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Integrated pest risk maps and their underlying assessments provide broad guidance for establishing
surveillance programs for invasive species, but they rarely account for knowledge gaps regarding the pest
of interest or how these can be reduced. In this study we demonstrate how the somewhat competing
notions of robustness to uncertainty and potential knowledge gains could be used in prioritizing large-
scale surveillance activities. We illustrate this approach with the example of an invasive pest recently
detected in North America, Sirex noctilio Fabricius. First, we formulate existing knowledge about the pest
into a stochastic model and use the model to estimate the expected utility of surveillance efforts across
the landscape. The expected utility accounts for the distribution, abundance and susceptibility of the host
resource as well as the value of timely S. noctilio detections. Next, we make use of the info-gap decision
theory framework to explore two alternative pest surveillance strategies. The first strategy aims for
timely, certain detections and attempts to maximize the robustness to uncertainty about S. noctilio
behavior; the second strategy aims to maximize the potential knowledge gain about the pest via
unanticipated (i.e., opportune) detections. The results include a set of spatial outputs for each strategy
that can be used independently to prioritize surveillance efforts. However, we demonstrate an alternative
approach in which these outputs are combined via the Pareto ranking technique into a single priority
map that outlines the survey regions with the best trade-offs between both surveillance strategies.

Crown Copyright � 2010 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Non-indigenous invasive species are a universally recognized
problem, causing significant environmental changes (Clavero and
Garcia-Berthou, 2006; Mack et al., 2000; Meyerson and Reaser,
2003; Strayer et al., 2006) and large-scale economic damages
(Perrings et al., 2002; Pimentel et al., 2001, 2005) worldwide. Most
introductions of new species have been attributed to global trade
(Costello and McAusland, 2003; Jenkins, 1996; Levine and
D’Antonio, 2003; Perrings et al., 2005), with some proportion of
these newspecies becomingestablished, invasivepests (Williamson
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and Fitter, 1996). However, the flow of potential pests into novel
geographic areas via trade (or anyother pathway) cannot be stopped
completely by existing phytosanitary standards (e.g., the World
Trade Organization Agreement on the Application of Sanitary and
Phytosanitary Measures, FAO-IPPC., 2005; Margolis et al., 2005) or
biosecurity procedures (e.g., Cook and Fraser, 2008; Reaser et al.,
2008; Waugh, 2009), so post-border surveillance for non-indige-
nous species remains a critical task. For example, in 2007 the United
StatesDepartment of Agriculture (USDA) allocated $US1.2 billion for
management of invasive species, with approximately 22% directed
for early detection and rapid response activities (NISC, 2007). A
considerable portion of such costs is spent on large-scale pest
surveillance programs (Tobin, 2008).

An effective post-border surveillance program for a new invasive
organism should ideally achieve two main goals. First, the program
should facilitate sufficiently rapid detection of emerging outbreaks
so that relevant agencies can implement appropriate response
measures. Another important but less acknowledged objective is
rights reserved.
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that the program should reduce the impact of uncertainties about
the target pest’s behavior in its new environment based on obser-
vations accumulated through time. The intensity and spatial pattern
of a pest surveillance program are usually determined by various
factors such as the distribution of hosts, possible pathways of the
pest’s introduction and spread (Kenis et al., 2009; Hulme, 2009;
Hulme et al., 2008), anticipated economic and environmental
consequences, and the public response to invasion (Frankel, 2008;
Poland and McCullough, 2006).

Consider a hypothetical scenario where a regulatory agency is
mandated to organize a large-scale surveillance program in response
to the recent introduction of a new pest, despite knowing little about
its behavior and the level of threat it presents to an identified groupof
hosts. To help in this effort, the agency employs an invasion risk
model that is parameterized using whatever information is available
about the pest. The model forecasts the expansion of the pest from
a few currently known locations to a set of sites i within a region of
interest, each ofwhich is assignedaprobability, pi, and corresponding
standard deviation, s(pi), that it will be invadedwithin a time period,
tmax. If the behavior of the pest happens to be well known (i.e., s(pi)
values are generally low compared to pi), then the most logical
configuration for a network of survey locations would emphasize
sites with high pi values or at the anticipated front of the invasion at
tmax. However, when knowledge about the pest is scarce, two strat-
egies can be considered. One effective strategy to reduce uncertainty
would be a survey configuration that prioritizes siteswith the highest
s(pi) values (Yemshanov et al., 2010). However, a different perspec-
tive is possible: If knowledge is scarce, then anyunanticipatedfindsof
thepest at locations perceived as “safe” (i.e., having lowpi)would also
be considered successes, since they will enhance knowledge of the
pest’s behavior in its new environment. In short, the design of an
effective survey network can be perceived as a trade-off between
these two strategies, where the appropriate choice depends on the
amount of information available about the pest.

1.1. Species of concern

In this study, we focus on a non-indigenous forest pest (Sirex
noctilio Fabricius) that was recently discovered in eastern North
America and has subsequently expanded its range. Most sub-boreal
and temperate regions in eastern North America are believed to be
climatically suitable for the species (Carnegie et al., 2006), and it is
considered a serious threat to pine (Pinus spp.) forests throughout
this region (Borchert et al., 2007; Corley et al., 2007; Haugen, 2006).
Most quantitative knowledge about its ecology is based on expe-
riences in the Southern Hemisphere, where S. noctilio is a pest
attacking plantations of introduced pines. There is still vast
uncertainty regarding the insect’s behavior in North America, yet
there is a need to devise a monitoring program in order to ascertain
the scope of the invasion and the actual ecological/economic
impact on pine forest and craft an appropriate response strategy.

1.2. Study concept

The basic concept of the analysis is as follows. We first use
a spatial stochastic simulation model that formulates our
assumptions (along with their corresponding uncertainties) about
the pest’s behavior in our region of interest. The model projects the
dynamic spread of the pest through the landscape as a two-
dimensional map. Based on the stochastic maps of the invasion, we
estimate the outcome of survey efforts as a time lag between the
pest’s arrival at a given map location and its first detection. This
information is then used to calculate the expected utility of a survey
effort at that map location. The utility values account for both the
benefits of timely detections and the abundance of susceptible host.
Finally, we use the info-gap decision theory framework (Ben-
Haim, 2006) to explore the two surveillance strategies alluded to
earlier: (1) maximizing the chance of sufficiently rapid detections
given the uncertainties about the pest’s behavior, and (2) maxi-
mizing the network’s potential to reduce uncertainties about the
pest via unanticipated finds. While we are uncertain about
the likelihood that the pest is present at any given location and the
odds of its detection, we seek a survey pattern that maximizes the
range of uncertainty over which the expected benefits of successful
detection will nevertheless be gained. Compared to surveillance
allocations that are based on maximization of the detection rate or
cost minimization criteria, our approach focuses on the potential
knowledge gaps about the pest and thus generates survey designs
that are less influenced by risk preferences or biases that often exist
in expert-driven prescriptions (Ouchi, 2004).

Briefly, info-gap theory formulates the problem of uncertainty
in terms of a gap betweenwhat is known andwhat has to be known
in order to make reliable assessments. Compared to other decision
methods that maximize the potential utility of the outcome by
exhaustively exploiting the best-estimated data and models, the
info-gap approach focuses on the robustness of an acceptable
outcome to errors in those data and models (Ben-Haim, 2006).
Info-gap analysis has been applied previously to the topic of inva-
sive species management, for example in developing robust
inspection protocols at ports of entry (Moffitt et al., 2008).
Furthermore, our analysis is conceptually similar to the study of
Davidovitch et al. (2009), who applied info-gap decision theory to
compare two surveillance strategies for the coastal brown ant
(Pheidole megacephala) on Barrow Island, Australia. However, our
study differs from Davidovitch et al. (2009) in two ways. First, we
apply info-gap analysis in a geographic setting (i.e., we evaluate
different spatial configurations of potential survey areas, rather
than the broad proportional relationship of surveillance system
components). Secondly, we focus on prioritizing the surveillance
efforts by exploring the trade-offs between surveillance strategies
that maximize robustness to uncertainties and/or focus on oppor-
tunistic, unanticipated finds.

2. Methods

2.1. Modeling invasion

Weused a spatial stochasticmodel to simulate S. noctilio invasion
in eastern North America. The model portrays invasion as a discrete
spatial process (Fuentes and Kuperman, 1999) within a specific
forecast horizon, tmax (30 years in this study). On a one-year time
step, S. noctilio populations spread from currently infested locations
or frompotential newentry points (e.g.,marine ports). S. noctiliohas
a broad bioclimatic tolerance and the potential to establish across
the entire range of pine forests in eastern North America (Carnegie
et al., 2006). The likelihood that S. noctilio will successfully estab-
lish in newly invaded locales depends on the geographic distribu-
tion, susceptibility and abundance of hosts as well as the distance to
already existing infestations. An established S. noctilio population is
expected to damage the local host resource. The model has been
described in detail in Yemshanov et al. (2009a,b) and Koch et al.
(2009), so here we highlight only the relevant model parameters
as well as updates that were necessary for this particular study.

Briefly, the simulations started from a map of known S. noctilio
infestations in southern Ontario, New York, and Pennsylvania
(APHIS, 2007; De Groot et al., 2006). We recognize that the current
map of known infestations may not reflect all (i.e., undetected)
infestations, therefore we considered the entire area within the
perimeter defined by the outermost infestation points to be infes-
ted with a viable S. noctilio population. We also modeled the pest’s
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potential for future entry into eastern North America as a function
of the value of imported commodities (Costello and McAusland,
2003; Levine and D’Antonio, 2003). Here we used a “high-risk”
scenario, described in Yemshanov et al. (2009b), that assumed
international phytosanitary standards for all wood packaging and
raw wood materials (FAO-IPPC, 2005) would have a relatively
modest impact on entry probabilities. For each port, we estimated
a local probability of entry, Wx(t), from the volumes of received
shipments of commodities capable of harboring S. noctilio (FHTET,
2007a). In addition to the marine ports, we incorporated the
probabilities of accidental introductions of the pest at urban areas
and industrial sites (where the human-assisted movement of wood
commodities is very likely). For eastern North America, the total
introduction potential at these “inland” sites was assumed to be
0.02 per year (at least one entry over 50 years). This potential was
subsequently apportioned into local probabilities of entry based on
urban population size. Note that human-assisted entries of invasive
organisms at urban areas represent a significant knowledge gap
(McNeely, 2001) and our assumption here represents only a coarse
depiction of inland entry potential.

At each time step, successful entries and existing infestations
were used to simulate spread of the pest in eastern North America
with a traveling wave model (Sharov and Liebhold, 1998). The
population spread was estimated as dependent on the probability
of colonization in the nearest adjacent map location, p0, and the
distance, d, from the nearest known infested location, constrained
by the maximum distance, dmax, at which new locations may be
successfully invaded (50 km). In successfully invaded locations, the
maximum annual S. noctilio population size and the total damage to
host were constrained by a carrying capacity (see Yemshanov et al.
(2009b) and Koch et al. (2009) for details).

The establishment of S. noctilio populations depended on
abundance and susceptibility of hosts (pines). The susceptibility, sv,
sets the probability for S. noctilio to establish new populations and
was modeled as a species-specific function of pine age constrained
by a susceptibility maximum, smax. Based on USDA Forest Service
ratings (FHTET, 2007b), eastern North American pine species were
divided into two groups, with smax ¼ 0.95 for species considered to
have “very high” or “high” susceptibility and smax ¼ 0.5 for species
considered to have “low” or “medium” susceptibility. The model
also required tracking the geographical distribution and abundance
of pine forests and their growth over time. Maps of pine compo-
sition and age were derived from the National Forest Inventory for
Canada (Gillis, 2001) and the USDA Forest Service Forest Inventory
and Analysis database (USDA FS, 2007). The growth of the pine
resource and the amount of host surviving after S. noctilio infesta-
tion were modeled via growth rate curves, gj(t), defined separately
for the US (Dixon, 2008) and Canada (Ung et al., 2009); see other
model details in Yemshanov et al. (2009b) and a sensitivity analysis
of model parameters in Koch et al. (2009).

2.2. Modeling detections and their lag times

For the second step of our analysis, we used the maps of
stochastic spread patterns generated with the invasion model to
simulate detections and estimated expected mean lag times
between the arrival of S. noctilio and its first “find” at locations of
interest over the forecast timeperiod, tmax. For eachpotential survey
location i (i.e., a map cell in the study area), the model recorded the
time of the pest’s initial arrival. Then, for each annual time step
starting with the year of arrival, we simulated survey effort as
a uniform random event, with a probability of successful detection,
pt.Weassumed the surveyswereundertakenonanannual basis. The
pt characterized the efficiency of the traps and lures used in the
surveys, which is typically very poor for newpestswhenpopulation
levels remain low (Crooks, 2005; Mehta et al., 2007; Venette et al.,
2002). The lag time, ci, was then calculated as the difference
between the time of the pest’s arrival at location i and its first
successful detection, andvariedbetween0 for immediatedetections
and tmax when the survey effort failed to detect an invasion.
2.3. Expected utility of a survey effort

We used maps of ci values (generated for each independent
model run) to calculate the expected utility of survey efforts. We
considered detections with zero lag time at sites with abundant
host as the most desired survey outcomes. Davidovitch et al. (2009)
also related survey success to the probability of detection within
a designated period of time, however we used the actual lag time
between the pest’s arrival and its first successful “find” as our
performance metric.

Let vi be the per hectare amount of host at survey location i (i.e.,
a map cell) and ci its per-cubic meter value. The spatial resolution
(5 � 5-km) for our analysis is roughly equivalent to the typical one-
year dispersal range of the bulk of a S. noctilio population (which
has been estimated to be within a radius of <3 km e see Haugen,
2006). For simplicity, we assumed individual survey locations did
not overlap, that is:

XI
i

vi � Vtotal (1)

where I is the total number of map cells (potential survey locations)
and Vtotal is the total amount of the host resource across the study
area landscape. Given this assumption, when a survey detected the
presence of S. noctilio at a location i, the potential utility was rep-
resented as follows:

Ci ¼ vi$svdðciÞ (2)

where vi is the amount of susceptible host resource at location i, sv
is the susceptibility of this host resource to an outbreak (sv˛[0; 1])
and d(ci) is a function that calculates the benefit that can be
expected given delayed detection. Notably, if detection is substan-
tially delayed or fails completely (i.e., as ci approaches tmax), then Ci
approaches zero. The patterns and timing of the pest’s expansion,
the ci values, and the amount and degree of susceptibility of the
host resource all varied geographically, thus changing the value of
Ci across the study landscape.

We estimated the benefit that can be expected from delayed or
failed detections as a logistic function, d(ci), of the time lag ci
between the pest’s arrival at a location and its first detection:

dðciÞ ¼ 1� 1
1þ e�ð6ðci�3:786�1:065ÞÞ (3)

where 6 is a shape parameter in the logistic equation, 6˛[0; 1].
Note that Eq. (3) uses just this one parameter to define how quickly
the invader can expand its population to a level that precludes cost-
effective management activities (Fig. 1). The logistic shape of the
function and the coefficients were fitted from expert estimates
based on previous experience with S. noctilio in the Southern
Hemisphere and estimated 6 z 0.5 (D. Haugen, pers. comm., see
Yemshanov et al., 2009a).
2.4. Maximizing the survey’s robustness to uncertainties and/or
capacity to gain knowledge via unanticipated finds

As the last step in our analysis, we use the information gap (info-
gap hereafter) concepts of robustness and opportuneness (Ben-
Haim, 2006) to find the geographic distribution of potential
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survey areas that best addresses two competing objectives. First,
we seek to identify the maximum level of uncertainties in the
invasionmodel which still allow reliable detection of the pest. If the
tolerable level is large then the model outputs are robust to
uncertainty and vice versa. Second, we seek the least level of
uncertainty about the pest’s behavior that must be tolerated to
enable the possibility of a very successful survey. The “success” is
represented in our case by reliable detections which occur within
a sufficiently short time after the invasion so these detections
translate into knowledge about the current extent of invasion. If the
level of uncertainty which is necessary for success is low, then the
opportunity for success in excess of the anticipation is high.

Our approach stems from previous work assessing the robust-
ness of pest risk maps to uncertainties (Yemshanov et al., 2010), as
well as studies of optimal reserve design by Moilanen and Wintle
(2006) and Moilanen et al. (2006). Basically, info-gap analysis
requires very limited prior knowledge about the structure of
uncertainty in the system being modeled; rather, it assumes an
unknown and unbounded horizon of uncertainty (Ben-Haim,
2006). Typically, the info-gap framework includes three compo-
nents: a “process”model, a performance requirement, and a model
for uncertainty. The process model is a formalized representation of
the system of interest that incorporates the elements considered to
be most important (Ben-Haim, 2006; Regan et al., 2005). Here, we
use the previously described spatial invasion model as our “process
model”. Each model scenario is associated with a vector of Xmodel
parameters and assumptions, Xu˛(x1, x2,., xu). In this study, the
vector Xu includes several invasion model parameters previously
identified as having a high impact on the pest’s risk predictions (see
Koch et al. (2009) for details): the local entry potential at marine
ports and inland locations (Wx(t)); the local probability of coloni-
zation (p0); the maximum distance at which a new colony may
become established (dmax); the total amount of host resource
available at a given location (gj(t)), represented by a map of host
distribution across the landscape; and the susceptibility of the host
resource (sv). The vector also includes the detection probability (pt)
as well as the shape parameter (6) that translates the detection lag
time into the expected utility value (see Eq. (3)).

In an info-gap framework, the process model outcomes are used
to calculate an expected utility metric, Ci(x), which in our case is the
expected utility of survey effort at a given location i using given
parameter values x, as described in Eq. (2). The utility metric is
evaluated in terms of a performance requirement, which usually
assesses the metric value against a certain threshold value:

CiðxÞ � Cmin (4)

thus requiring the expected utility to be equal to or above the
critical threshold, Cmin. The Cmin value depends on the amount of
host under threat, the detection lag time and also the detection
probability, pt. We interpret Cmin as a minimum utility value at
which a survey effort can be considered a “success”.

The info-gap uncertainty model describes what is unknown
about the process model parameters or functional relationships
that comprise the vector Xu. The initial (or nominal, in Ben-Haim
(2006)) parameter values, xu, are usually based on the best
knowledge presently available about the pest and the efficacy of the
detection mechanisms (e.g., traps or lures) used in the survey.
However, since such knowledge is typically scarce, it is impossible
to exactly specify whether the initial parameter values are true or
how much they may deviate from their true values. We depict this
supposition with the uncertainty model, which assumes that any
parameter xu may deviate by an unknown fraction, a, or less from
its nominal xu value, (also referred to as the horizon of uncertainty).
For this study we employ a simple, uniformmodel of uncertainty, H
(a), that contains a family of nested intervals for each a > 0:

HðaÞ ¼
�
Xu :

jxu � xuj
xu

� a; xu � 0; u ¼ 1;.;U
�

(5)

where each xu element of the vector Xu deviates from its nominal
values by a proportion a or less:

xu � xua � xu � xu þ xua (6)

Since the value of a is unknown, we use a set of nested intervals (a1,
a2, .) ranging from 0 to 1.0. The upper limit of a represents
a typical scenario with the severe knowledge gaps about the pest
(i.e., model parameters could vary by up to �100%).
2.5. Robustness and opportuneness of a survey effort

Uncertainty in the invasion process model decreases confidence
in the ability to detect the pest in locations where it is expected to
be found, but at the same time, increases the chance of unantici-
pated detections which enhance our knowledge about the pest’s
behavior in a new environment. These two aspects are captured by
the robustness and opportuneness functions. For each potential
survey location i, we define its robustness, ba(x), as the maximum
value of the uncertainty horizon a that guarantees the expected
utility Ci(x) of a survey effort to be no less than the critical threshold
Ca:

baðxÞ ¼ max
n
a :

�
min

x˛HiðaÞ
CiðxÞ

�
� Ca

o
(7)

Locations with unexpected finds of the pest may also have
relatively high Ci(x) values. Our second objective is to exploit this
fact, essentially by finding the lowest level of uncertainty that must
be tolerated in order to enable the possibility of unanticipated
detections (surprises). For each potential survey location i, we
define its opportuneness, bb(x), as the minimum value of the
uncertainty horizon a that enables (but does not guarantee) the
possibility of detectionwith the expected utility Ci(x) exceeding the
minimum threshold Cb:

bbðxÞ ¼ min
n
a :

�
max
x˛HiðaÞ

CiðxÞ
�
� Cb

o
(8)

Essentially this describes the possibility of detecting the pest
significantly earlier than it might be expected under the robust-
satisfying conditions and also gaining useful knowledge about the
pest’s behavior. In summary, the Ca and Cb thresholds are the
equivalents of the Cmin value in Eq. (4). Although Ca and Cb can be
treated as independent variables (depending on a decision maker’s
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aspirations), in this study theywere set to similar values to simplify
comparison of ba(x) and bb(x).

The inner minimum in Eq. (7) is the inverse of the robustness
function. That is, a plot of the inner minimum vs. a is the same as
a plot of Ca vs. ba(x). Likewise, the inner maximum in Eq. (8) is the
inverse of the opportuneness.We actually evaluate ba(x) and bb(x) by
evaluating their inverses. These inverses can be found by sampling
the info-gapmodel of uncertainty,H(a), at horizons of uncertainty a,
a ¼ 0, ., 1, to obtain a unique set of parameter values x(m) and
calculate the expectedutilityCi(x(m)) forM independent realizations,
m¼ 1,.,M. Specifically, we sampledH(a) by selecting values for the
invasionmodel parameters x(m) froma randomuniformdistribution
around their nominal values, xu, defined by �a (see Eq. (6)).

The minimum and maximum values of Ci(x(m)) for a given uncer-
tainty horizon a represent estimates of the inverses of ba(x) andbb(x),
respectively, and were found by recalculating Ci(x(m)) M times until
the values of min Ci(x(m)) and max Ci(x(m)) were stabilized:h

xm
xm˛HðaÞ

0
Nreps

dðciÞ; vi; si0Ci
�
xðmÞ

�i
m¼1;.;M

0
Mreps min

m
Ci
�
xðmÞ

�
zbaðxÞ

max
m

Ci
�
xðmÞ

�
zbbðxÞ (9)

Eq. (9) describes a numerical approximation of ba(x) andbb(x) that
requires M � N individual model replications, where each of the M
replications includes the N independent model simulations
necessary to generate the maps of Ci(x(m)) and stabilize their spatial
configuration. Consistent with the “high-risk” scenario described in
Yemshanov et al. (2009a), N was set to 300 replications. The
minimum value of M replications required to stabilize the robust-
ness and opportuneness functions was estimated using the
convergence metrics described in Yemshanov et al. (2010). In all
cases, the robustness and opportuneness maps started to stabilize
after w250 replications, so M was set to 500. To make the pro-
cessing time reasonable, we estimated only the critical utility
levels, Ca and Cb, that yielded the robustness and opportuneness
values ba(x) andbb(x) ¼ 0, 0.3, 0.5 and 0.7 (instead of estimating the
whole shape of ba(x) andbb(x)). Overall, the scenarios required
approximately 1.2 million individual model simulations.

As a result, each potential survey location (map cell) was char-
acterized by values of Ca and Cb for each horizon of uncertainty,
a ¼ 0, 0.3, 0.5 and 0.7. The Ca values represent the critical utilities
necessary for adequately robust outcomes, while the Cb values
represent windfall utility constituting better-than-anticipated
outcomes (i.e., surprising detections). Based on the shape of the
functions, Ca vs. a and Cb vs. a, it was possible to outline the
geographic areas where surveys will be more (or less) rewarding in
detecting and/or reducing uncertainties about the pest.

2.6. Prioritizing survey efforts

From our perspective, a survey locationwhich is both robust and
opportune is preferable to one which is not. Or, given two locations
which have comparable robustness but one is more opportune, the
latter is preferred. Thus, the most rewarding survey strategy would
not only promote robust detections but would simultaneously
maximize the opportunity for unanticipated finds of a pest (i.e.,
maximizingba(x) and minimizingbb(x) for given expectations of Ca
and Cb).

In this study, robustness and opportuneness at any survey
location were represented by two sets of Ca and Cb values for each
horizon of uncertainty, a ¼ 0, 0.3, 0.5 and 0.7. Hence, we used
a multi-criteria ranking technique to aggregate these values to
a single ordinal rank that identifies themost rewarding survey sites.
Multi-criteria analysis employs various approaches such as
multi-attribute utility theory (Keeney and Raiffa, 1976), the analytic
hierarchy process (Saaty, 1980), various outranking methods
(Doumpos and Zopounidis, 2002; Roy, 1996) and compensatory
methods that use weighted averaging (Belton and Stewart, 2002;
Løken, 2007; Steele et al., 2009). Most of these techniques,
however, require prior knowledge regarding the relevance of, or
relationships between, the individual criteria (Steele et al., 2009). In
our case, such knowledge about the relevance of individual Ca and
Cb values was unavailable, therefore we opted to use a multi-
criteria aggregation based on Pareto dominance.

Suppose a points need to be ordered in K dimensions. In our case,
K is a criteria space equal to the total number of Ca and Cb values;
K¼ 4 in the scenario that used the Ca values only (the “robust finds”)
and K ¼ 8 in the scenario using both Ca and Cb (both “robust” and
“opportune” finds). A Pareto front is formed by points whose
performance with respect to one criterion cannot be improved
without sacrificing performance with respect to at least one other
criterion, a condition known as Pareto optimality (Pareto,1971). For
a set of a points in a K-dimensional criteria space, the Pareto front is
usually definedby the subsetof the total populationof points,a0, that
is non-dominated by the rest of the population (a � a

0). In a K-
dimensional space, a point S1 dominates another point S0 when:

S1k � S0kck ¼ 1;.;K and S1k > S0k for some k (10)

Fig. 2 illustrates the Pareto concept using a two-dimensional
example (i.e., with K ¼ 2).

We used a Pareto ranking algorithm described in Goldberg
(1989). The technique first finds non-dominated elements of the
population a0, assigns them rank 1 and then removes them from
the population temporarily. Next, a new non-dominated subset in
the rest of the population is assigned rank 2, and so forth. As
a result, each element of the population is assigned a Pareto rank.
Fig. 2 shows an example of aggregated risk ranks that have been
derived from the subsequent Pareto frontiers. Since, in our case,
each element of the population a is represented by a map cell, their
ranks can be mapped in geographical space. Importantly, all points
comprising each Pareto front are non-dominant to each other and
thus offer the best performance in terms of the trade-offs between
all criteria in K.
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Note that the location of the Pareto frontier depends on the
relative arrangement of individual data points and usually requires
normalization of data with skewed, irregular or clustered distribu-
tions. To ensure the sparseness anduniformityof thedata alongeach
criteriadimension k,weapplied a rankingnormalizationoutlinedby
Godfreyet al. (2007), and then rescaled thefinal ranks to a0e1 range
so the highest ranks (demarcating high-priority survey areas)
received values close to 1 and the lowest ranks close to 0.

3. Results

3.1. Probability of invasion and expected utility of a survey effort

Fig. 3A and B show the risk and output uncertainty maps
generated for the initial scenario (i.e., using the nominal parameter
values x). Fig. 3A depicts, for each map cell, the estimated proba-
bility, pj(x), that S. noctiliowill establish a viable population over the
period tmax, while in Fig. 3B the uncertainty of this estimate is
represented by the standard deviation, sj(x). As expected, the
probability of invasion is close to 1 in areas with sufficient host near
the existing infestations in the northeastern U.S. and southern
Ontario. The probability declines to low levels (pj < 0.4) for areas
beyond the primary invasion front predicted over the period tmax.
Alternatively, the output uncertainty estimates are highest near
this expected invasion front.

Fig. 4 shows the expected utility values (Ca and Cb) that are
achievable for given levels of robustness and opportuneness ba(x)
andbb(x) equal to the uncertainty horizons a ¼ 0, 0.3, 0.5 and 0.7.
Generally, values of a � 0.3 indicate fairly good knowledge about
the pest, while values of a � 0.5 suggest severe knowledge gaps.

For all of the tested scenarios, robust-satisfying and opportune
survey strategies exhibit distinct geographic patterns of variation in
utility values. These differences are relatively small when knowl-
edge about the pest is good (i.e., a ¼ 0; Fig. 4A and B) but become
significant in the presence of knowledge gaps (a¼ 0.7; Fig. 4E and F).

In the absence of uncertainties (a ¼ 0), the geographical varia-
tion in utility values, for both robustness and opportuneness,
Fig. 3. Classified maps of S. noctilio invasion risk and the uncertainty of risk estimates for t
standard deviation of pj estimates, sj(x).
approaches the pattern of sj(x) (Fig. 4A and B); most notably, the
highest utility values are observed in the areas near the anticipated
front of invasion (i.e., areas where sj(x) peaks under this nominal
scenario, Fig. 3B).

When the uncertainties are moderate (a ¼ 0.3; Fig. 4C and D), it
appears that robust-satisfying surveyswould best be constrained to
regions where the estimated risk of S. noctilio invasion, pj(x), is
relatively high. Preferred regions include areas of pine forest in
boreal Canada, the US Northeast and the US Upper Midwest near
the presently known range of S. noctilio; despite somewhat lower
expected utility and estimated invasion risk, coastal areas in the
southeastern US, which are close to marine ports of entry (i.e.,
potential sources of new introductions) and contain abundant pine
forests, may also be appropriate (Fig. 4C).

As knowledge about the pest decreases, the area that allows for
confident (robust-satisfying) surveillance decreases dramatically
and is basically limited to map locations where S. noctilio can be
expected to build a large population over a short time horizon
(Fig. 4E). However, knowledge gaps appear to increase the
proportion of the study area where opportune finds are likely
beneficial (i.e., exhibit high utility, Fig. 4F). The impact of knowledge
gaps on the geographical distribution of opportune finds is minor,
and is primarily manifested as a more uniform distribution of the
expected utility values across the entire study area (Fig. 4F vs.
Fig. 4B). Because the estimated position of themain invasion front is
less certain in this case, it is preferable to undertake amore spatially
uniform sampling of a larger area, albeit as intensely as possible
(Fig. 4F). Compared to robust-satisfying finds, the distribution of
opportune finds is mostly shaped by host presence and does not
appear to be influenced by the distance from the locations currently
invaded by S. noctilio, i.e., the current invasion front (Fig. 4F).

3.2. Ranking survey priorities

Fig. 5 presents integrated Pareto ranks based on the robustness
function (represented by the Ca criteria) and Fig. 6 shows the
scenarios using both robustness and opportuneness (Ca as well as
he scenario using the nominal parameter values, x: A) probability of invasion, pj(x); B)



Fig. 4. Expected utility values, Ca and Cb, for the scenarios assuming pest detection accuracy pt ¼ 0.1. The horizon of uncertainty: A,B) 0; C,D) 0.3; E,F) 0.7.

D. Yemshanov et al. / Journal of Environmental Management 91 (2010) 2535e2546 2541
Cb criteria). Each figure includes maps for two scenarios with the
detection accuracies pt ¼ 0.02 and 0.1.

3.2.1. Robust-satisfying strategy
As perhaps expected, the robust-satisfying strategy prioritizes

surveys in the regions where the estimated risk of invasion is high
and the variability in this estimate is low (see Fig. 3A and B,
respectively). The geographic position of high-priority survey areas
(i.e., rank > 0.95 in Fig. 5) is highly sensitive to the extent of
knowledge about S. noctilio. When uncertainties are severe, high-
priority survey areas are quite limited in number and extent (Fig. 5C
and D). Moreover, when the detection rate is low and knowledge
about the pest is poor (Fig. 5C), high-priority survey areas can only
be found in close proximity to currently invaded sites with abun-
dant host. The scenarios (Fig. 5B and D) with higher detection
accuracies (pt ¼ 0.1) also indicate medium-level (rank > 0.6)
priority areas along the southeastern US coast, although these areas
are restricted in extent when knowledge is poor (Fig. 5D).

Table1 reports theareaand landpercentagecoveredbythehighest
and lowest5%of the survey ranks.Higherdetectionaccuracy increases
the area of high-priority surveys, especiallywhen knowledge gaps are
present. This change ismost evident in the southeastern US (Table 1).



Fig. 5. Survey priority ranks based on the robust-satisfying strategy. Highest ranks denote higher survey priorities and vice versa. The scenarios: A) pt ¼ 0.02, a � 0.3 (good
knowledge about the pest, poor detection accuracy); B) pt ¼ 0.1, a � 0.3 (good knowledge about the pest, good detection accuracy); C) pt ¼ 0.02, a > 0.3 (severe knowledge gaps,
poor detection accuracy); D) pt ¼ 0.1, a > 0.3 (severe knowledge gaps, good detection accuracy).

D. Yemshanov et al. / Journal of Environmental Management 91 (2010) 2535e25462542
When knowledge about the pest is good (i.e., a � 0.3), the
highest-ranked survey areas include the location of the anticipated
invasion front (Fig. 5A and B). Changing the detection accuracy in
this case does not significantly impact the geographic location of
high-priority survey areas (see ranks above 0.95 in Fig. 5A and B).
However, in the scenario with good knowledge but poor detection
accuracy (pt ¼ 0.02, Fig. 5A), areas beyond the anticipated invasion
front have been assigned relatively low ranks. This suggests that
poor capacity for detecting the pest may undercut the potential
value of detailed knowledge about its spread behavior. Further-
more, this emphasizes the point that a robust-satisfying strategy is
not appropriate for delimiting the full extent of an invasion (i.e.,
including isolated infestations beyond the main front).

3.2.2. Ranking based on both strategies
Fig. 6 presents survey rankings based jointly on robust-satis-

fying and opportune strategies. The highest ranks in these
scenarios represent the best trade-offs between both strategies.
When knowledge about the pest is good (a � 0.3), the highest
survey ranks (>0.95) are found in the coastal pine forests of North
and South Carolina, Georgia and Virginia (Fig. 6A and B). Another
survey hotspot is located in northern Michigan and north-central
Ontario. These geographic regions encompass locations that are
probably within the range of S. noctilio expansion over a 30 year
time horizon, yet just beyond the main invasion front. Notably,
a difference in detection accuracy does not seem to have a signifi-
cant impact on the ranking pattern given good knowledge about
the pest (Fig. 6A vs. Fig. 6B).

It is further worth noting that when the level of knowledge and
the detection accuracy are both good, the rankings based jointly on
robust and opportune strategies are similar to those based only on
a robust-satisfying strategy (Fig. 5B vs. Fig. 6B). Otherwise, the
robust-only and jointly robust/opportune strategies diverge, most
dramatically so when knowledge gaps are severe (Fig. 5A and B vs.
Fig. 6C and D). Under a joint strategy, the distribution of highest
survey ranks when a> 0.3 is fairly uniform across much of the pine
forest region of the southeastern US (Fig. 6C and D). However, the
emphasis on the southern pine region is more pronounced in
the scenario assuming poor detection accuracy (Fig. 6C); when the
detection accuracy improves (Fig. 6D), the distribution of survey
ranks becomes somewhatmore evenly distributed across the entire
study area. Compared to the scenario using pt ¼ 0.02, the pt ¼ 0.1
scenario assigned 9e18% lower ranks to most of the regions with
abundant pine resources.

Under a robust-satisfying strategy, severe knowledge gaps
decrease the total map area assigned the highest surveillance ranks
(Table 1). However, under a joint strategy, the area of highest ranks
in the southeastern US actually increases. Furthermore, knowledge



Fig. 6. Survey priority ranks based on both the robust-satisfying and opportune strategies. Highest ranks denote higher survey priorities and vice versa. The scenarios: A) pt ¼ 0.02,
a � 0.3 (good knowledge about the pest, poor detection accuracy); B) pt ¼ 0.1, a � 0.3 (good knowledge about the pest, good detection accuracy); C) pt ¼ 0.02, a > 0.3 (severe
knowledge gaps, poor detection accuracy); D) pt ¼ 0.1, a > 0.3 (severe knowledge gaps, good detection accuracy).
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gaps about the pest also decrease the total area where surveys are
considered to be unfeasible (i.e., assigned the lowest ranks) under
a joint survey strategy. For eastern North America this area
accounts for approximately 15.3e16.2% (for pt ¼ 0.02 and 0.1,
respectively) in the scenarios assuming good knowledge about the
pest and declines to 12.3e12.7% in the scenarios with severe
knowledge gaps (Table 1).
4. Discussion

Making decisions in the presence of severe uncertainties is
commonly considered an inevitable part of risk mapping for new
invasive organisms (Andersen et al., 2004; Baker et al., 2005;
Venette et al., 2010). Pest risk assessments attempt to fill knowl-
edge gaps, but their creation e and subsequently their value e

often depends on information from other, geographically (and to
some degree ecologically) distinct regions where the pest is known
to exist. In our study, we demonstrate a practical approach of
embedding the uncertainties in a pest risk mapping process and
using the results in subsequent planning of pest surveillance
activities. Our methodology also proposes an expected utility
metric that is based on detection lag time and therefore could be
more useful in supporting regulatory and quarantine decisions
compared to more common probabilistic estimates of risk.
The results reveal the impacts of twomajor sources of uncertainty
on thedelineationof surveyprioritiesacrossa studyarea: thecapacity
to detect a pestwhen it has arrived at a suitable site (representedhere
as detection accuracy, pt) and the uncertainties about the pest’s
behavior in a novel environment (formulated here as the uncertainty
modelH(a) and theuncertaintyhorizona).Higherdetectionaccuracy,
like the availability of more detailed knowledge, generally decreases
the proportion of the study area where surveys should be a high
priority. In fact, improving the capacity to detect the pest may be as
advantageous as reducing uncertainties about the pest’s expansion
through the landscape. This is an important consideration because it
justifies the allocation of considerable resources towards improving
the accuracy of capture and detection methods for new invasive
organisms. Moreover, poor detection capacity diminishes the utility
of surveillance efforts and therefore undercuts the benefits from
gaining new knowledge about the spread and extent of invasion.
4.1. Importance of inclusion of both robustness and opportuneness

We believe that it is important to evaluate pest survey designs in
terms of both opportuneness and robustness. When knowledge
about the pest is poor, it is optimal tomaximize the potential survey
area and make the survey pattern more geographically uniform
across this area, constrained only by the presenceeabsence of
a susceptible host. Alternatively,moredetailed knowledgeabout the



Table 1
Land area (thousands km2) and the percentage of the total area (%) allocated with the highest and lowest survey priority (the highest and lowest 5% of the aggregated Pareto
ranks).

Knowledge about
pest’s behavior (a)

Detection
accuracy, pt

Risk rank
(rescaled to [0; 1])

Survey strategies (scenarios)

Robust-satisfying only Robust-satisfying and opportune

East.Can.a N.E.U.S. S.E.U.S. East.N.A. East.Can. N.E.U.S. S.E. U.S. East.N.A.

Good (a � 0.3) 0.02 >0.95 (highest) 7.7 2.4 3.1 13.2 3.6 1.3 33.8 38.7
(4.4) (0.7) (1.1) (1.7) (2.0) (0.4) (12.3) (5.0)

<0.05 (lowest) 113.3 261.8 176.3 551.5 49.9 68.7 7.6 126.3
(64.9) (79.5) (63.9) (70.7) (28.6) (20.9) (2.8) (16.2)

0.1 >0.95 (highest) 8.3 3.6 9.4 21.3 2.5 2.0 34.8 39.3
(4.8) (1.1) (3.4) (2.7) (1.5) (0.6) (12.6) (5.0)

<0.05 (lowest) 101.5 231.2 131.9 464.6 47.6 64.4 7.1 119.1
(58.1) (70.2) (47.8) (59.6) (27.3) (19.5) (2.6) (15.3)

Poor (a > 0.3) 0.02 >0.95 (highest) 0.9 0.0 0.0 1.0 1.1 0.3 43.0 44.4
(0.5) (0.0) (0.0) (0.1) (0.7) (0.1) (15.6) (5.7)

<0.05 (lowest) 162.8 310.7 275.7 749.2 48.2 44.1 7.0 99.3
(93.2) (94.3) (99.9) (96.1) (27.6) (13.4) (2.5) (12.7)

0.1 >0.95 (highest) 1.7 2.1 0.6 4.2 0.9 0.2 39.7 40.8
(1.0) (0.6) (0.2) (0.5) (0.5) (0.1) (14.4) (5.2)

<0.05 (lowest) 159.5 298.3 254.0 711.8 47.7 41.0 7.0 95.8
(91.3) (90.6) (89.1) (91.3) (27.3) (12.5) (2.6) (12.3)

a Geographic regions: East. Can e eastern Canada; N.E. U.S. e northeastern US; S.E. U.S. e southeastern US; East N.A. e eastern North America.
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pest typically translates to a smaller area where surveys should be
considered a high priority. As expected, knowledge gaps cause
a balance shift with respect to the relative importance of robust-
satisfying and opportune survey strategies. Our results suggest that
a robust-satisfying strategy becomes increasingly relevant when
knowledge about a new pest improves or the accuracy of detecting
the pest increases (i.e., a/ 0 or pt/ 1). However, when knowledge
about thepest is poor (i.e.,a>0.3), avastmajorityof thehigh-ranked
survey locations can be attributed to the “opportune” strategy. This
is similar to the finding of Davidovitch et al. (2009) that survey
strategies relying on incidental detections have a better chance of
detecting the pest within a critical period of time.

When the robustness function is applied alone (like in many
other info-gap analyses; e see Moilanen et al., 2006; Regan et al.,
2005), it may lead to overly pessimistic estimates by maximizing
the avoidance of severe uncertainties and overlooking the benefits
of unexpected finds. In our case, the robust-satisfying conditions
held for only a relatively small fraction of the survey locations close
to already infested sites and thus precluded the possibility of
detecting any dramatic departures from the anticipated progress of
the invasion. Therefore, we believe that a more appropriate survey
strategy is not to guarantee early detection per se, but rather to
explore ambient geographic and temporal uncertainty regarding
the pest of interest, under the assumption that any detections that
may arise from the unknown variationwill substantially contribute
to the overall long-term success of the survey effort.

This study did not consider the potential impacts of cost
constraints on surveillance priorities. Adding budget constraints
and costs of conducting the surveys may change the allocation of
high-priority sites, however this type of analysis would require
more detailed spatial data on road access and travel costs to the
potential survey sites, as well as costs of installing and servicing
traps and total survey budgets. Such information may also be
dependent on land ownership and administrative jurisdictions.
Hence, an incorporation of cost constraints may be a more appro-
priate focus for regionalized, local studies.

4.2. Technical issues and future work

The study involved computationally intensive simulations, so
the number of scenarios and the spatial resolution of the maps of
survey priorities were restricted to fit our available processing
capacity. While we used a relatively simple invasion model
(essentially a two-dimensional discrete implementation of the
traveling wave model described by Sharov and Liebhold (1998)),
we used Monte Carlo simulations to apply the model of uncer-
tainty H(a) and perform the info-gap analysis. This required
sampling an X-dimensional model parameter space for uncer-
tainty (see Eqs. (5) and (6)). Thus, the necessary computing time is
a noteworthy constraint on spatial applications of the approach.

The discrete nature of the technique used to calculate robust-
ness and opportuneness represents another potential issue. In
order to reduce the processing time, we calculated the expected
utility thresholds Ca and Cb for a given value of the robustness and
oppportuneness functions ba(x) andbb(x). Basically, we sampled the
value of the robustness and opportuneness functions at four points,
a ¼ 0, 0.3, 0.5 and 0.7, instead of estimating the functions’ shapes
over the entire interval [0; 1]. While this greatly reduced the
amount of calculations, we recognize that this technique may lose
some fine-scale details about the shape of the robustness and
opportuneness functions and how these may change depending on
the scenario assumptions. We believe that a more rigorous (but
computationally more demanding) approach would be to generate
additional points to estimate the shape of ba(x) andbb(x) and fit them
with a functional equation, such that each map cell would be
assigned a functional form of ba(x) andbb(x).While this could provide
a better analytical foundation for characterizing robustness and
opportuneness, it would necessitate an extra processing step to fit
sampled points to a functional equation. This would also make the
results of the Pareto aggregation less dependent on the number of
sampling points of ba(x) andbb(x) and more consistent across
different scenarios and geographical examples (because the
aggregationwould be applied to the function coefficients instead of
sampled values of ba(x) andbb(x)).

One issue that we did not consider in this study is the dynamic
capacity to change the surveillance strategy in response to
successful (or failed) detections. Clearly, adding a decision making
component that analyses the structure of uncertainty from the
most recent surveys and then adaptively changes the detection
strategy would be a challenging task in a geographic context. First,
the local structure of uncertaintywould have to be estimated across
a geographic space in a dynamic fashion. (This would require
application of various learning algorithms, such as Kalman filtra-
tion, in a spatial setting.) Once the local structure of uncertainty
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was identified, the next stepwould be to find an optimal strategy to
adjust the surveys. This step could be accomplished using spatial
optimization techniques (Hof and Bevers, 1998). Finally, the
surveillance decision model would have to be adjusted for a deci-
sion maker’s particular risk preferences. These modifications will
be a focus of our future work.

5. Conclusions

Decision support tools can be very useful in managing and
estimating uncertainties associated with emerging threats, espe-
cially when knowledge about a new invader is vague and/or sparse.
The methodology presented here provides a consistent way of
incorporating severe uncertainties into pest surveillance program
design, and enables decision makers to explore a wide range of
choices in the presence of severe knowledge gaps about the new
invasive threat. Essentially, the approach capitalizes on the capacity
of the pest survey network to explore ambient uncertainty about
the pest, and identifies the geographic areas where detections of
the pest that are not anticipated by current knowledge will be the
most rewarding. Importantly, the concept used here is fairly generic
and can be applied when knowledge about the invasive organism is
severely limited. This makes the methodology a good alternative to
expert-based decisions in planning early-warning surveillance
efforts since it avoids personal biases and risk aversions.
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