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a b s t r a c t

Sensitivity analysis is a critical step in mathematical modelling of ecological processes and

it provides an idea of the response of the model dynamics to a variation in the values of some

parameters. In analytic models, there are standard mathematical techniques for carrying

out sensitivity analyses, but this is not so with simulation models, mainly due to the fact

that their behaviour usually depends upon the interaction among different parameters, and

so sensitivity analysis has to be carried out for all combinations of all parameters of interest.

In this study, we explored the use of artificial neural networks (ANN) for sensitivity analysis

of simulation models, as applied to simulations models of two-species pest populations:

the parasitoid–host system Nezara viridula–Trichopoda giacomellii, N. viridula being a pest of

soybean and the Sirex noctilio–Pinus radiata system, S. noctilio being a pest of pine plantations.

We compare the ANN sensitivity analysis results with the ones of the Classification Trees

(CT), Sobol and the stepwise multiple regression with standardized partial regression coef-

ficients (SMR). The sensitivity analyses were carried out evaluating the simulations models’

parameters effect on the stability behaviour of the simulation models. The ANN sensitivity

analysis produced the same (or superior) results as the other two techniques (CT, Sobol and

SMR), but showed additional advantages similar to those offered by sensitivity analyses of

analytic models: partial derivatives were calculated to determine the contribution of each
parameter of the simulation models to their stability behaviour. We conclude that ANN

is adequate for simulation modelling sensitivity analysis with the additional advantage of

evaluating the contribution of model parameters to the model’s behaviour. Although, we

used only two-species pest systems as an example, this approach may be applied in wide

men

ified (no programming errors), subjected to parameterization
areas of pest manage

. Introduction
ensitivity analysis is one of the several critical steps in
athematical modelling of ecological processes. In the case

f computer simulation models, once a model has been
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data, with a data set different from the one used for parameter-
ization), then one of the most frequent and useful additional
steps to carry out is a sensitivity analysis.

The purpose of sensitivity analysis is to provide an idea of
the response of the model dynamics to a variation in the val-
ues of some parameters. One or more outcomes of the model
are selected (usually state variables or some statistical indi-
cators) and their behaviour is evaluated for a plausible range
of parameter values (McCallum, 2000). This analysis is usu-
ally carried out with respect to the main parameters (those
suspect of having a strong effect due to conceptual or math-
ematical relationships with the behaviour of the model) or in
relation to those parameters that, for some reason (cost or
time constrains, interference with the behaviour of the eco-
logical system or serious alteration and even destruction of
the ecological system), could not be estimated in the field or
in the laboratory.

When the ecological system has been represented by an
analytic model, there are mathematical techniques that pro-
vide with adequate methods for carrying out the sensitivity
analysis and the interpretation of its results. For example,
if we have a simple linear model of the form Ŷi = â1Xi1 +
â2Xi2 + . . . + âmXim, where Xij are the j independent variables
for the i observations, âi are the estimated parameters and Ŷi

is the model’s predicted values, thenJij = ∂Ŷi/∂aj, where J = Jij
is called the Jacobian matrix, represents the sensitivity of the
model’s prediction to the parameter estimates (Hilborn and
Walters, 1992). To calculate J, we have to be able to differenti-
ate the model, which is not always possible, particularly when
the model is a non-linear differential or difference equation,
which sometimes requires some implicit differentiation of the
equations (Kot, 2001).

Matters are not always simpler with simulation models.
Due to the fact that the behaviour of a simulation model
may vary with each parameter of interest and that there may
be some degree (sometimes a very strong one) of interaction
among the parameters, sensitivity analysis has to be carried
out for all combinations of all parameters of interest. Even
with the present-day calculation power of most computers
this may demand a computer power not always available. If a
model has 10 parameters, and we perform a sensitivity anal-
ysis assigning only 5 values to each parameter, the number of
times the model will have to be run is 510; even with a fast
computer, that may execute the complete simulation model
in 1 s, this would take 113 days (0.3 years) of computations on
a 24-h a day basis. In these type of cases, simulation mod-
els suffer from what Bellman (1957) called (in the context of
dynamic programming) the “curse of dimensionality”.

In addition to the computer power problems, the results
become difficult to analyze due to the mere size of the output,
even if special programming techniques may help in screening
and filtering the output for only particular or desirable types
of results. There are some statistical tools available to analyze
this kind of output (multiple regression, analysis of vari-
ance, principal components and Classification Trees, among
others), that help making some sense from the appalling

size of the sensitivity analysis results. However, few of these
tools provide specific information of the type and degree of
effect that each parameter produces on some selected model
behaviour.
2 0 4 ( 2 0 0 7 ) 427–438

Artificial neural networks (ANNs) have been used as a
tool in ecological modelling (for an introduction see Lek and
Guégan, 1999). A multilayer perceptron (MLP) with a backprop-
agation learning algorithm, which is a supervised ANN, has
been implemented in various applications (Lek and Guégan,
2000): patterning complex relationships (Lek et al., 1996; Tuma
et al., 1996), predicting population and community develop-
ment (Recknagel et al., 1997; Chon et al., 2000) and modelling
habitat suitability (Paruelo and Tomasel, 1997; Özesmi and
Özesmi, 1999). The explanatory power of the MLP has been
criticized due to its black-box model approach, but now sen-
sitivity analysis methods have been developed to identify the
most influent variables in MLP models (Lek et al., 1996; Scardi
and Harding, 1999; Dimopoulos et al., 1999). Although, the
apparent complexity of ANNs was originally believed to limit
our ability to gain explanatory insight into the prediction pro-
cess, recent advancements (Olden and Jackson, 2002; Gevrey
et al., 2003) have illustrated that this indeed is not the case
and researchers now have the ability to identify individual and
interacting contributions of the predictor variables in ANNs
(Olden et al., 2004).

In this work, we apply for the first time the ANN method-
ology to the sensitivity analysis of simulation models of
ecological population dynamic processes. We used two insect
population simulation models and tested three sensitiv-
ity analysis tools and evaluated possible ANN comparative
advantages.

2. Methods

We used two simulation models: (a) the population regu-
lation of Nezara viridula (Hemiptera: Pentatomidae) by its
parasitoid Trichopoda giacomellii (Diptera: Tachinidae), from
now on referred to as the Nv–Tg model and (b) the popula-
tion dynamics of a pest species (Sirex noctilio) (Hymenoptera:
Siricidae) that affects pine plantations (mainly of Pinus radi-
ata), from now on referred to as the Sn–Pr model. The former
was programmed in FORTRAN77 and the latter in C language.
The biological and ecological description of the Nv–Tg sys-
tem is given in full details in Liljesthröm and Rabinovich
(2004), and biological details about the wood wasp can be
found in Ipinza and Molina (1991). After simulation of each
model with different combinations of parameter values,
model behaviours according to changes of parameters were
patterned and predicted with model parameters using SOM
and MLP, respectively. Sensitivity analyses of MLP models were
carried out with partial derivatives algorithm. ANN algorithms
were implemented in Matlab (The MathWorks 2001). Over-
all modelling procedure is given in Fig. 1. Below we provide
a summary of each population dynamics simulation model
and the ANN methodology as it was applied for sensitivity
analysis.

2.1. The N. viridula–T. giacomellii (Nv–Tg) model
The simulation model is based on two Leslie matrices, one
for the host and one for the parasite, with a time unit of
1 week, and populations expressed as individuals/m2. Some
model parameters were estimated in the laboratory and in
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Fig. 1 – Modelling procedure with dynamic models and
artificial neural networks. Parameters of each model were
used as input variables in MLP models to predict model
behaviours. Parameters and model behaviours are given in
Tables 1 and 2 for Nv–Tg model and Sn–Pr model,
respectively. Modelling procedures for two different
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odels, Nv–Tg model and Sn–Pr model, were carried out
ndependently.

he field, while other parameters were estimated by param-
terization to 15 generations of field data of the host and the
arasite. The stability analysis of the model showed four types

f behaviour (Liljesthröm and Rabinovich, 2004): two unstable
nd two stable dynamics (the latter were typical limit cycles,
lthough frequently with more than one peak per cycle). These
our stability types of simulation model behaviour were used

Table 1 – Description and values of the Nv–Tg simulation mode
sensitivity analysis (independent or predictor variables) and th
response indicators

Parameters/output behaviour Descri

Parameters (predictive variables)
Parameter S1 Host survival in the first w
Parameter S1 Host survival in the secon

life
Parameter k Degree of aggregation of t

attacks (as a negative bin
Mechanism CAS (castration index) Cease of reproduction of
Mechanism SEL (selectivity index) Differential selectivity for

hosts by the parasitoid
Model behaviour (output variables)

Unstable dynamics type 1 (Kodest-1) Parasitoid and host growi

Unstable dynamics type 2 (Kodest-2) Extinction of the parasito
population growth

Stable dynamics type 1 (Kodest-3) Stable cycles, both specie
much higher than any ob

Stable dynamics type 2 (Kodest-4) Stable cycles, both specie
agreement with all observ
4 ( 2 0 0 7 ) 427–438 429

as a response indicator for sensitivity analysis of the Nv–Tg
model.

Three parameters and two population regulation mecha-
nisms were considered to have major influences on stability,
and varied with a wide range. The three parameters were:
(i) the aggregated distribution of attacks, as described by the
parameter k of the negative binomial distribution, (ii) the host
survival in the first week of parasitized life (S1), which is also
an indication of parasitoid larval survival, because larvae can-
not complete their development in a week or less and (iii) the
host survival in the second week of parasitized life (S2), which
also measures the proportion of parasitoid larvae developing
in more than 2 weeks. The two population regulation mech-
anisms were: (i) the castration effect (cease of reproduction
of the parasitized hosts) and (ii) the differential selectivity
for hosts by the parasitoid. These two population regulation
mechanisms were implemented as on–off variables: 0 = absent
and 1 = present. A description of the model’s state (response)
indicators used for sensitivity analysis as a function of differ-
ent parameter/mechanism values are given in Table 1.

The degree of influence of different parameters and mech-
anisms on the behaviour of the model’s state (response)
indicators was evaluated by means of the Classification Trees
method (Breiman et al., 1984), a multivariate technique sim-
ilar to discriminant analysis but of a hierarchical nature and
that is applied in a recursive way, and that has the advan-
tage of combining a variety of types of predictor variables
(categorical predictors, continuous predictors or any mix of
them). For some type of ecological data, this method has
proved to be as equally effective as a mixed effect analysis
of variance (but far simpler) and more effective than lin-
ear regression (De’ath and Fabricius, 2000). As in the Nv–Tg
model, stability behaviour was dependent of a mix of cate-

gorical (CAS and SEL) and continuous predictors (k, S1 and S2).
The Classification Trees method was selected to determine the
importance of various parameters on the stability behaviour of
the Nv–Tg model. The software Statistica (Verssion 5.5A) was

l parameters and regulation mechanisms used for
e stability behaviour types used as the simulation model’s

ption Range (min–max) (step)

eek of parasitized life 0.1–1 (0.1)
d week of parasitized 0.1–1 (0.1)

he distribution of
omial distribution)

0.05, 0.1 and 0.2, and 0.5–2.3 (0.3)

the parasitized hosts 0–1 (1)
sex and/or stage of 0–1 (1)

ng without bound Output variables (model’s output
behaviour)

id and unbounded host

s reaching densities
served field value
s at densities in
ed field values
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employed (StatSoft, 1999). The Classification Trees analysis
was applied using equal prior probabilities and equal misclas-
sification costs; to test predictive accuracy 10 random samples
for cross-validation from the learning sample were used, and
applied them to predict class membership in the test sam-
ple. As stopping rule to control stopping tree splitting we used
the rule called “pruning on misclassification errors”, which
was applied with a minimum n of five. As in this application
univariate splits were performed, the predictor variables (CAS,
SEL, k, S1 and S2) can be ranked on a 0–100 scale in terms of
their potential importance in accounting for responses on the
dependent variable (details on how these rankings are calcu-
lated can be found in Breiman et al., 1984, pp. 146–150).

2.2. The S. noctilio–P. radiata (Sn–Pr) model

A spatially explicit individual-based simulation model of the
wood wasp S. noctilio was developed (J. Aparicio, J. Corley
and J. Rabinovich, personal communication, 2003) to explore
whether outbreak densities may be reached without resorting
to physical environmental factors. In this simulation model,
the wasp population develops in a pine tree plantation, and
each tree belongs to one of four categories: (i) healthy and
unsuitable for oviposition, (ii) suitable for oviposition but not
stressed, (iii) suitable for oviposition and stressed and (iv)
dead. Tree growth or removal was not considered in the model.
A squared area plantation was assumed, composed of P × P
trees. Trees within a radius R of another tree is a short way
for referring to all the (2R + 1)2 first neighbours of that tree
(R-neighbourhood).

Wasps are assumed to have a constant 1:1 male–female
ratio. Only females were modelled, and it was assumed that
all females are fertilized and capable of laying eggs. Each wasp
visits � trees during her life. The following is a brief description
of how the visiting process was modelled. Because stressed
trees are chemically “labelled”, they are detected with high
probability. It was assumed that stressed trees within a radius
Rs are detected with probability Ps. In such a case, the sim-
ulated wasps are moved to the position of the stressed tree
where they lay Ne eggs. When more than one stressed tree is
present in the neighbourhood, the wasp selects one at ran-
dom. If there are no stressed trees in the neighbourhood the
wasp selects between a long distance dispersal, moving to a
tree chosen at random and a local dispersal, moving to a tree
chosen at random in the R-neighbourhood.

The number of eggs laid by wasp i is a random number
extracted from a Poisson distribution with mean Hi, which
depends upon the tree’s category (e.g., in the case of unsuit-
able trees, eggs are laid with a (low) probability Pe3). About 60%
of the eggs laid during a season emerge in following seasons
while the rest emerge 1 year later. At the end of a given season,
the simulated adult wasp population is set to zero. Inside trees
the egg and larval mortality is assumed to be instantaneous
and occurring at the end of the season in which egg laying
took place. Egg and larval survival was set as a function of
tree category. Wasps’ attacks induce changes in tree category:

unsuitable trees which in a given season receive more than
Nth3 eggs become suitable for the next season; suitable trees
receiving more than Nth2 eggs become stressed; and stressed
trees receiving more than Nth1 eggs become dead.
2 0 4 ( 2 0 0 7 ) 427–438

The simulation model was executed with P = 100 (about
9 ha), for 200 years on a daily basis, and started with a ran-
domly distributed small percentage (PST0 ) of suitable trees
(stressed) in a plantation of unsuitable (healthy) trees. A
certain number of pioneer female wasps (S0) was also ran-
domly distributed in the plantation. Female replacement rate
is greater than one only when the wasps find suitable trees for
oviposition. Because it is assumed that suitable trees repre-
sent a scarce resource, population replacement rate is around
one. In some cases, the wasp population goes to extinction;
in other cases, the wasps attack some stressed trees that
then become suitable for oviposition by neighbouring wasps
with high probability, and a population outbreak takes place.
Because of resource limitation ultimately the wasp population
always results extinct.

The simulation model was executed 1000 times, and cases
in which the wasp population went to extinction, with or
without outbreaks, were registered. The following statistics
were computed: (i) frequency of extinctions (Fext), calculated
as the number of runs that went extinct, with or without
outbreaks, over the total number of runs, (ii) time to extinc-
tion, calculated as the average time from wasp introduction
until population extinction in each run, with (Text-wo) out-
break, (iii) the same without (Text-no) outbreak, (iv) time to
outbreak (Tout), calculated, for the runs that resulted in out-
breaks, as the time from wasp introduction to the appearance
of the first stressed tree and (v) value of outbreak (Vout), calcu-
lated as the average number of wasps at the peak time of the
outbreak. These five statistics were used as output variables
for sensitivity analysis as a function of different parameter.
Their description and the parameter values used are given
in Table 2. In addition, when calculating the averages of the
time to extinction and the time to outbreak, their respective
standard deviations (SText-wo, SText-wo and STout) were also
calculated.

Sensitivity analysis of the Sn–Pr dynamic simulation model
results were analyzed with two procedures: a linear step-
wise multiple regression technique and the Sobol method.
A FORTRAN program was prepared that, in addition to the
stepwise multiple regression procedure, it also calculated
the standardized partial regression coefficients (regression
coefficients expressed in standard deviation units). These
standardized regression coefficients allow a straightforward
arithmetic comparison of the relative importance of each
independent variable in relation to the dependent variables.
That is, if the standardized partial regression coefficient of one
parameter is twice the value of the standardized partial regres-
sion coefficient of another parameter, the former is twice more
important (“useful”) to predict the dependent variables than
the latter. For brevity, we will refer to this method as the “step-
wise” method.

For the Sobol method, we used the winding stairs sampling
technique on the parameter space to reduce the number of
simulations (Chan et al., 2000). The Sobol method for sen-
sitivity analysis (Saltelli et al., 1999), measures the model’s
sensitivity to the parameters by partitioning the total variance

of the output variable Y in main effects and interaction effects
among parameters. We calculated the first-order sensitivity
index for the ith parameter (Si), which measures the effect of
parameter xi on the output variable Y and the total sensitivity
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Table 2 – Description and parameter values of the Sn–Pr population dynamics simulation model (predictor variables) and
description the model’s output behaviour (statistics of state (dependent) variables) used for sensitivity analysis

Parameters/output behaviour Description Parameter change for
stepwise: min–max

(step)

Parameter change for
the Sobol method

(mean)

Parameters (predictive variables)
PropA2 Proportion of type 2 trees

(suitable for oviposition but not
stressed)

0.01–0.05 (0.01) 0.025

P LDF Probability of long distance flight 0.1–0.5 (0.1) 0.25
R Radius of dispersal 1–5 (1) 3.0
� Number of trees visited by a

wasp during her lifetime
8–12 (1) 10

MAX NE Maximum number of eggs that a
tree can receive

400–500 (100) 450

Egg load Maximum egg number per
female

80–120 (40) 100

Model stability behaviour (output variables)
Fext Frequency of extinction Output variables (model’s

output behaviour)
Text-wo, SText-wo Average time to extinction with

outbreaks, and standard
deviation

Text-no, SText-no Average time to extinction
without outbreaks, and standard
deviation

Tout, STout Average time to outbreak, and
standard deviation

Vout Average number of wasps at the
peak time of the outbreak
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The value of the last column represents the mean of a normal distrib
variation around the corresponding mean, and then used in a combi

ndex (STi), which takes into account the interactions between
he ith parameter and the rest of the parameters. The total
ensitivity index can be thought of as the expected fraction
f variance that would be left if only the parameter xi were to
tay undetermined.

.3. The artificial neural network (ANN) methodology

multilayer perceptron (MLP) with a backpropagation algo-
ithm was used as a non-linear predictor (Haykin, 1994) of
opulation dynamics patterns. MLP is a supervised interac-
ive learning algorithm designed to minimize the mean square
rror between the computed output of the network and the
esired output; for a detailed description of the learning rules
f MLP see Rumelhart et al. (1986), Kung (1993) and Lek and
uégan (2000). The network usually consists of three layers:
n input layer, one or more hidden layers and an output layer.
ach layer is composed of neurons, which are the compu-
ational units of MLP. It requires input vectors in the input
ayer, as well as target (or desired) values in the output layer
orresponding to each input vector. The input layer contains
eurons for the independent variables. We used five input
eurons for the Nv–Tg system and four for the Sn–Pr system,

.e., one input neuron for each parameter. The output layer

as composed by the neurons responsible for the production
f the output variables to be predicted (i.e., four types of model
ynamics for Nv–Tg model and five types of model behaviour
or Sn–Pr model) (Tables 1 and 2). In this network, signals are
, and the random value was generated assuming a 25% coefficient of
n order determined by the winding stairs procedure.

propagated from the input layer through the hidden layers
to the output layer via the network connections. During the
training phase, a comparison is made between the output
values calculated by MLP and the expected values (the ones
generated by the population simulation models), and the con-
nection weights are modified in order to minimize the error
of the response (difference between expected and calculated
output values).

We used a hold-out cross-validation procedure to deter-
mine the performance of the MLP method: one half of the
dataset was used for training the MLP model, one fourth of the
dataset for validation and the last one fourth for testing. The
dataset consisted of 4000 cases for Nv–Tg model using step-
wise, and for the Sn–Pr model the dataset consisted of 15,625
cases using stepwise and 2400 cases using Sobol. The parame-
ter values used in each combination are given in Tables 1 and 2.

The performance of the MLP models was evaluated using
Cohen’s Kappa statistics (Cohen, 1960) for Nv–Tg model (i.e.,
binary outputs) and the correlation coefficients between
expected values generated by the population dynamics mod-
els and the calculated values of the MLP model for Sn–Pr model
(i.e., continuous outputs).

2.4. Sensitivity analysis with MLP
After the learning process of the MLP models, sensitivity anal-
ysis was carried out to evaluate the contribution of each input
variable (parameters of the population dynamic models) to the
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Table 3 – Comparison of the sensitivity analysis of the Nv–Tg population model by the Classification Trees and the ANN
(MLP) methods

Predictor variable Classification Trees ANN (MLP)

Kodest-1a Kodest-2 Kodest-3 Kodest-4 Average (S.E.)

CAS 45 0.12 0.16 0.25 1.02 0.39 (0.21)
SEL 49 0.12 0.17 0.20 2.04 0.63 (0.47)
S1 41 1.92 6.32 8.06 51.12 16.86 (11.50)
S1 49 0.25 0.48 1.37 0.82 0.73 (0.24)
k 100 97.59 92.87 90.12 44.99 81.39 (12.23)

In both cases, the same matrix of N = 4000 cases was used, the predicted variables being the four population stability patterns (Kodest-1 to
Kodest-4) of the Nv–Tg population model (Table 1). In the Classification Trees method, the ranking of relative importance of each population
model’s parameter is from 0 (minimum importance) to 100 (maximum importance). In the ANN method, the values show the contribution (%)

terns
of the predictor variables in determining the population stability pat
a Types of model behaviour defined in Table 1.

output values of MLP. There are several ways to perform sensi-
tivity analysis with MLP (Zurada et al., 1994; Dimopoulos et al.,
1999). Gevrey et al. (2003) compared performances of several
different methods to evaluate the relative contribution and/or
the contribution profile of the input factors in MLP models.
The algorithms compared were the ‘partial derivatives’ (PaD)
method (Dimopoulos et al., 1995, 1999), the ‘weights’ method
(Garson, 1991; Goh, 1995), the ‘perturbation’ method (Scardi
and Harding, 1999), the ‘profile’ method (Lek et al., 1995, 1996)
and the ‘classical stepwise’ regression method (Sung, 1998).
Gevrey et al. (2003) showed that the PaD method was the most
useful (followed by the profile method) to identify the degree
of contribution of the input variables, and Olden et al. (2004)
also showed that the PaD performed well, although it was only
consistent in identifying the two most important variables in
the network. We decided to use the PaD method because it is
more coherent from a computational point of view.

The PaD method presents the output of the MLP models
with respect to the input to obtain the profile of the varia-
tions of the output for small changes of one input variable
(Dimopoulos et al., 1995, 1999; Gevrey et al., 2003). The formula
for the partial derivatives (dji) is:

dji = Sj

nh∑

h=1

whoIhj(1 − Ihj)wih (1)

where Sj is the derivative of the output neuron with respect to
its input, Ihj the response of the hth hidden neuron, who and
wih are the weights between the output neuron and hth hidden
neuron, and between the ith input neuron and the hth hidden
neuron, respectively.

If the partial derivative is negative then, for each parame-
ter being analyzed, the output variable will tend to decrease as
the input parameter increases. Inversely, if the partial deriva-
tive is positive, the output variable will tend to increase as
the input parameter increases. The relative contribution of
input descriptors to the MLP output can be estimated as the
sum of the squared partial derivatives (SSD) obtained for each
input variable. The SSD values allow the classification of the

variables according to their contribution to the output vari-
able in the model, the input variable with the highest SSD
value being the variable which most influences the output
variable. The details of the MLP sensitivity analysis as applied
and their average contribution (%) (standard error in parenthesis).

to ecological modelling can be obtained from Gevrey et al.
(2003).

3. Results

3.1. The N. viridula–T. giacomellii (Nv–Tg) model

3.1.1. Prediction of population stability patterns
The Classification Trees analysis showed that, with an
input–output matrix of 4000 cases, 207 cases were misclas-
sified (5.2%), the worst misclassification occurring when 74
cases of stability Type 4 were classified as stability Type 3.
The highest relative importance ranking in determining the
model’s stability behaviour corresponds to k, with an impor-
tance about twice the others (Table 3).

MLP applied to the Nv–Tg dynamic model showed high pre-
dictability of the population stability patterns with 95% or
higher of correct predictions (Table 4). Cohen’s Kappa showed
very high values (range 0.86–0.94), indicating very high agree-
ment between model dynamics types predicted by the MLP
model and the corresponding expected types generated by
the population dynamics models. The frequency histogram of
error values showed that most error values lie around zero.

3.1.2. Influence of parameters
The negative binomial parameter k is the most important
factor in determining the patterns of population dynamics sta-
bility behaviour (Kodest-1 to Kodest-4; see Table 1 for stability
types). The contribution of k to behaviour Kodest-4 is relatively
lower than to other behaviours, whereas S1 is the highest con-
tribution parameter to Kodest-4. Parameter S1 also provides
a relatively low contribution, and the rest of the parameters
show a very low contribution.

As the parameter k showed the highest contribution to
the model’s stability behaviour, it was of interest to evaluate
the response behaviour of the system in response to changes
of k value (Fig. 2). Parameter k affects Kodest-1 and Kotest-3
negatively but the effect is positive on Kodest-2 and Kodest-4.
Koest-2 and Kotest-3 showed an inverse response to the

changes of k values. It should be noted that the scales are
very different for each stability behaviour, and they indicate
the level of contribution of parameter k to each stability
behaviour type.
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Table 4 – Predictability of the population stability patterns (Kodest-1 to Kodest-4) of the Nv–Tg simulation model by the
MLP procedure using the model’s parameters as predictors

Predicted stability type Number of cases % Correct answers Cohen’s Kappa

Predicted correctly Predicted incorrectly Total cases (N)

Kodest-1 153 14 167 91.62 0.9408
Kodest-2 111 14 125 88.80 0.889
Kodest-3 217 33 250 86.80 0.861
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Kodest-4 448 10

Total 929 71

.2. The S. noctilio–P. radiata (Sn–Pr) model

.2.1. Prediction of population dynamics patterns
he results of the outbreak behaviour of the Sn–Pr model are
xpressed as correlation coefficients between the expected
simulation model) and the ANN calculated values as indica-
ors of the predictability of the MLP model. The correlation
oefficients ranged from 0.66 to 0.99 (0.97, 0.71, 0.73, 0.66
nd 0.96, for output variables Fext, Text-no, Text-wo, Vout, Tout,
espectively), with the highest values related to “Frequency of
xtinction” (Fext) (p < 0.01 for all variables).

.2.2. Influence of parameters
ig. 3 compares the contribution of the predictor variables
o the each of the statistical indicators of model stability
ehaviours of the Sn–Pr population model, as result of the
obol, the stepwise multiple regression and the ANN using
LP. We considered five output variables (time to outbreak

eak, values at outbreak peak, time to extinction with out-
reak, time to extinction without outbreak and frequency of
xtinction) and in some cases we also considered their stan-
ard deviations (for the ANN methodology). The contributions
f input parameters for frequency of extinction were very

imilar for the three different methods (Fig. 3). However, the
tepwise multiple regression method displayed relatively dif-
erent patterns for time to extinction with outbreak, time to
xtinction without outbreak and time to Sirex peak (Fig. 3).

ig. 2 – Profile of partial derivatives as a function of parameter k
opulation simulation model. (a)–(d) Correspond to Kodest-1 to K
458 97.82 0.918

1000

The Sobol and the MLP methods shows very similar contri-
bution with r = 0.921 (N = 30, p < 0.001) of correlation coefficient
in overall (all parameters and all output variables), although
the differences were relatively large for values of Sirex peak.
The agreement between the MLP and the stepwise methods
was smaller, but still significant (r = 0.8, N = 30, p < 0.01). For
all output variables, the contribution of tau (�) (number of
trees visited) was the highest in all three models. The con-
tribution was also higher in the ANN method than the Sobol
method. Input variables P LDF, Max NE and Egg load showed
low contributions for all output variables in all three different
methods.

Therefore, we looked into the response behaviour of the
model according to changes of these two parameters (PropA2
and �) that had the highest contribution to the model’s sta-
bility behaviour. The response behaviour of the MLP method
output as a function of changes in PropA2 had negative effects
on “frequency of extinction”, “mean time to extinction” and
“standard deviation of time to extinction” (Fig. 4). However,
its influence on these output variables decreased with higher
values of PropA2, as displayed by partial derivatives being
scattered around zeros at high values of PropA2. PropA2 had
positive effects on “mean time to outbreak” and its standard

deviation at low values; however, the influence was low (with
relatively small negative effects) at high values, indicating that
the increase of PropA2 resulted in a decrease in the output
variables “frequency of extinction”, “mean time to extinc-

for each type of population stability behaviour of the Nv–Tg
odest-4 stability types (see Table 1 for stability types).
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Fig. 3 – Comparison of the contribution of the predictor variables to the model stability behaviours of the Sn–Pr population
model, as result of the Sobol, the stepwise multiple regression and the ANN (MLP) methods.

Fig. 4 – Partial derivatives as a function of the parameter “PropA2” (proportion of type 2 trees) on output variables of the
Sn–Pr population simulation model. (a) “Frequency of extinction” (Fext), (b) “Mean time to extinction” (Text), (c) “Std. dev. of
time to extinction” (SText), (d) “Mean time to outbreak” (Tout) and (e) “Std. dev. of time to outbreak” (STout).
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Fig. 5 – Partial derivatives as a function of the parameter � (number of trees visited) on output variables of the Sn–Pr
population simulation model. (a) “Frequency of extinction”, (b) “Mean time to extinction”, (c) “Std. dev. of time to
e tim
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xtinction”, (d) “Mean time to outbreak” and (e) “Std. dev. of

ion” and “standard deviation of time to extinction”, while it
esulted in an increase in “mean time to outbreak” and its
tandard deviation.

The partial derivatives response of the MLP procedure from
hanges in the parameter � showed negative effects on the
ynamic model’s output variables frequency of extinction, but
he effects were relatively smaller at high .� values (Fig. 5).
he responses of time to extinction (mean and standard devi-
tion) were not strong, showing both positive and negative
nfluences, with the response stabilizing as the values of .�
ncreased. The parameters time to outbreak (mean and stan-
ard deviation) responded mainly positively, although large
ariations were observed.

. Discussion and conclusions

ensitivity analysis is a critical step in mathematical mod-
lling of ecological processes and it provides an idea of the
esponse of the model dynamics to a variation in the values
f some parameters. In analytic models there are standard
athematical techniques for carrying out sensitivity analyses,

ut this is not so with simulation models, mainly due to the

act that their behaviour usually depends upon the interaction
mong different parameters. Therefore, sensitivity analysis in
imulation models has to be carried out for all combinations
f all parameters of interest. Due to these properties of the
e to outbreak”.

simulation model, some statistical tools are used as indirect
sensitivity analysis.

In this study, we explored the use of ANN for sensitiv-
ity analysis of simulation models, as applied to simulations
models of two-species pest populations: the parasitoid–host
system N. viridula–T. giacomellii (Nv–Tg), N. viridula being a pest
of soybean and the S. noctilio–P. radiata (Sn–Pr) system, S. noc-
tilio being a pest of pine plantations. The ANN (MLP) sensitivity
analysis results of the Nv–Tg and the Sn–Pr simulation models
agree quite well with the results based upon the other sensitiv-
ity analyses tested. In particular, the following aspects deserve
to be emphasized.

In the case of the Nv–Tg simulation model, the variation of
the contribution of each predictor variable (simulation model
parameters and mechanisms) by the MLP model is relatively
high because it was calculated from the contribution of a small
number of outputs (i.e., in this case four outputs for dynam-
ics stability types). By both methods (MLP and Classification
Trees) the dominance of the aggregation of attacks by the par-
asitoid (the negative binomial parameter k) on the stability
behaviour of the simulation model was evident. The other
two parameters (S1 and S2) and the two biological mechanisms
(CAS and SEL) played a lesser role by both methods, although

the MLP model assigned a relatively higher importance to the
parameter S1 (the hosts’ survivorship in the first week of adult
life). This makes biological sense because the value of S1 is
also used in the Nv–Tg simulation model as the variable deter-
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mining the emergence of the parasitoid. In the case of the
two biological mechanisms (CAS and SEL), the ANN meth-
ods had a high standard error because these are categorical
variables.

The MLP model can offer additional information than the
Classification Trees by providing an indication of the impor-
tance of each input variable upon stability behaviour of each
simulation model. For example, it shows that the Nv–Tg simu-
lation model parameter S1 actually is second in importance
after the parameter k, but only in relation to the stabil-
ity behaviour type 4 (stable cycles with host and parasitoid
species at densities in agreement with all observed field val-
ues). The contribution of S1 on this type was 51.1%, whereas
the effect was very low on other types ranged between 1.9%
and 8.1%.

The ANN methodology can also predict additional fea-
tures related to the sensitivity analysis, not present in the
Classification Trees method. It provides, as the mathematical
techniques available for carrying out the sensitivity analysis
of analytic models do, partial derivatives of each simula-
tion model’s stability behaviour as function of the simulation
model parameters and mechanisms. We carried out this
procedure with the only dominant parameter (the negative
binomial parameter k), and the results show a very high agree-
ment with the dominant theory of the role of this parameter
(an indicator of the aggregation of attacks by the parasitoid) on
the stability behaviour of parasite–host systems. May (1978)
considered the overall consequence of spatial heterogeneity
as satisfactorily described by a negative binomial distribution,
and Hassell (2000) claimed that homogeneity, in the sense of
equal risk of being parasitized, results in a decrease in host
survival as parasitoid density increases, leading to extinction
of host–parasitoid systems. On the other hand, heterogene-
ity (e.g., aggregated distribution of parasitoid attacks among
hosts) may result in a stabilization of the host–parasitoid
system (Liljesthröm and Bernstein, 1990). This is so because
decline in host survival with parasitoid density is more moder-
ate than exponential and exerts a stabilizing influence (Hassell
et al., 1991), due to less severe reductions in the host popu-
lation following the build-up of parasitoid numbers (Chesson
and Rosenzweig, 1991). The results of the MLP sensitivity anal-
ysis also agree with the field results that show that in the
N. viridula–T. giacomellii system, the aggregated distribution
of attacks fits well a negative binomial distribution with the
aggregation parameter k estimated to lay between 0.2 and 0.8
(Liljesthröm, 1992), thus playing a dominant role in the stabi-
lization of this host–parasitoid system. The partial derivative
profiles of the ANN sensitivity analysis agree with the results
of May (1978) in that the aggregated distribution of attacks
among hosts – as represented by the negative binomial distri-
bution parameter k – should lead to stability if k < 1.

In the case of the Sn–Pr simulation model, we compared
the contribution of the predictor variables to the each of
the statistical indicators of model behaviours between the
stepwise linear multiple standardized regression method, the
Sobol method and the ANN sensitivity analysis methodology

(Fig. 3). We obtained a good agreement among three differ-
ent methods. All of them show that the population simulation
model parameter PropA2 (proportion of type 2 trees, i.e., suit-
able for oviposition but not stressed) is the dominant one in
2 0 4 ( 2 0 0 7 ) 427–438

determining the model’s statistical behaviour, followed by the
parameter � (number of trees visited by a female wasp dur-
ing her lifetime). The contributions of input parameters for
frequency extinction were very similar for the three different
methods. However, the stepwise multiple regression method
displayed relatively different patterns for time to extinction
with outbreak, time to extinction without outbreaks and time
to Sirex peak.

The MLP sensitivity analysis methodology was able to show
the specific contribution of the predictor variables (population
dynamics simulation model parameters) to the each of the sta-
tistical indicators of the Sn–Pr population model’s behaviour.
Additionally, while the stepwise regression only shows the
standardized coefficient values when an effect was statisti-
cally significant (and not deleted from the stepwise regression)
the ANN method shows average values of the contribution
for all combinations of predictor variables and model statis-
tical behaviours of the Sn–Pr population model. A measure of
the agreement between both sensitivity analysis methodolo-
gies was obtained by a simple linear correlation between the
standardized coefficient values of the stepwise regression and
the percent contribution of each parameter to the population
model statistical behaviour as provided by the ANN method-
ology. The correlation coefficient was statistically significant
(r = 0.824, N = 13, p < 0.001).

Another advantage of the MLP sensitivity analysis is that
we can evaluate the model response behaviour against the
changes of input variables, while it is not convenient in
the Classification Trees, the Sobol and the stepwise multiple
regression methods. We looked into the response behaviour
of the model according to changes of parameters (PropA2 and
� in Sn–Pr model) through a partial derivatives profile method
of the MLP sensitivity analysis.

In general, MLP results conformed well to the Classifica-
tion Trees for the Nv–Tg model and the stepwise regression
analysis for the Sn–Pr model. These classical statistical
analysis techniques are not straightforward in handling non-
linearity’s, and do not incorporate causality in their models
(Gevrey et al., 2003), while ANN has the capability to handle
non-linear, complex ecological data and to incorporate causal-
ity (Lek and Guégan, 2000; Recknagel, 2003). Although ANN
models are able to make very good predictions and are rec-
ognized as powerful tools (Skelton et al., 1995; Recknagel et
al., 1997; Liong et al., 2000), at the beginning of their develop-
ment they were considered as black-box approaches because
of a lack of explanatory methods for relationships between
input and output variables. Presently, many different algo-
rithms have been developed to avoid the “black-box” flaw of
ANNs, and now they can be used as sensitivity analysis tools
to determine the contributions of the independent variables
and the way they act on the dependent variable (Garson, 1991;
Goh, 1995; Lek et al., 1996; Balls et al., 1996; Maier and Dandy,
1996; Scardi and Harding, 1999; Dimopoulos et al., 1995, 1999;
Olden, 2003).

Our conclusion is that the MLP has high predictive power
and is adequate for evaluating the contribution of model

parameters to the model’s behaviour. It has the advantage
over the stepwise linear multiple regression in that it does
not require that the simulation model behaves in a linear way.
And although the Sobol method can also cope with non-linear
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imulation models, it is a quite sophisticated method, and no
tandard analytical commercial package is still available. Of
ourse the same can be said from the MLP method of the ANN
pproach, but in comparing the two (Sobol and ANN) the latter
an determine the contributions of the independent variables
nd also the way they act on the dependent variable, while
he former can only determine the relative contribution of
he independent variables or parameters. Our results show
hat the MLP model is very efficient to predict the stability
ehaviour of pest population dynamics and to evaluate impor-
ance of parameters in the population dynamics. Although,
e used only two-species pest systems as an example, this
pproach may be applied in wide areas of pest management
nd population dynamics studies.
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