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A B S T R A C T

In this study we compared the performance of regression tree ensembles using hyperspectral data. More

specifically, we compared the performance of bagging, boosting and random forest to predict Sirex

noctilio induced water stress in Pinus patula trees using nine spectral parameters derived from

hyperspectral data. Results from the study show that the random forest ensemble achieved the best

overall performance (R2 = 0.73) and that the predictive accuracy of the ensemble was statistically

different (p < 0.001) from bagging and boosting. Additionally, by using random forest as a wrapper we

simplified the modeling process and identified the minimum number (n = 2) of spectral parameters that

offered the best overall predictive accuracy (R2 = 0.76). The water index and Ratio975 had the best ability

to assay the water status of S. noctilio infested trees thus making it possible to remotely predict and

quantify the severity of damage caused by the wasp.
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1. Introduction

Sirex noctilio is currently the most destructive pest of conifers in
South Africa and the wasp is currently causing considerable tree
mortality in Pinus patula forests located in the southern parts of the
country. Recent estimates indicate that 35,000 ha of P. patula forest
are infested and dying (Hurley et al., 2007). In lieu of the future
availability of hyperspectral data in South Africa (van Aardt and
Coppin, 2006) there is a keen interest amongst remote sensing
researchers to apply novel methods and techniques that will allow
for the accurate prediction and quantification of S. noctilio

infestations.
Regression trees (Breiman et al., 1984) have been widely used

for prediction purposes in the remote sensing domain (DeFries
et al., 1997; Hansen et al., 2002; Lobell et al., 2007; Michaelson
et al., 1994). However, regression trees are very sensitive to small
perturbations in the training dataset and have been identified as
unstable learners that are prone to overfitting (Breiman, 1996).
Simply stated, relatively small changes in the values of the training
dataset can lead to significant changes in the selection of variables
that are used to create the regression tree (Hastie et al., 2001).
Therefore, the instability of regression trees introduces uncertainty
in their interpretation and limits their predictive performance
(Elith et al., 2008).
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Bagging (Breiman, 1996), boosting (Freund and Shapiro, 1996;
Friedman, 2002) and random forest (Breiman, 2001) are popular
ensembles that have been used to improve the performance of
unstable learners (Hamza and Larocque, 2005). As a result of their
improved performance these techniques have been applied to a
wide variety of remote sensing applications (Gislason et al., 2006;
Ham et al., 2005; Lawrence et al., 2004; Lawrence et al., 2006; Pal,
2005). However, to the best of our knowledge, remote sensing
applications thus far have focused on using classification trees
rather than using regression trees as the base learner.

The question then arises: How would bagging, boosting and
random forest perform in regression type applications? Initial
research carried out by Breiman (2001) on machine learning
datasets revealed that the results were mixed. Random forest
always produced better results than conventional bagging while
in some of the datasets, a modified version of bagging known as
adaptive bagging outperformed random forest. More recently,
Prasad et al. (2006) compared random forest and bagging for
predicting species distribution under climate change scenarios.
Results from the study concluded that random forest and bagging
have similar predictive abilities. We are unaware of any studies
that compare regression tree ensembles using remotely sensed
data. Consequently, the objective of this study was to compare
the performance of random forest, bagging and boosting for
prediction purposes using remotely sensed data. More specifi-
cally, we compared regression tree ensembles for predicting S.

noctilio induced water stress in P. patula trees using several
spectral parameters derived from hyperspectral data (Prasad
et al., 2006).
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2. Materials and methods

2.1. Spectral reflectance and water content measurements

P. patula foliage was collected from a known S. noctilio infested
compartment located at the Sappi Pinewoods plantation (centroid
3084013.8300E and 29838036.0600S) in KwaZulu-Natal, South Africa
(Ismail et al., 2008). To facilitate a representative sample, P. patula

trees were carefully examined with the assistance of experienced
foresters and classified into the healthy, green and red stages of
infestation (Fig. 1).

Using tree climbers, samples representing each class
(healthy = 24, green = 30 and red = 12) were randomly obtained
from the upper, middle and lower crowns of selected P. patula trees
(Ismail et al., 2008). After clipping, each sample (approximately
1 kg) was immediately placed on the ground and spectral
measurements were collected. The measurements were taken
on a clear sunny day between 10:00 and 14:00 h, using the
analytical spectral devices (ASD) Field Spec Pro FR spectro-
radiometer. The spectroradiometer senses in the 350–2500 nm
spectral range. The first sensor measures reflection in wavelengths
between 350 nm and 1050 nm with a spectral resolution of 1.4 nm
while the second sensor measures reflection between 1000 nm and
2500 nm with a spectral resolution of 2 nm (Analytical Spectral
Devices Inc., Boulder, Co.). In accordance with established
protocols, the spectroradiometer was mounted on a tripod with
a 258 field of view and positioned 0.5 m above each sample at nadir
position. Additionally, radiance measurements were converted to
Fig. 1. Description of the healthy, green and red stages of Sirex noctilio infestation (For inte

web version of the article).
target reflectance using a calibrated white spectralon panel of
known spectral characteristics (Analytical Spectral Devices Inc.,
Boulder, Co.). To control for variation in leaf orientation, 10 spectral
reflectance measurements were averaged for each sample and
individual samples were rotated 308 between scans (Pontius et al.,
2005). Fig. 2 shows the average spectral reflectance of the healthy,
green and red stages of infestation.

Once the spectral measurements were completed, foliar
samples were immediately sealed in a plastic bag and kept in a
cooler at 5 8C. The samples were then transported to the Institute of
Commercial Forestry Research (ICFR) laboratory for water content
analysis. Following Bowyer and Danson (2004), water content
(WC) was calculated as follows:

WCð%Þ ¼ FW� DW

DW
� 100 (1)

where FW is the fresh weight of the sample and DW is the weight of
the sample after been oven dried for 24 h at 60 8C.

2.2. Spectral parameters

To minimize external variability and optimize the sensitivity of
the spectral response to changes in water content of the foliar
samples, several spectral indices, including simple ratios, normal-
ized ratios and three band ratios were calculated from the
ASD reflectance measurements. Table 1 shows the various
spectral indices that were used in the study. Additionally, we
applied continuum removal to water absorption features located at
rpretation of the references to color in this figure legend, the reader is referred to the



Fig. 2. Spectral reflectance for the healthy, green and red stages of Sirex noctilio

infestation. Reflectance values between 1800 nm and 1950 nm; and between

2470 nm and 2500 nm displayed a high level of noise and were therefore removed

from further analysis.
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R920–1120 and R1070–1320 (Pu et al., 2003). Although previous studies
have calculated several parameters from the continuum-removed
absorption features (Pu et al., 2003), we only used the band depth
(BD), which is computationally efficient and, therefore, more
suitable for the practical application of this study (Mutanga and
Skidmore, 2004).

2.3. Statistical analysis

We used regression tree ensembles to predict water content as
a function of multiple spectral parameters (n = 9) using a hold out
sample. This was done by repeatedly and randomly (n = 1000)
dividing the original dataset into training (70%) and test (30%)
datasets. For each run, regression tree ensembles developed on the
training dataset (n = 46) were then used to predict the water
content on the test dataset (n = 20). The final predictive accuracy
used to compare the regression ensembles consisted of an
averaged adjusted R2 value for all the runs carried out. All
statistical analysis was carried out using the R package (R
Table 1
The various spectral indices that were used in the study.

Spectral Indices

1 Water index

2 Normalized difference water index

3 Normalized difference vegetation index

4 Ratio975

5 Ratio1200

6 Moisture stress index

7 Normalised difference infrared index
Development Core Team, 2008). The section below briefly
describes the regression tree ensembles used in this study.

2.3.1. Bagging, boosting and random forest

Bagging or bootstrap aggregation is a relatively simple idea that
uses many bootstrap samples (Efron and Tibshirani, 1993) with
replacement from the original dataset and then applies a
regression tree to each bootstrap sample. The results from each
regression tree are then averaged to obtain the overall prediction.
When a bootstrapped sample is drawn, approximately 37% of the
dataset is excluded from the sample and the remaining data is
replicated to bring the dataset to full size. The excluded one third of
the samples is known as the out of bag samples (OOB), while the
replicated dataset is known as the in bag samples (Breiman, 1996).

Random forest is similar to bagging but has the additional
modification of selecting only a random subset of candidate
features (mtry) to determine the split at each node of a tree. As each
regression tree is maximally grown, it makes predictions on the
OOB sample for that particular tree. The prediction error then
provides an unbiased assessment of the predictive accuracy, since
the OOB sample is not used in the training process. Additionally,
random forest provides an internal measure of variable importance
using the OOB sample. The variables associated with the OOB
sample are randomly permutated and regression trees are grown
on the modified dataset. The important measure of each variable is
then calculated as the difference in the mean square error between
the original OOB predicted dataset and the modified dataset
(Breiman, 2001).

While bagging and random forest rely on bootstrapped
aggregations of the original training data to generate trees in the
ensemble, boosting relies on the results from a previous iteration.
Boosting uses a forward stagewise procedure to iteratively fit trees
to the training dataset and gradually increases emphasis on poorly
modeled observations by the existing collection of trees (Elith et al.,
2008). For regression related problems, boosting assumes the form
of a functional gradient decent (Friedman, 2002). The boosting
algorithm grows the first regression tree to maximally reduce the
loss in predictive performance (such as deviance) and the next tree
then focuses on the variation in the response (i.e. residuals) that
could not be explained by its predecessor. The final model therefore
is a linear combination of many trees with the contribution of each
tree usually shrunk by a learning rate (lr) to achieve best
performance (Elith et al., 2008).

2.3.2. Variable selection

In order to simplify the modeling process we would like to
identify the smallest number of spectral parameters that offer the
best predictive power and help in the interpretation of the final
Formula Reference

WI ¼ r900

r970

Peñuelas et al. (1997)

NDWI ¼ r860 � r1240

r860 þ r1240

Gao (1996)

NDVI ¼ r860 � r690

r860 þ r690

Rouse et al. (1973)

Ratio975 ¼
2r960�990

r920�940 þ r1090�1110

Pu et al. (2003)

Ratio1200 ¼
2r1180�1220

r1090�1110 þ r1265�1285

Pu et al. (2003)

MSI ¼ r1600

r819

Hunt and Rock (1989)

NDII ¼ r819 � r1600

r819 þ r1600

Hardinsky et al. (1983)
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model. To address this issue we used a wrapper (Kohavi and John,
1997) that searches for the best subset of spectral parameters by
using the regression tree ensembles as part of the evaluation
process. More specifically, we implemented a backward elimina-
tion greedy search function (Guyon and Elisseeff, 2003). The search
function commenced with all the spectral parameters (n = 9) and
then progressively eliminated the least promising spectral
parameters. The nested subset of spectral parameters with the
lowest root mean square error (RMSE) was then selected.
According to Kohavi and John (1997) the resulting subset of
spectral parameters should be evaluated on an independent test
set that was not used during the variable selection process. For
comparative purposes, we evaluated the final subset of spectral
parameters using (i) hold out test dataset (n = 20), (ii) 10 fold cross
validation (CV) and (iii) out of bag samples (OOB).

3. Results

3.1. Model optimization

In an attempt to streamline the model building and evaluation
process we optimized certain input parameters for bagging,
Fig. 3. Histograms showing the frequency of the adjusted R2 values for the regression t

bagging trees, (b) shows the distribution of the adjusted R2 for generalized boosting tr
boosting and random forest. Using the training dataset (n = 46),
the optimal input parameters for the ensemble were selected based
on the lowest RMSE as calculated by ten fold cross validation (CV).

For random forest, we examined the effect of the number of
randomly selected variables (mtry) on the prediction error (Hamza
and Larocque, 2005). We optimized the mtry value by creating
random forest ensembles for all possible mtry values (n = 9) and
then selecting the optimal mtry value based on the lowest RMSE
across all forests. The lowest RMSE (8.19) for the random forest
ensemble was obtained when using an mtry value of two.
Increasing the mtry value has no additional impact on producing
a lower RMSE.

To optimize bagging trees, we varied the number of trees (nbag)
in the ensemble by adding 25 trees at a time and then recorded the
resulting RMSE up to a maximum of 500 trees. The lowest RMSE
value (9.35) for bagging was obtained when using 300 trees.

According to Elith et al. (2008) there are two important
parameters that need to be optimized for boosting ensembles. The
first parameter is the learning rate (lr) which determines the
contribution of each tree to the final model, and the second
parameter is the tree complexity (tc) which controls whether
interactions are fitted. We subsequently identified the number of
ree ensembles used in this study. (a) Shows the distribution of the adjusted R2 for

ees and (c) shows the distribution of the adjusted R2 for random forest.



Table 2
The average adjusted R2 and RMSE values obtained by bagging, boosting and

random forest.

Model Adjusted R2 RMSE

Random forest 0.73 8.33

Boosting 0.68 10.27

Bagging 0.69 9.19
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trees (n.tree) that achieved the lowest RMSE for each combination
of tc (1, 2, 3, 5, 7, and 10) and lr (0.1, 0.05, 0.01, 0.005, 0.001 and
0.005). Results indicated that the lowest RMSE (9.57) for boosting
was obtained when tc = 1, lr = 0.01 and n.tree = 1000.

3.2. Comparing bagging, boosting and random forest

Fig. 3 shows the histogram of adjusted R2 values obtained when
using the repeated hold out sample (n = 1000). There is a narrow
confidence interval for all the regression tree ensembles, implying
that the methods predicted with high precision (Mutanga et al.,
2004). In order to assess whether random forest is significantly
better or worse than bagging and boosting, a Bonferroni corrected,
one tailed paired t test was carried out. Results from paired t test
indicated that there was a significant difference between random
forest and boosting (t = 6.24, p < 0.001) and between the random
forest and bagging (t = 8.68, p < 0.001). However, there was no
significant difference (t = 2.23, p > 0.05) in the adjusted R2 values
between the boosting and bagging ensembles.

The average performance of all three predictors was relatively
close, with the adjusted R2 values ranging between 0.68 and 0.73
(Table 2). However, random forest produced the best overall
performance with an average adjusted R2 value of 0.73. We also
Fig. 4. Histograms showing the ranked variable importa
calculated the adjusted R2 value for a single regression tree. As
expected, the single regression tree obtained the lowest predictive
performance with an adjusted R2 value of 0.58. Using the random
forest ensemble produced a 15% increase in predictive accuracy
when compared to single regression trees, a 4% increase in
accuracy when compared to bagging and a 5% increase in accuracy
when compared to boosting. To check the validity of the
comparisons between the regression tree ensembles, we also
calculated the RMSE using the hold out samples. The results show
that random forest also produced the lowest RMSE (Table 2).

3.3. Variable selection

We used random forest for variable selection since the
ensemble produced the best predictive accuracy. However, before
nce of the spectral parameters used in this study.



Fig. 5. Variable selection using the backward elimination search function. The

resulting RMSE for the OOB sample, 10 fold cross validation and the test dataset

(n = 20) are shown.
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we carried out the variable selection process, we examined the
importance of individual spectral parameters in the modeling
process. Fig. 4 shows the importance of individual spectral
parameters as determined by the random forest OOB sample.
The spectral parameters were ranked according to their impor-
tance during each of the runs (n = 1000) that was carried out during
the ensemble comparison phase of the study (Section 3.2). For
example, if the spectral parameter had the highest difference in
RMSE between the OOB predicted data and the permuted dataset,
it was ranked first for that particular run and if the spectral
parameter had the second highest difference in RMSE it was ranked
second and so on.

To determine if the spectral parameters used in this study were
statistically different in terms of their importance in the modeling
process, a rank based analysis was performed using Friedman’s
ANOVA by ranks. The overall test was significant (p < 0.001)
indicating that the spectral parameters were statistically different.
The average rank as calculated by Friedman’s ANOVA for the
spectral parameters were as follows: WI (2.04), Ratio975 (2.38),
NDVI (2.94), BD1200 (3.03), Ratio1200 (5.80), NDII (6.46), MSI (6.47),
BD975 (7.43) and NDWI (8.45). We subsequently used these
rankings to determine the sequence in which to eliminate variables
using the backward elimination search function.

Fig. 5 shows the results of the variable selection process. As the
spectral parameters were progressively eliminated by the back-
ward elimination search function, the RMSE generally decreased,
with the lowest RMSE obtained by using only two variables (WI
and Ratio975). The use of WI and Ratio975 produced the lowest
RMSE using the hold out test dataset (7.91), 10 fold CV (7.77) and
the OOB sample (7.85). We subsequently recalculated the adjusted
R2 value for random forest using WI and Ratio975 as input variables.
Results indicated that by using WI and Ratio975, an adjusted R2

value of 0.76 is obtained by the random forest ensemble.

4. Discussion

In recent years random forest has gained popularity as an
effective classification method in the remote sensing domain
(Chan and Paelinckx, 2008; Gislason et al., 2006; Ham et al., 2005;
Lawrence et al., 2006; Pal, 2005). Results from this study
additionally confirm that the random forest ensemble is a robust
and accurate method for regression type applications as well. In
terms of an adjusted R2 value, random forest produces the best
overall performance (R2 = 0.73) and the predictive accuracy of the
ensemble is statistically different from bagging and boosting.
However, there was no significant difference between bagging and
boosting. Similar results were obtained by Hamza and Larocque
(2005) when they carried out an empirical comparison of ensemble
methods using classification trees.

Besides obtaining the best overall predictive accuracy, using
random forest as a wrapper allowed us to simplify the modeling
process and identify the minimum number of spectral parameters
that offer the best predictive accuracy. Using the backward
elimination search function, we only used two spectral parameters
while still producing the best overall predictive accuracy
(R2 = 0.76). More specifically, results show that WI and the Ratio

975 indices have the best ability to assay the water content of S.

noctilio infested trees thus making it possible to remotely quantify
the severity of damage caused by the wasp.

The ability of WI and the Ratio 975 to quantify water content can
be explained by the significant variation in water content amongst
the healthy, green and red stages. Physiological research has shown
that tree mortality due to S. noctilio infestation is linked to the
combined effects of a toxic mucus and the fungus Amylostereum

areolatum that is injected into the tree by the female wasp during
oviposition (Slippers et al., 2003). The mucus changes the water
balance of the tree, thereby creating conditions that are ideal for the
growth and spread of the fungus. In turn, the fungus rots and dries
the wood, providing a suitable environment for the survival and
development of the insect larvae (Slippers et al., 2003).

Additionally Couts (1970) showed that water content of trees
decreased rapidly after only 2–3 weeks of infestation. Thus using
spectral indices like WI and the Ratio 975 which directly measure
spectral variance caused by varying plant water status makes it
possible to detect S. noctilio infestations from an early stage of
infestation when the canopy appears green rather than relying on
the appearance of reddish-brown foliage which occurs during the
later red stage of infestation.

5. Conclusions

The results from this study show that (i) there is a strong link
between existing spectral indices (WI and the Ratio 975) and the
water status of P. patula foliage thereby improving the chances of
remotely detecting S. noctilio at a landscape level; (ii) the random
forest ensemble provides the best overall predictive accuracy
when compared to the boosting and bagging ensembles and (iii)
using random forest as part of a wrapper allowed us to simplify the
modeling process and identify the minimum number of spectral
parameters that offer the best predictive accuracy. Ultimately, this
study provides the foundation for the potential upscaling of results
to either an airborne or spaceborne platform. This is especially
pertinent since it is envisaged that South Africa will soon launch
the ZASat-003 satellite that will carry a hyperspectral sensor thus
making high spectral resolution data more accessible and available
to remote sensing researchers in the country.
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