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Introduction

There are approximately 1.5 million ha of commercial forest

in South Africa (Zwolinski et al., 1998) with forest products

contributing 1.2% (approximately R14 billion) to the gross

domestic product (GDP) of the country (DWAF, 2004). The

industry depends almost exclusively on the planting of exotic

Pinus, Eucalyptus and Acacia species (van Staden et al.,
2004). However, emerging evidence suggests that new pests

and pathogens are appearing at an increasing rate and could

potentially impact on the future sustainability of the industry

(Wingfield et al., 2001). Sirex noctilio (Fabricius), which was

first detected in 1994 in the Western Cape (Tribe, 1995; Tribe

and Cillie, 2004), is currently causing considerable tree

mortality in commercial forest plantations in southern

KwaZulu-Natal. In an effort to minimise the potential threat of

S. noctilio to commercial pine production in the region, an

integrated management strategy combining detection and

monitoring methods, silvicultural treatments and biological

controls has been implemented on an industry-wide basis in

South Africa (Ismail et al., 2006). 

The primary control of established S. noctilio populations

is achieved by biological means using the nematode

Deladenus siricidicola (Bedding) and parasitic wasps such 

as Ibalia leucospoides (Hochenwarth) and Megarhyssa 

nortoni (Cresson), while silvicultural methods such as thin-

ning are carried out to improve tree vigour and thereby

keep damage within acceptable levels (Haugen et al., 1990;

Ismail et al., 2005). However, successful implementation of

the above control measures depends on our ability to

spatially quantify the severity and extent of infestation so

that forest managers can adopt the most appropriate

course of intervention before the stand reaches a point of

non-recovery. Additionally, geographic information systems

(GIS) and forest planning systems, which include harvest-

ing schedules, timber volume analysis and species growth

models, have been developed to help foresters manage

infected areas. These systems require accurate spatial

information on the severity and extent of S. noctilio
damage. Current methods used to spatially identify the

severity and extent of S. noctilio infestation includes broad-

scale visual aerial reconnaissance followed by field-based

exercises to verify the results. Although visual assessments

of infestation are widely used to measure forest health

(Haara and Nevalainen, 2002), the effectiveness of visual

assessments are questionable because they are qualitative,

subjective and dependent on the skill of the surveyor

(McConnell et al., 2000; Stone and Coops, 2004). 
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The Eurasian woodwasp, Sirex noctilio, causes considerable tree mortality in commercial pine plantations in southern

KwaZulu-Natal, South Africa. Broad-scale visual assessments of infestation provided by forest managers are currently used

to measure forest health and vitality. The effectiveness of visual assessments is questionable because they are qualitative,

subjective and dependent on the skill of the surveyor. Remote sensing technology provides a synoptic view of the canopy

and thus offers an alternative to the conventional methods of monitoring forest health and vitality. In this study, high resolu-

tion (0.5 X 0.5m) digital multispectral imagery (DMSI) was acquired over commercial Pinus patula trees of varying age

classes, which had been ground assessed and ranked on an individual tree crown basis using a severity scale. The severity

scale was based on a hierarchy of decline symptoms that are visibly apparent on the infested tree and are represented in

this study as the green, red and grey stages. A series of ratio- and linear-based vegetation indices were then calculated and

compared to the different crown condition classes as determined by severity scale. Of the vegetation indices derived from

the high-resolution DMSI, significant differences between the pre-visual (healthy and green stages) and visual (red and grey

stages) crown condition classes were obtained. Canonical variate analysis further revealed that greater discriminatory power

between the different crown condition classes is obtained when using the normalised difference vegetation index (NDVI).

Overall the study demonstrated the potential benefit of using high-resolution DMSI to discriminate between healthy trees and

trees that were in the visual stage of infestation.
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Internationally, the use of remote sensing technology to

detect, monitor and map forest health over large areas has

been a subject of great interest, resulting in the testing of a

variety of airborne remote-sensed data, such as high spatial

resolution digital multispectral imagery (DMSI) (Leckie et
al., 2005), hyperspectral scanners (Coops et al., 2003) and

video recorders (Yuan et al., 1991). The limited potential of

satellite-based methods is primarily due to the short time

available for detection and the different responses at

needle, branch and canopy scales (Radeloff et al., 1999). In

general, the monitoring and detection of forest damage

using remote sensing has been limited to three classes of

infestations (light, medium and heavy) with accuracies

ranging between 70% and 80% (Radeloff et al., 1999).

Similar accuracies were reported in Canadian case studies

that used remote sensing to survey the impacts of mountain

pine beetle (Wulder and Dymond, 2004). 

Compared to traditional methods, the commercial avail-

ability of DMSI in South Africa offers a potential source for

the effective collection of spatially accurate, consistent and

timely imagery regarding the impacts of S. noctilio at the

compartment level. High-resolution DMSI (pixel sizes less

than 1 X 1m) is capable of achieving higher mapping accu-

racies by identifying individual crowns. This is particularly

useful because pine plantations infested by S. noctilio have

a scattering of dead and dying trees (Haugen et al., 1990;

Haugen and Underdown, 1990) and there is a need to iden-

tify small clusters or individual trees remotely. Additionally,

the advantage of using airborne DMSI is the capacity to

mobilise quickly at opportunistic times and at user specified

locations (Wulder et al., 2004). This is an important benefit

for the monitoring of forest health and vitality because infec-

tion is often linked to other events, such as climate, distur-

bance, phenology of forest type and infecting agent (Stone

and Coops, 2004). As a result, the date for image acquisi-

tion is important in maximising the discriminating potential

of classification algorithms (Coops et al., 2003).

This study advocates the use of high spatial resolution

DMSI and vegetation indices (VI) to provide a quantitative

spatial framework for the detection and monitoring of Pinus
patula trees infected by S. noctilio. The reason for using

remotely sensed VI includes the removal of variability

caused by canopy geometry, soil background, sunview

angles and atmospheric conditions (Gilabert et al., 2002).

Additionally, a number of VI have been used successfully to

assess changes in the reflectance due to the declining

health status of the tree (Leckie et al., 2004; Stone and

Coops, 2004). For the purpose of this study we have

divided VI generally into two categories, i.e. ratio-based

indices and linear-based indices (for a complete review of

VI see Jackson and Huete, 1991; Thenkabail et al., 2002).

To the best of our knowledge, no research has examined

the use of remote sensing technology for the detection and

monitoring of Pinus patula trees infected by S. noctilio. We

examined if VI derived from high-resolution (0.5 X 0.5m)

DMSI could characterise stress induced by S. noctilio in P.
patula compartments. We then tested the relative strength

of various ratio- and linear-based vegetation indices in

discriminating the crown condition classes (healthy, green,

red and grey) associated with S. noctilio infestations. The

overall objective of this study is to test remotely sensed VI

that could assist in detection of S.noctilio infestations. Once

operational, these techniques could improve our ability to

map infested pine compartments more effectively. 

Materials and methods

Description of the study area
The study area is approximately 1 750ha and forms part of

the Sappi Pinewoods plantation, which is dominated by P.
patula compartments (Figure 1). The site is located approxi-

mately 30km west of the town of Pietermaritzburg,

KwaZulu-Natal, South Africa. The average altitude for the

site is 1 190m with an average air temperature of 16.1°C

(MacFarlane, 2004). The mean annual rainfall of the area is

916mm. The terrain consists of low mountains and undulat-

ing hills. The geology of the area is a mixture of mudstone,

sandstone, tillite, ampholite and basalt. Soils in the area are

mostly sandy-clay and sand-clay loams (MacFarlane,

2004). 

Description of the severity scale
Early evidence of S. noctilio attack (the green stage)

includes the appearance of resin droplets and the presence

of ovipositors on the bark with a dark fungal stain appearing

along the cambium (Neumann and Minko, 1981; Tribe and

Cillie, 2004). There is minimal needle loss and the canopy

appears green and healthy. The red stage occurs later

when the canopy of the attacked tree changes colour from

green to yellow to reddish brown (Ciesla, 2003). Ultimately,

during the grey stage, the tree canopy is completely defoli-

ated and round exit holes appear on the bark (Neumann

and Minko, 1981). A new generation of adult wasp emerges

resulting in a compartment with a scattered pattern of dead

or dying trees (Ciesla, 2003; Haugen et al., 1990; Haugen

and Underdown, 1990). During the grey stage of attack the

wood is totally desiccated (Haugen and Underdown, 1990),

the timber is not utilisable and economic losses are

incurred. Figure 2 provides a description of the severity

classes that were used in this study.

Data acquisition 
High-resolution (0.5 X 0.5m) DMSI was acquired on 9

September 2005 (10:00 GMT) by Land Resources

International (LRI) Inc, Pietermaritzburg, South Africa with

their LrEye aerial imaging system. The LrEye sensor is

composed of a series of four monochrome Sony cameras.

Each camera collects data for one of the spectral bands

shown in Table 1. The resulting four bands were registered

using Erdas Imagine (Leica Geosystems, 2004) to form an

image with four coregistered spectral bands that are refer-

enced to the Gauss conformal projection (central meridian:

31). 

Field data collection took place one week after the image

was acquired. A stratified random sampling technique

(Richards, 1993) was adopted for this study. The strata

were based on the age and occurrence of P. patula.

Compartments that were harvested, or that were recently

planted, were excluded from the sample. A 50 X 50m grid

was generated over the study area and ten grid cells were
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randomly selected from each predetermined age stratum

(i.e. less than seven years, from 8–9 years, 10–12 years

and older than 13 years). This age stratification was

adopted because it reflects current S. noctilio management

guidelines. At the centre point of each grid cell, a 10m circu-

lar plot was created. Tree crowns located within each plot

were manually identified on the LrEye imagery and subse-

quently located in the field using a Global Positioning

System (GPS). In total, 782 trees were assessed for S.
noctilio infections based on the severity scale that is shown

in Figure 2. This process was undertaken with the assis-

tance of Sappi foresters and technical staff who have a

detailed understanding of the identification and classifica-

tion of S. noctilio infestations. Additionally, P. patula trees

that were classified as red-stage infestations were sampled

destructively to evaluate the presence or absence of larvae. 

Evaluation of vegetation indices 
According to Coops et al. (2003), the method used to obtain

the spectral values of individual trees when using high-

resolution imagery is important because significant variation

in brightness exists depending on the pixel position within

the crown. In a study conducted by Leckie et al. (1992) to

account for effects of the variation on individual crown delin-

eation it was concluded that either the whole tree or the

sunlit tree sampling methods were the most suitable meth-

ods to derive consistent and representative spectral

response. In this study, the whole crown method was used

whereby each of the selected crowns was manually delin-

eated on the LrEye imagery and the crown spectral

response extracted for the ratio- and linear-based indices.

Ratio-based indices
It has been reported that plants under stress display a

decrease in canopy reflectance in the lower portion of the

near infrared, a reduced absorption in the chlorophyll active

band and subsequently a shift in the red edge (Carter and

Knapp, 2001). Ratio-based indices have been successfully

used to assess changes in the reflectance due to the declin-

ing health status of a tree (Ekstrand, 1994; Nelson, 1983;

Vogelmann, 1990) because they operate by contrasting the

intense chlorophyll pigment absorption in the red portion

against the high reflectance in the NIR portion of the electro-

magnetic spectrum (Elvidge and Chen, 1995). The most

widely used ratio-based indices such as the ratio vegetation

index (RVI) (Jordan, 1969), normalised difference vegetation

index (NDVI) (Rouse et al., 1973), difference vegetation

index (DVI) (Tucker, 1979) and green normalised difference

vegetation index (GNDVI) (Gitelson and Merzlyak, 1998)

respond to these differences in the near infrared and visible

regions (Lillesand et al., 2004). Table 2 shows the various

ratio-based indices that were used in the study.

Linear-based indices
The tasseled cap transformation (TCT) transforms the origi-

nal spectral bands of a sensor into linear-based indices

(Jackson, 1983). Several studies using remotely sensed

imagery (Collins and Woodcock, 1996; Healey et al., 2005;

Jin and Sader, 2005; Price and Jakubauskas, 1998;

Sharma and Murtha, 2001; Skakun et al., 2003) have

shown the value of using the linear indices when assessing

forest health and vitality. This is largely due to the fact that

colour changes (chlorosis) associated with damaged trees

is organised along the principal directions of the newly

created linear-based indices (Skakun et al., 2003).

The Gram-Schmidt orthogonalisation process was used

to derive the TCT coefficients for the linear-based indices

(Jackson, 1983). Initially, a soil line and the vector in the

brightness direction are determined; subsequently, from

the brightness vector all other vectors (greenness and

yellowness) are orthogonally calculated. Coefficients

(Table 3) are based on the grey level values of four land

cover types (wet soil, dry soil, green vegetation and

senesced vegetation) found on the imagery. Water was

used to represent wet soil values because pixels repre-

senting wet soils were not found in the imagery (Gong et
al., 2003). Dry soil values were collected from dirt roads

and healthy tree crowns represented green vegetation. Dry

grass values were used to represent senesced vegetation.

Yarbrough et al. (2005) and Jackson (1983) provide a

detailed mathematical description for calculating coeffi-

cients for n space indices using the Gram-Schmidt

orthogonalisation process. 

The resulting linear equations for brightness, greenness

and yellowness are as follows:
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Figure 1: Location of the study area
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Brightness (TCB) = 0.337663 (blue) + 0.586272 (green) +

0.638220 (red) + 0.367348 (NIR)

Greenness (TCG) = –0.227113 (blue) – 0.131965 (green)

–0.288569 (red) + 0.920724 (NIR)

Yellowness (TCY) = 0.097931 (blue) – 0.781721 (green) +

0.607311 (red) + 0.102451 (NIR)

Statistical analysis
Firstly, analysis was undertaken to compare the capacity of

ratio- and linear-based indices to discriminate between

each of the crown condition classes (Figure 2). This was

tested using an analysis of variance (ANOVA) with a

Tukey’s HSD post hoc analysis (Coops et al., 2003). 

Class Stage Crown condition Symptoms

1

2

3

4

Previsual

Previsual

Visual

Visual

Healthy

Green

Red

Grey

No signs of S. noctilio infestation

Green crown, presence of resin

droplets, cambium stain, oviposi-

tors found on the trunk and no

needle loss

Severe chlorosis, reddish brown

canopy and high needle loss

Emergence holes, no canopy,

most branches intact and 100%

needle loss

Figure 2: Description of the severity classes used for ground assessment of Sirex noctilio infestations

Band Colour Landsat TM Landsat TM LREye spectral LREye spatial 

spectral range (nm) spatial range (m) range (nm) range (m)

1 Blue (B) 450–520 30 450–480 0.5

2 Green (G) 520–600 30 550–580 0.5

3 Red (R) 630–690 30 650–680 0.5

4 Near Infrared (NIR) 760–900 30 850–900 0.5

Table 1: Spectral range of Landsat TM compared to the LrEye sensor
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Secondly, canonical variate analysis (CVA) was used to

determine which single VI best discriminated against the

crown condition classes. CVA is a multivariate statistical

technique that discriminates among prespecified groups of

sampling entities based on a suite of characteristics

(McGarigal et al., 2000). The technique involves deriving

linear combinations (i.e. canonical functions) of two or more

discriminating variables that will best discriminate among

the a priori defined groups (Mutanga, 2005). In this study,

VI are entered into the analysis based on their ability to

increase group separation (i.e. crown condition classes). This

reduces the number of indices to a subset that provides the

best discrimination among classes. The best linear combina-

tion of VI is achieved by the statistical decision rule of

maximising the among-group variance, relative to the within-

group variance (Mutanga, 2005). The first discriminant func-

tion provides the best separation among classes, while the

second function separates classes using information not

used in the first function and so forth. Additionally, the func-

tions will be independent or orthogonal, that is, their contribu-

tions to the discrimination between groups will not overlap

(Lawrence and Labus, 2003).

Finally, we used the leave-one-out cross-validation tech-

nique (n = 782) for estimating the error rate conditioned on

the training data (Mutanga, 2005). The advantage of using

the leave-one-out cross-validation technique is that all the

data is used for estimating error. Using this technique, each

observation is systematically removed, the canonical func-

tion re-estimated and the excluded observation classified

(Mutanga, 2005). A confusion matrix is then constructed to

compare the field (true) crown condition classes with the

class assigned by the VI to the sample dataset. It depicts

accuracies of the crown condition classes (producer’s and

user’s accuracies). Producer accuracies are calculated by

dividing the number of correctly classified trees in each

crown condition class by the number of training data used

for that class (i.e. column total in the confusion matrix).

User accuracies are computed by dividing the number of

correctly classified trees by the total number of trees that

were classified in that crown condition class (i.e. row total

in the confusion matrix). Additionally, a discrete multivari-

ate technique called kappa analysis that uses the k (KHAT)

statistic as a measure of agreement with the reference

data was calculated (Congalton and Green, 1999;

Skidmore, 1999). This statistic serves as an indicator of the

extent to which the percentage correct values of an error

matrix are due to ‘true’ agreement versus ‘chance’ agree-

ment (Lillesand et al., 2004). If the kappa coefficients are

one or close to one, there is perfect agreement between

the training and test data. 

Results

We tested the hypothesis that ratio- and linear-based

vegetation indices would discriminate among the various

crown condition classes by conducting a one-way ANOVA.

Of the vegetation indices calculated, significant differences

(p < 0.001) were obtained using NDVI, GNDVI, DVI, RVI,

TCG and TCB. A one-way ANOVA shows that there is a

significant difference between the vegetation indices and

the crown condition classes, but it does not show which

crown condition classes are different. We therefore

executed a Tukey’s HSD post hoc test in order to establish

differences between each of the crown condition classes

(healthy, green, red and grey). Results with their respective

level of significance are shown in Table 4.

Both the ratio- (NDVI, RVI, DVI and GNDVI) and linear-

based indices (TCB and TCG) are poor at discriminating

between classes 1 (healthy) and 2 (green stage). However,

the VI tested are capable of discriminating between the

previsual (classes 1 and 2) and visual (classes 3 and 4)

crown condition classes. The most significant degree of

separation occurs between class 1 and classes 3 and 4,

and between class 2 and classes 3 and 4. All indices are

capable of discriminating between these classes except

for TCB, which can only discriminate between class 1 and

class 4, and between class 2 and class 4. Based on the

results from ANOVA, it is difficult to determine which VI

has the best discriminatory power. Therefore, we carried

out a canonical variate analysis and included all indices

Vegetation index name Index Equation Reference

1 Normalised difference NDVI NDVI = (NIR – red)/(NIR + red) Rouse et al. (1973) Jackson (1983)

vegetation index

2 Ratio vegetation index RVI RVI = NIR/red Jordan (1969)

3 Difference vegetation index DVI DVI = NIR – red Tucker (1979)

4 Green normalised GNDVI GNDVI = (NIR – green)/ Gitelson and Merzlyak (1998)

difference vegetation index (NIR + green)

Table 2: Ratio-based vegetation indices used in this study

B G R NIR

Brightness (TCB) 0.337663 0.586272 0.638220 0.367348

Greenness (TCG) –0.227113 –0.131965 –0.288569 0.920724

Yellowness (TCY) 0.097931 –0.781721 0.607311 0.102451

Table 3: Gram-Schmidt coefficients
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(discriminatory variables) except for the TCB component.

Additionally, to improve the discriminatory power of the VI,

class 2 (green stage) was grouped with class 1 (healthy trees)

while the rest of the classes remained the same, i.e. class 3

(red stage) and class 4 (grey stage). 

Canonical variate analysis (CVA)
We tested the relative strength of various ratio- and linear-

based vegetation indices in detecting S. noctilio infestations

by carrying out a canonical variate analysis (CVA). Table 5

shows the eigenvalues as well as the factor structure matrix

from the canonical variate analysis using three crown

condition classes (i.e. healthy, red and grey stages). The

measure of information contained in the functions is repre-

sented by the eigenvalues corresponding to those func-

tions. The eigenvalues are interpreted as the ratio of vari-

ances along each function (Richards, 1993). The largest

portion of the explained variance (97.5%) is contained in

the first canonical function and the reminder is contained in

the second function (2.5%). 

The factor structure coefficients contained in the matrix

represent the correlations between the variables and the

canonical functions and are used to interpret the canonical

functions (McGarigal et al., 2000). Results indicate that the

highest factor structure coefficients are contained in the

NDVI (0.633) and the GNDVI (0.629). The second canoni-

cal function also shows that one of the largest contributions

is contained in the GNDVI (0.605) and to a lesser extent

NDVI (0.369); however, the magnitude for the second

canonical function is much smaller that that of the first

canonical function. The classification accuracy based on

the highest factor structure (NDVI) is shown in Table 6.

Discussion

High-resolution DMSI provides a useful and robust tool to

improve our ability to detect and monitor P. patula trees

infected by S. noctilio. Ratio- (NDVI, RVI, DVI and GNDVI)

and linear-based vegetation indices (TCG) derived from

high-resolution DMSI are able to significantly (p < 0.001)

discriminate between the previsual (healthy and green) and

the visual stages of infestations (red and grey). Canonical

variate analysis further reveals that greater discriminatory

power between the different crown condition classes (Figure

2) is obtained when using NDVI as compared to the other

vegetation indices derived from high-resolution DMSI.

Accuracy assessments (Table 6) show that NDVI derived

from high-resolution DMSI is successful in locating and

predicting the condition of tree crowns on the imagery when

crown condition classes are reduced to a three classification

system, in which case producer accuracies range from 84%

(red stage) to 69% (grey stage). The results obtained from

this study are comparable to previous international studies on

NDVI 1 2 3 4 TCG 1 2 3 4

1 .. ** * * 1 .. ** * *

2 ** .. * * 2 ** .. * *

3 * * .. * 3 * * .. *

4 * * * .. 4 * * * ..

GNDVI 1 2 3 4 TCB 1 2 3 4

1 .. ** * * 1 .. ** ** *

2 ** .. * * 2 ** .. ** *

3 * * .. * 3 ** ** .. **

4 * * * .. 4 * * ** ..

DVI 1 2 3 4 NIR 1 2 3 4

1 .. ** * * 1 .. ** * *

2 ** .. * * 2 ** .. * *

3 * * .. * 3 * * .. *

4 * * * .. 4 * * * ..

* Not significant; ** p < 0.001

Table 4: Analysis of variance results with a Tukey’s HSD post-hoc test. Class: 1 = healthy, 2 = green, 3 = red and 4 = grey

Function 1 Function 2

NDVI 0.633 0.369

GNDVI 0.629 0.605

DVI 0.559 0.550

TCG 0.500 0.669

NIRR 0.484 0.463

Eigenvalue 0.961 0.025

% Variance 97.5 2.5

Table 5: Factor structure matrix representing the correlation between

variables and canonical functions (three classes)

Class 1 2 3 UA

1 695 2 2 99.43

2 8 26 3 70.27

3 2 3 11 68.75

PA 98.58 83.87 68.75

KHAT 0.79

Table 6: Confusion matrix showing the NDVI predicted accuracy of

Sirex noctilio infestations using a three-level classification system:

class 1 (healthy), class 2 (red) and class 3 (grey)
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declining forest health (Vogelmann, 1990; Leckie et al., 2004;

Wulder et al., 2004; Leckie et al., 2005) and emphasise the

importance of the visible and NIR bands when studying the

effects of declining forest health, especially when infestation

results in foliar discoloration (red stage).

Detecting and monitoring the red stage of infestation is

regarded as a priority among forest managers because it

gives an accurate indication of the severity and extent that

is taking place that year (i.e. current infestation) (Leckie et
al., 2005). Additionally, using high-resolution DMSI to map

out the red stage of infestation provides us with a spatial

framework that allows for the repetitive and cost-effective

monitoring over large areas. This improves our ability to

quantify the severity and extent of S. noctilio infestations

thereby allowing forest managers to design the most appro-

priate intervention measures. For example, moderate red-

stage S. noctilio infestations (<10%) would require the inoc-

ulation of infested trees with nematodes, whereas heavy

infestations (between 10 and 50%) would require sanitisa-

tion and salvage operations to be implemented (Haugen et
al., 1990; Haugen and Underdown, 1990). Figure 3 shows

the process flow when using high-resolution DMSI to quan-

tify red-stage S. noctilio infestation spatially.

The difficulty in discriminating the green stage of infesta-

tion is consistent with other studies that have attempted to

classify light to moderate symptoms using high-resolution

remotely sensed imagery (Leckie et al., 2004; Leckie et al.,
2005). The success of discriminating green-stage infesta-

tion  is dependent on the detection of subtle changes in the

spectral reflectance of the tree (Ekstrand, 1994). Slight

changes in the spectral reflectance of stressed vegetation,

when measured by various broad-band sensors, are often

masked by the high degree of variation in reflectance

caused by factors such as varying view geometry, illumina-

tion and canopy density (Runesson, 1991). Additionally, in

commercial forestry this is further impacted by silvicultural

operations. Given these limitations, hyperspectral remote

sensing offers possibilities to investigate the early stages of

infestations based on narrow bands using the entire electro-

magnetic spectrum. These narrow bands allow for the

detection of detailed features that would otherwise have

been masked (Schmidt and Skidmore, 2001). This study is

part of an ongoing research project and a future objective

includes the use of high spectral resolution data to differen-

tiate between the healthy and green stages.

Previous  studies (Collins and Woodcock, 1996; Skakun

et al., 2003) found changes in the tasseled cap wetness

component (TCW) to be a good indicator of conifer mortality

and the most consistent indicator of forest change due to

the inclusion of the short-wave infrared (SWIR) band. In this

study the calculations of the tasseled coefficients were

limited to four spectral bands found in the visible and NIR

parts of the spectrum (400–900nm) and therefore only

included the TCB, TCG and TCY and not the TCW.

Additionally, spectrometer research conducted by Leckie et
al., (1988) regarding discoloration caused by the spruce

budworm indicated that the SWIR regions are better than

the visible and NIR for discrimination. Similarly, initial attack

by S. noctilio changes the water balance of the attacked

tree (Neumann and Minko, 1981; Slippers et al., 2003), so

A B C

Legend Legend Legend

False colour composite (NIR, R, G)
RGB

NDVI

Value

Red: Band_1

Green: Band_2

Blue: Band_3

High: 253

Low: 4

Healthy

Unhealthy

Figure 3: Process flow showing the operational use of remote sensing technology for the detection and monitoring of Sirex noctilio red-

stage infestations. A, 4 band, high-resolution (50cm) DMSI; B, calculated NDVI image; and C, map of Sirex noctilio infestations based on

reclassified NDVI values
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using a sensor that captures SWIR wavelength has the

potential to improve overall classification accuracy as well

as discrimination between crown condition classes.

Conclusions

This study has shown that NDVI calculated from high

spatial resolution DMSI has the potential to detect and

monitor canopy damage caused by S. noctilio. Although it

was difficult to discriminate between the healthy and green

stages of infestation, classif ication accuracies are

improved when using a three-class crown condition index

that differentiates between the healthy, red and grey

stages of infestation. Overall the study demonstrated the

potential benefit of using high-resolution DMSI to discrimi-

nate between healthy trees and trees that were in the

visual stage of infestation. More importantly, this has led

to the development of a spatial monitoring framework that

is capable of augmenting traditional detection and moni-

toring methods.
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