patula roots	1
P. rostratum Butler	1	E. grandis \times E. nitens soil	5
P. salpingophorum Drechs.	1	E. smithii	4
P. spinosum Saw.	1	E. smithii roots	4
P. splendens Braun	1	E. grandis roots	2
P. splendens	2	E. grandis roots	2
P. tardicrescens Vanterp.	1	E. grandis soil	1
P. vexans de Bar.	1	E. grandis soil	2
P. violae Chest. & Hickm.	1	E. smithii soil	2
Pythium Group F	1	P. patula roots	4
Pythium Group G	1	E. grandis soil	2
Pythium sp. 1	1	P. patula soil	ĩ
Pythium sp. 1	1	P. patula soil	1
Pythium sp. 2	1	E. grandis soil	2

Table 1. Origin of Phythium (P.) and Phytophthora (Ph) isolates used in pathogenicity tests. Geographic origin of isolates. 1 = Natal Midlands; 2 = Northern Natal (Zululand); 3 = South eastern Transvaal; 4 = Eastern Transvaal (Lowveld); 5, 6 = North eastern Transvaal Highveld

susceptible to fungal invasion in summer (SHEARER et al. 1988). The trees to be inoculated included a 2-year-old clone of *E. grandis* near Kwambonambi, northern Natal (Natal *E. grandis* clone), and a 3-year-old *E. fastigata* near Lothair, south eastern Transvaal.

A 10-mm corkborer was used to make a wound on the stem of each tree at 1.3 m above the ground. Wounds were inoculated with 10-mm discs of CMA and colonized with the test fungi. From each host, 10 control trees were inoculated with a sterile CMA disc. Wounds were sealed with masking tape. Lesion development in the secondary phloem (inner bark; TIPPETT et al. 1983; SHEARER et al. 1987) and the outer bark were measured after 5 weeks to give an indication of the pathogenicity of each isolate.

2.3 Statistical analysis

Numerical data obtained in this study were statistically analysed for variances and differences among isolates and hosts. Means were tested for significance using Tukey's procedure for comparison of means (STEEL and TORRIE 1980). The aggressiveness of the *Pythium* and *Phytophthora* species to *E. fastigata* and *E. grandis* in the 1992 and 1993 trials was correlated using the Spearman's-rank correlation coefficient (r.; STEEL and TORRIE 1980).

3 Results

3.1 Isolation and identification

A total of 20 Pythium spp. and three Phytophthora spp. were isolated and identified. Six of these species are reported for the first time in South Africa (Table 2). A number of isolates formed only sporangia or hyphal swellings, and did not produce oogonia, despite pairing with possible compatible mating strains. Those isolates with filamentous non-swollen sporangia were identified as Group F, and isolates with globose non-proliferating sporangia were identified as Group G (VAN DER PLAATS-NITERINK 1981). Isolates representing two species of Pythium could not be assigned to known taxa.

Species	Area ⁱ	Associated tree
Ph. boehmeriae Saw.	3 3 3	<i>E. dunnii</i> Maid. <i>E. macarthurii</i> Deane and Maid. <i>E. grandis</i> ² Hill ex Maid
Ph. cinnamomi Rands	3 3 3 3	E. dunnii E. fastigata Deane and Maid. E. macarthurii E. smithii Donn ex Smith
Ph. parasitica Dast P. acanthophoron Sid. ⁵ P. angustatum Spar. P. aphanidermatum (Edson) Fitzp. ⁵ P. buismaniae van der Plaats-Nit. P. bypogynum Middl. ⁵ P. intermedium de Bar. P. irregulare Buis. P. myriotylum Drechs. P. Pyrilobum Vaart.	3 2 4 4 2 1-6' 4 1	E. smithii P. elliottii Chapm. P. elliottii E. grandis ² P. patula Schlecht. and Cham. E. grandis ² P. elliottii E. grandis ² P. patula
P. rostratum Butl.	2 5	P. elliottii Chapm. E. grandis × E. nitens
¹ P. salpingophorum Drechs. P. spinosum Saw. P. splendens Braun	4 4 2 2	E. smithii E. smithii E. grandis ² E. smithii
P. tardicrescens Vanterp.	1	E. grandis ²
P. vexans de Bar.	2 2	E. grandis ² E. grandis ²
³ P. violae Chest. and Hick. Pythium Group F Pythium Group G Pythium sp. 1 Pythium sp. 2	2 1-6 ⁴ 2 1 2	E. smithii E. grandis ³ E. grandis ¹ E. grandis ¹
1 A		

Table 2. Pythium (P.) and Phytophthora (Ph.) spp. isolated from Eucalyptus and Pinus forestry areas in South Africa

Areas represent those illustrated in Fig. 1

² E. grandis includes various clones and hybrids of E. grandis

³New reports for South Africa

⁴Species were isolated from every area stated in Fig. 1. The host list includes various Eucalyptus and Pinus spp. cultivated in South Africa

C. Linde, G. H. J. Kemp and M. J. Wingfield

Most of the *Pythium* spp. were isolated from soil and not from roots (Table 3). *Pythium irregulare*, *P. splendens* and *Pythium* Group F were frequently isolated from roots of their respective hosts. *Ph. boehmeriae* and *Ph. cinnamomi* were also consistently isolated from soil as well as from roots (Table 3) in south eastern Transvaal.

Species!		No. of positive samples	
	No. trees2	Soil	Roots
Area I	8		
P. irregulare		2	1
P. tardicrescens		3	Ô.
Pythium Group F		7	Å
P. pyrilahum		2	2
Pythium sp. 1		4	õ
Area 2	212		
P. acanthophoron		12	2
P. angustatum		2	õ
P. hypopynum		3	0
P. intermedium		45	0
P. irregulare		115	11
P matratum		63	20
P splendenc		67	
D som soc		07	24
P. wielza		18	9
P. Violae Dashina Casua D		1 77	0
Pythiam Group P		1/5	98
Pytoum Group G		3/	6
Pythum sp. 2		16	Q
Area 3	92 -		
Ph. boehmeriae		12	13
Ph. cinnamomi		68	62
Ph. parasitica		-3	0
P. irregulare		22	9
Pythium Group F		25	20
Area 4	96		
P. aphanidermatum		6	0
P. buismaniae		4	0
P. irregulare		12	1
P. myriotylum		17	0
P. salpingophorum		38	0
P. spinosum		43	9
Pythium Group F		73	52
\rea 5	8		
P. rostratum	(72)	4	1
Pythiam Group F		7	7
area 6	8		
P. irregulare		2	t

Table 3. Percentage isolation of Pythium (P.) and Phytophthora (Ph.) spp. from soil and roots of Eucalyptus and Pinus spp. in six different areas of South Africa

350

3.2 Field inoculation trials

Rapidly developing lesions associated with kino-vein formation in susceptible hosts were observed in both *Phytophthora* and *Pythium* inoculations. Results of pathogenicity tests on the *E. grandis* clone, indicate that the species of *Pythium* and *Phytophthora* fall into three groups based on their aggressiveness. The first group included *P. pyrilobum*, *Pb. cinnamomi* (1), *P. splendens* (2), *P. splendens* (1), *Pb. parasitica*, *Pb. cinnamomi* (2), *P. vexans*, *P. aphanidermatum* and *P. intermedium*. *Pb. boehmeriae*, *Pythium* Group G, *Pythium* sp. 2, *P. myriotylum*, *P. irregulare* (2), and *P. salpingophorum* also produced lesions which differed significantly ($p \le 0.01$) from those of the controls and made up the second group of pathogenic fungi. The remaining species (*P. rostratum*, *P. spinosum*, *Pythium* Group F, *P. buismaniae*, *P. irregulare* (1), *P. acanthophoron*, *P. violae*, *P. bypogynum*, *P. angustatum* and *P. tardicrescens* did not differ significantly from the controls and comprise the third group. Apart from the 10-mm inoculation wound, no lesions developed in control inoculations (Table 4).

Species of Pythium and Phytophthora could also be divided into three groups, based on

Table 4. Phloem lesion inoculation with speci-	on development on <i>E. fastigata</i> ies of <i>Pbytophthora</i> (<i>Pb.</i>) and <i>Py</i> of 10 trees	t and a clone of <i>E. grandis</i> , 5 weeks afte thium (P.) Each value represents an average	r c
	Lauren Lanath (mar)	Louise Issuel (sum)	1

	Lesion length (mm)		Lesion length (mm) E. fästigata ²	
Species	E. grandis clone ¹	Species		
P. pyrilobum	149	Ph. cinnamoni (1)	615	
Ph. cinnamomi (1)	137 ^{hi}	Ph. cinnamomi (2)	518	
P. splendens (2)	137 ^{hi}	Pb. parasitica	370 ^h	
P. splendens (1)	132 ^{chi}	P. splendens (2)	370 ⁸	
Ph. parasitica	115 ^{rghi}	P. splendens (1)	314 th	
Ph. cinnamomi (2)	114 ^{fmbii}	Ph boehmeriae	258 ^{5gh}	
P. vexany	109 ^{stghi}	P. irregulare (1)	243 ^{cla}	
P. aphanidermatum	94 defails	P. verans	224 deta	
P. intermedium	93defuhi	Pythium sp. 2	189 ^{ohf#}	
Ph boebmeriae	91 detain	P acanthophoron	176 ^{bcdel}	
Pythium Group G	87-ilifah	Pythium sp. 1	175 ^{bcdef}	
Pythium sp. 2	79 ^{cdet} a	P irregulare (2)	171 ^{bold}	
P. myriotylum	76 edeta	P. pyrilobum	170 ^{build}	
P. irregulare (2)	73 ^{hold}	Pythium Group G	141hedar	
P. salpinvophorum	67 ^{bidd}	P myriotylum	138bodit	
P. rostratum	59 ^{abidef}	P. salpingophorum	134 ^{abcdut}	
P. spinosum	54 ^{abode}	P. intermediam	133abodel	
Pythium Group F	53 ^{abode}	P. angustatum	132 ^{abcduf}	
P. buismaniae	51 ^{abed}	P. hypogynum	119 ^{sbcdu}	
Pythium sp. 1	51 ^{abcd}	P. spinosum	116 ^{shod}	
P. irregulare (1)	47shul	P. tardicrescens	105 ^{abcd}	
P. acanthophoron	46 ^{abud}	P. aphanidermatum	103-about	
P. violae	46 ^{abed}	P. buismaniae	86 ^{abc}	
P. hypopynum	39abed	P. rostratum	69 ^{abc}	
P. angustatum	32abc	Pythium Group F	59 ^{sh}	
P. tardicrescens	20 ^{ab}	P. violae	50 ^{sh}	
Control	10°	Control	10*	

¹⁷ Values in each column followed by different letters differ significantly at p ≤ 0.01 according to Tukey's procedure for comparison of means

¹ CV = 32.9%

² CV = 27.9%

their aggressiveness to E. fastigata. The first group consisted of Ph. cinnamomi isolates that resulted in lesions significantly ($p \le 0.01$) longer than those of any other species. Ph. parasitica, P. splendens (2), P. splendens (1) and Ph. boehmeriae, in that order of pathogenicity, also produced lesions which differed significantly ($p \le 0.01$) from those of Ph. cinnamomi, but were still highly aggressive to E. fastigata. P. irregulare (1), P. vexans and Pythium sp. 2 resulted in lesions longer than those of P. acanthophoron, Pythium sp. 1, P. irregulare (2), P. pyrilobum, Pythium Group G and P. myriotylum, which differed significantly ($p \le 0.01$) from the control and therefore comprises of an intermediate group of pathogens. Lesion lengths associated with the remaining species (P. salpingophorum, P. intermedium, P. angustatum, P. bypogynum, P. spinosum, P. tardicrescens, P. aphanidermatum, P. buismaniae, P. rostratum, Pythium Group F and P. violae) did not differ significantly from controls (Table 4).

3.3 Statistical analysis

Meaningful correlation (p=0.01) between the pathogenicity of the species on *E. fastigata* ($r_s=0.70$) and *E. grandis* ($r_s=0.88$) in the two different inoculation trials were found. Therefore, only results of the first inoculation trial are presented (Table 4).

3.4 Lesion-length development in the outer bark

Lesion development in the outer bark of *E. fastigata* and a clone of *E. grandis* inoculated with *Pythium* and *Phytophthora* spp, was insignificant or absent in comparison to lesion development in the phloem. Only *Ph. cinnamomi* inoculated on *E. fastigata* was able to cause outer bark lesions (200 mm) significantly ($p \le 0.01$) longer than those of the control inoculations where no lesions developed.

4 Discussion

This study has shown that many species of *Pythium* and *Phytophthora* are present in South African forest soils, though all species present may not have been identified with the isolation method used. Baiting with *Citrus* leaf discs favoured the isolation of fast-growing *Pythium* and *Phytophthora* spp., which masked the isolation of slow growing species. Furthermore, *Pythium* spp. like *P. irregulare* and *P. vexans*, were not inhibited by hymexazol and could possibly have prevented the isolation of slow growing *Phytophthora* spp. Therefore, to identify all the *Pythium* and *Phytophthora* spp. present in South African forest soils, various isolation techniques should be applied (TSAO 1990).

The results of this study suggest that *Pythium* spp. are more common in South African forest soils than *Phytophthora* spp. *Pythium* spp. have a cosmopolitan distribution and are common soil-inhabiting fungi (VAN DER PLAATS-NITERINK 1981). The high frequency of *Pythium* spp. from soil was, therefore, expected. Very little work has been done on *Pythium* spp. in South Africa, particularly in forestry (WAGER 1941; DARVAS et al. 1978; DENMAN and KNOX-DAVIES 1992). This probably explains why so many species were isolated for the first time in South Africa.

Phytophthora spp., including Ph. cinnamomi, Ph. parasitica and Ph. boehmeriae, are known as pathogens of Pinus and/or Eucalyptus spp. under field and nursery conditions (NEWHOOK 1959; OXENHAM and WINKS 1963; PODGER et al. 1965; LORIO 1966; PODGER and BATINI 1971; MARKS and KASSABY 1974; SHEARER et al. 1988). By contrast, Pythium spp. have only been associated with nursery diseases of Pinus and Eucayptus spp. (VAARTAJA and SALISBURY 1961; VAARTAJA 1965, 1967 CAMPBELL and HENDRIX 1967; MARKS and KASSABY 1974; DARVAS et al. 1978). The results of this study also support the view that, in general, *Phytophthora* spp. are more aggressive than *Pythium* spp. on established trees. An exception is found in *P. splendens* which is more or equally aggressive than *Ph. cinnamomi* on *Eucalyptus* hosts (LINDE et al. 1994b).

Although Pythium and Phytophthora spp. are root pathogens, inoculation of these species took place on stems and not on roots. This more practical inoculation procedure was followed because it was previously shown that stem inoculations of Ph. cinnamomi correlate with root inoculation (SHEARER et al. 1987).

Inoculation studies on *E. fastigata* showed that *Pb. cinnamomi, Pb. parasitica, Pb. boehmeriae, P. splendens, P. irregulare* (1), *P. vexans, and Pythium* sp. 2 were the most pathogenic species. In comparison to *Pb cinnamomi,* the *Pythium* spp., except for *P. splendens,* appear to be insignificant. *P. irregulare* and *P. vexans* have previously been associated with pine and *Eucalyptus* decline (LORIO 1966; DAVISON and BUMBIERIS 1973; OTROSINA and MARX 1975). It was therefore not unexpected that these species would show some degree of aggressiveness. Lesions produced by pathogenic *Pythium* and *Phytophthora* spp. were associated with kino-vein formation which is typical of *Phytophthora* infection (TIPPETT et al. 1983).

Inoculation studies on *E. grandis* showed that it is a host which is more tolerant to *Pythium* and *Phytophthora* infection than *E. fastigata. Pythium pyrilobum* was the most aggressive species but the lesion it produced did not differ significantly from *Ph. cinnamomi*, *P. splendens*, *Ph. parasitica*, *P. vexans*, *P. aphanidermatum* and *P. intermedium*. This particular clone of *E. grandis* is therefore not a good host to inoculate when the aggressiveness of *Pythium* and *Phytophthora* species are compared.

Only *Ph. cinnamomi* was able to develop significant lesions in the outer bark of *E. fastigata*. No significant differences could be obtained in lesion lengths on the outer bark inoculated with the other *Phytophthora* or *Pythium* spp. This suggests that bark lesions are not a useful character on which to base comparisons of aggressiveness among species. Lesion development in the phloem, as described by TIPPETT et al. (1983), is a much more effective measure of aggressiveness for *Pythium* and *Phytophthora* spp.

Pythium and Phytophthora spp. tested under field conditions were considerably more pathogenic to E. fastigata than to E. grandis. These results are consistent with the reported virulence of Ph. cinnamomi to E. fastigata in South Africa (WINGFIELD and KNOX-DAVIES 1980). Although E. fastigata has been shown to be more susceptible to Pythium and Phytophthora infection than E. grandis, inoculation studies were also conducted on the latter species. This was because the cultivation of E. fastigata has been almost terminated due to its high susceptibility to Ph. cinnamomi (WINGFIELD and KNOX-DAVIES 1980). Furthermore, 74.2% of all the Eucalyptus planted in South Africa are E. grandis (SCHONAU et al. 1994) and, therefore, the most important Eucalyptus spp. in the South African forestry industry.

The Pythium and Phytophthora species used in this study, were isolated from commercial forests and not from nurseries. Extrapolation of the results to the nursery situation in South Africa is, therefore, not recommended. Nevertheless, those Pythium and Phytophthora spp. that are pathogenic, could play an important role in establishment deaths of *E. grandis* and *Pinus patula* under field conditions, as has been found with *Pinus patula* seedlings on previously cultivated lands (LINDE et al. 1994a). A very common *Pythium* sp. isolated from soil and roots of both *Eucalyptus* and *Pinus* spp., namely *Pythium* Group F, was not pathogenic to *E. grandis*. It is therefore possible that *Pythium* Group F is a common saprophyte that survives in dead roots which died of natural decline.

Acknowledgements

The authors are grateful to the members of the Tree Pathology Cooperative Programme, University of the Orange Free State, as well as to the Foundation for Research Development and the South African Forest Owners Association for financial support.

Summary

A total of 20 Pythium and three Phytophthora spp. were isolated from root and soil samples from six areas in eucalypt and pine plantations in South Africa. Of these, six Pythium spp. were reported in South Africa for the first time. Most isolations of these fungi were from soil and not from roots. Pythium Group F was most consistently isolated from soil and roots of diseased trees and appears to be a common saprophyte in local soils. The species of Pythium and Phytophthora isolated in this study can be divided into groups based on their aggressiveness to E. grandis and E. fastigata. The species most aggressive to E. fastigata were Ph. cinnamomi, Ph. parasitica, Ph. boebmeriae, and P. splendens. On E. grandis trees, Ph. cinnamomi, Ph. parasitica, P. aphanidermatum, P. intermedium, P. pyrilobum, P. splendens and P. vexans were the most virulent species. Ph. boebmeriae and Pythium Group G were also pathogenic but less so than the above mentioned species. Of the most aggressive Pythium and Phytophthora spp., only Ph. cinnamomi is a common species which could be isolated from most of the forestry areas surveyed in South Africa.

Résumé

Les espèces de Pythium et de Phytophthora associées aux Eucalyptus et aux Pins en Afrique du Sud

En tout ont été 20 espèces de Pythium et trois de Phytophthora isolées d'échantillons de racines et de sol dans six plantations d'Eucalyptus et de Pins. Parmi elles, six espèces de Pythium sont des premières mentions pour l'Afrique du Sud. La plupart de ces champignons étaient issus d'isolements de sol et non pas de racines. Le groupe F de Pythium a été presque constamment isolé de sol et de racines d'arbres malades et apparaissait être un groupe saprophyte courant dans les sols locaux. Les Pythium et Phytophthora isolés dans cette étude peuvent être divisés en groupes sur la base de leur agressivité vis-à-vis de Eucalyptus grandis et E. fastigata. Les espèces les plus aggressives pour E. fastigata étaient: Ph. cinnamomi, Ph. parasitica, Ph. boehmeriae et P. splendens; pour E. grandis: Ph. cinnamomi, Ph. parasitica, P. aphanidermatum, P. intermedium, P. pyrilohum, P. splendens et P. vexans. Le groupe G de Pythium et Ph. boehmeriae étaient également pathogènes mais moins. Parmi les espèces les plus agressives de Pythium et de Phytophthora, seul Ph. cinnamomi est une espèce courante qui peut être isolée de la plupart des zones forestières étudiées.

Zusammenfassung

Mit Eucalyptus und Pinus assoziierte Pythium- und Phytophthora-Arten in Südafrika

Insgesamt wurden 20 Pythium- und drei Phytophthora-Arten aus Wurzel- und Bodenproben von sechs Gebieten mit Eucalyptus- und Pinusplantagen in Südafrika isoliert. Davon sind sechs Pythium spp. Erstnachweise für Südafrika. Die Pilze wurden hauptsächlich aus dem Boden und nicht aus den Wurzeln isoliert. Die Pythium-Gruppe F wurde sehr häufig aus Böden und Wurzeln erkrankter Bäume isoliert und scheint ein gewöhnlicher Saprophyt der lokalen Böden zu sein. Die in dieser Studie isolierten Pythium- und Phytophthora-Arten können aufgrund ihrer Aggressivität gegenüber Eucalyptus grandis und E. fastigata in Gruppen eingeteilt werden. Die aggressivsten Arten auf E. fastigata waren. Ph. cinnamomi, Ph. parasitica, Ph. boehmeriae und P. splendens. Auf E. grandis waren dies Ph. cinnamomi, Ph. parasitica, P. aphanidermatum, P. intermedium, P. pyrilobum, P. splendens und P. vexans. Ph. boehmeriae und die Pythium-Gruppe G waren ebenfalls pathogen aber weniger aggressiv als die vorgenannten Arten. Von den aggressivsten Pythium- und Phytophthora-Arten kommt nur Ph. cinnamomi allgemein vor und konnte aus den meisten der in Südafrika untersuchten Forstgebiete isoliert werden.

References

ANONYMOUS, 1990: The South African forestry and forestry products industry. Leaflet: Facts 88/89. -, 1992: Sappi News. Sappi Ltd., Oct–Nov 1992.

BRASIER, C. M., 1992; Oak tree mortality in Iberia. Nature 360, 539.

VON BROEMBSEN, S., 1981: Control of Phytophthora root rot and other soilborne diseases of forest nurseries. S. Afr. For. J. 117, 37–40.

-, 1984: Occurrence of Phytophthora cinnamomi in indigenous and exotic hosts in South Africa with special reference to the south-western Cape Province. Phytophylactica 16, 221–225.

BUMBIERIS, M., 1976: The role of Phytophibora cryptogea and waterlogging in a decline of Pinus radiata. Aust. J. Bot. 24, 703-709. ŝ

- CAMPBELL, W. A.; HENDRIX, F. F. Jr., 1967: Pythium and Phytophthora populations in southern forest tree nurseries. Phytopathology 57, 457.
- CRANDALL, B. S.; 1950: The distribution and significance of chestnut root rot Phytophthoras, P. ciunamomi and P. cambivora. Plant Dis. Rep. 34, 194–196.
- DARVAS, J. M.; SCOTT, D. B.; KOTZE, J. M., 1978: Fungi associated with damping-off in coniferous seedlings in South African nurseries. S. Afr. For. J. 104, 15–19.
- DAVISON, E. M.; BUMBIERIS, M., 1973: Phytophthora and Pythiam spp. from pine plantations in South Australia. Aust. J. Biol. Sci. 26, 163–169.
- DENMAN, S.; KNOX-DAVIES, P. S., 1992: Overview of *Pythium* species and diseases recorded in South Africa from 1926 to the end of 1989. Phytophylactica 24, 79–84.
- DONALD, D. G. M.; VON BROEMBSEN, S. L., 1977: The control of *Phytophthora cinnamomi* Rands in a South African forest nursery. S. Afr. For. J. 100, 50–55.
 GERRETTSON-CORNELL, L.; DOWDEN, H. G. M.; BRIDGES, R.G.; TOWNSEND, S.R., 1979: The inci-
- GERRETTSON-GORNELL, L.; DOWDEN, H. G. M.; BRIDGES, R.G.; TOWNSEND, S.R., 1979: The incidence of *Phytophthora cinnamomi* and *Pythium* species in thinned Eucalypt plots. Plant Dis. Rep. 63, 490–493.
- GRENTE, J.; 1961: La maladie de l'encre du chataignier. II. Les agents pathogenes: Phytophthora cambivora et P. cinnamomi. Ann. Epiphyt. 12, 25–59.
- GRIMM, G. R.; ALEXANDER, A., 1973: Citrús leaf pieces as traps for *Phytophthora parasitica* from soil slurries. Phytopathology 63, 540-541.
- HAMM, P. B.; HANSEN, E. M., 1982: Pathogenicity of Phytophthora species to Pacific Northwest USA conifers. Eur. J. For. Pathol. 12, 167–174.
- HEATHER, W. A., PRATT, B. H.; CHIN, T. Y., 1977: Pre- and post-emergence damping-off of seedlings of Pinus species by Phytophthora cinnamomi and Ph. drechsleri. Aust. J. Bot. 25, 358–359.
- LINDE, C.; KEMP, G. H. J.; WINGFIELD, M. J., 1994a. Pythium irregulare associated with Pinus seedling death on previously cultivated lands. Plant Dis. 78, 1002–1005.
- -; WINGFIELD, M. J.; KEMP, G. H. J., 1994b: Root and root collar disease of Eucalyptus grandis caused by Pythium splendens. Plant Dis. 78, 1006–1009.
- LORIO, P. L. Jr., 1966: Phytophthora cinnamomi and Pythium species associated with loblolly pine decline in Louisiana. Plant Dis. Rep. 50, 596–597.
- MARKS, G. C.; KASSABY, F. Y., 1974: Pathogenicity of Pythium spp. and Phytophthora drechsleri to Eucalyptus spp. Aust. J. Bot. 22, 661-668.
- -; -, 1976: Pathogenicity of nine species of Phytophthora to Eucalyptus sieberi. Aust. For. Res. 7, 59-63.
- MENYONGA, J. M.; TSAO, P. H., 1966: Production of zoospore suspensions of *Phytophthora parasitica*. Phytopathology 56, 359–360.
- NEWFIOOK, F. J., 1959: The association of *Phytophthora* spp. with mortality of *Pinus radiata* and other conifers. NZ. J. Agric. Res. 2, 808–843.
- OTROSINA, W. J.; MARX, D. H., 1975: Populations of *Phytophthora cinnamomi* and *Pythium* spp. under Shortleaf and Loblolly pines in littleleaf diseased sites. Phytopathology 65, 1224–1229.
- OXENHAM, B. L.; WINKS, B. L., 1963: Phytophthora root rot of pines in Queensland. Qd. J. Agric, Sci. 20, 355–366.
- VAN DER PLAATS-NITERINK, A. J., 1981: Monograph of the genus *Pythium*. Centraalbureau voor schimmelcultures. Baarn. Studies in Mycology No. 21.
- PODGER, F. D., 1978: Biology of the pathogens and its relevance to forest management. In: *Phytophthora* and Forest Management in Australia. Ed. by OLD, K. M. Report of a conference held at CSIRO Division of Forest Research, Canberra, 18–20 Oct. 1978. Melbourne: CSIRO. pp. 14–27.
- PODGER, F. D.; BATINI, F., 1971: Susceptibility to Phytophthora cinnamomi root-rot of thirty-six species of Eucalyptus. Aust. For. Res. 5, 9-20.
- -; DOEPEL, R. F.; ZENTMYER, G. A., 1965: Association of Phytophthora cinnamomi with a disease of Eucalyptus marginata forest in Western Australia. Plant Dis. Rep. 49, 943–947.
- PRATT, B. H.; HEATHER, W. A., 1973: Recovery of potentially pathogenic *Phytophthora* and *Pythium* spp. from native vegetation in Australia. Aust. J. Biol. Sci. 26, 575–582.
- ROBIN, C.; DESPREZ-LOUSTAU, M.-L.; DELATOUR, C., 1992: Factors influencing the enlargement of trunk cankers of *Phytophthora cinnamomi* in red oak. Can. J. For. Res. 22, 367–374.
- SCHONAU, A. P. G.; STÜBBINGS, J. A.; NORRIS, C., 1994: Silviculture of eucalypts. In: Forestry Handbook. Ed. by VAN DER SIJDE, H.A. South African Institute of Forestry. Pretoria: Aurora Printers, pp. 171–185.
- SHEA, S. R.; SHEARER, B. L.; TIPPETT, J. T., 1982: Recovery of *Phytophthora cinnamomi* from vertical roots of jarrah (*Eucalyptus marginata* Sm.). Australas, Plant Pathol. 11, 25–28.SHEARER, B. L.; MICHAELSEN, B. J.; SOMERFORD, P. J., 1988: Effects of isolate and time of inoculation
- SHEARER, B. L.; MICHAELSEN, B. J.; SOMERFORD, P. J., 1988: Effects of isolate and time of inoculation on invasion of secondary phloem of *Eucalyptus* spp. and *Banksia grandis* by *Phytophthora* spp. Plant Dis. 72, 121–126.
- -; MICHAELSEN, B. J.; WARREN, H. J., 1987: Comparative behaviour of *Phytophthora* species in the secondary phloem of stems and excised roots of *Banksia grandis* and *Eucalyptus marginata*. Aust. J. Bot. 35, 103–110.

2 $\omega_{\rm e}$

- STAMPS, D. J.; WATERHOUSE, G. M.; NEWHOOK, F. J.; HALL, G. S., 1990: Revised tabular key to the
- Species of Phytophthora. Mycological Papers no. 162, C.A.B. International Mycological Institute. STEEL, R. G. D.; TORRIE, J. H., 1980: Principles and Procedures of Statistics, 2nd Ed. New York: McGraw-Hill,
- TIPPETT, J. T.; SHEA, S. R.; HILL, T. C.; SHEARER, B. L., 1983; Development of lesions caused by Phytophthora cinnamomi in the secondary phloem of Eucalyptus marginata. Aust. J. Bot. 31, 197-210.
- TSAO, P. H., 1990: Why many phytophthora root rots and crown rots of tree and horticultural crops remain undetected. Bull. ÓEPP/EPPO 20, 11-17.
- -; GUY, S. O., 1977: Inhibition of Mortierella and Pythium in a Phytophthora-isolation medium containing hymexazol. Phytopathology 67, 796-801.
- -; OCANA, G., 1969: Selective isolation of species of Phytophthons from natural soils on an improved antibiotic medium. Nature 223, 636-638.
- TUCKER, C. M., 1931: Taxonomy of the genus Phytophthora de Bary. Mo. Agric. Exp. Stn. Res. Bull. 153, 208
- VAARTAJA, O., 1965: New Pythium species from south Australia. Mycologia 57, 417-430.
- -, 1967: Damping-off pathogens in south Australia. Phytopathology 57, 765-768.
- -; SALISBURY, P.J., 1961: Potential pathogenicity of Pythium isolates from forest nurseries. Phytopathology 51, 505-507.
- WAGER, V. A., 1941: Descriptions of the South African Phythiaceae with records of their occurrence. Bothalia 5, 3-35.
- WESTE, G. M., 1974: Phytophthora cinnamomi the cause of severe disease in certain native communities in Victoria, Aust. J. Bot. 22, 1-8.
- -, 1983: Population dynamics and survival of Phytophthora. In: Phytophthora: Its Biology, Taxonomy, Ecology, and Pathology. Ed. by ERWIN, D. C.; BARTNICKI-GARCIA, S.; TSAO, P. H. St. Paul:
- American Phytopathological Society. pp. 237–257.
 WINGFIELD, M. J.; KNOX-DAVIES, P. S., 1980: Observations on diseases in pine and eucalyptus plantations in South Africa. Phytophylactica 12, 57–60.
 SWART, W. J.; KEMP, G. H. J., 1991: Pathology considerations in clonal propagation of *Encalyptus* with special reference to the South African situation. Proc. 1991 IUFRO Symposium Intensive Forestry, the Role of *Eucalyptus*, pp. 811–820, VAN DER ZEL, D. W., 1994: Forestry statistics for Southern Africa. In: Forestry Handbook. Ed. by
- VAN DER Sijde, H.A. Southern African Institute of Forestry. Pretoria: Aurora Printers. pp. 2-3.

Authors' address: Department of Microbiology and Biochemistry, University of the Orange Free State, Bloemfontein, 9300, South Africa

Received: 16.11.1993; accepted: 5.9.1994