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Saprophytic and pathogenic fungi in the
Ceratocystidaceae differ in their ability to
metabolize plant-derived sucrose
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Abstract

Background: Proteins in the Glycoside Hydrolase family 32 (GH32) are carbohydrate-active enzymes known as
invertases that hydrolyse the glycosidic bonds of complex saccharides. Fungi rely on these enzymes to gain access
to and utilize plant-derived sucrose. In fungi, GH32 invertase genes are found in higher copy numbers in the
genomes of pathogens when compared to closely related saprophytes, suggesting an association between
invertases and ecological strategy. The aim of this study was to investigate the distribution and evolution of GH32
invertases in the Ceratocystidaceae using a comparative genomics approach. This fungal family provides an
interesting model to study the evolution of these genes, because it includes economically important pathogenic
species such as Ceratocystis fimbriata, C. manginecans and C. albifundus, as well as saprophytic species such as
Huntiella moniliformis, H. omanensis and H. savannae.

Results: The publicly available Ceratocystidaceae genome sequences, as well as the H. savannae genome
sequenced here, allowed for the identification of novel GH32-like sequences. The de novo assembly of the H.
savannae draft genome consisted of 28.54 megabases that coded for 7 687 putative genes of which one
represented a GH32 family member. The number of GH32 gene family members appeared to be related to the
ecological adaptations of these fungi. The pathogenic Ceratocystis species all contained two GH32 family genes
(a putative cell wall and a putative vacuolar invertase), while the saprophytic Huntiella species had only one of
these genes (a putative cell wall invertase). Further analysis showed that the evolution of the GH32 gene family in
the Ceratocystidaceae involved transposable element-based retro-transposition and translocation. As an example,
the activity of a Fot5-like element likely facilitated the assembly of the genomic regions harbouring the GH32 family
genes in Ceratocystis.

Conclusions: This study provides insight into the evolutionary history of the GH32 gene family in
Ceratocystidaceae. Our findings suggest that transposable elements shaped the evolution of the GH32 gene family,
which in turn determines the sucrolytic activities and related ecological strategies of the Ceratocystidaceae species
that harbour them. The study also provides insights into the role of carbohydrate-active enzymes in plant-fungal
interactions and adds to our understanding of the evolution of these enzymes and their role in the life style of
these fungi.
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Background
Glycoside hydrolases (GHs; often referred to as glyco-
sidases or carbohydrases) that target the terminal β-
(2→ 1) fructosidic bonds found in sucrose and vari-
ous oligo- and polysaccharides (e.g., fructans, inulin
and levan) are functionally designated as invertases
[1–3]. These enzymes are classified by their pH op-
tima into the so-called neutral/alkaline invertases that
belong to GH family 100 (GH100) and the acid inver-
tases that belong to GH family 32 (GH32; [4]). While
GH100 invertases are closely related to the cyanobac-
terial invertases, the GH32 invertases are closely re-
lated to invertases of respiratory eukaryotes such as
yeasts and aerobic bacteria such as Bacillus [5]. Like
the GH100 family, proteins in the GH32 family have
a range of activities [6]. Those specific to GH32 in-
clude enzymes with β-fructofuranosidase (EC
3.2.1.26), inulinase (EC 3.2.1.7, EC 3.2.1.64, EC
3.2.1.80), levanase (EC 3.2.1.65), fructosyltransferase
(EC 2.4.1.99, EC 2.4.1.100) and fructosidase (EC
3.2.1.153, EC 3.2.1.154) activities [2, 6].
At the structural level, GH32 together with GH43,

GH62 and GH68, are classified as members of the fura-
nosidase (or β-fructosidase) superfamily [7, 8]. These
four GH families have a five-blade β-propeller catalytic
domain in common, but differ in their mechanisms for
glycosidic bond hydrolysis [7]. Those in GH32 and
GH68 (designated as clan GH-J) cleave glycosidic bonds
in a retaining manner (i.e., retaining of the substrate
anomeric configuration), while those in GH43 and
GH62 (designated clan GH-F) cleave glycosidic bonds in
an inverting manner (i.e., inversion of the substrate
anomeric configuration) [8]. GH32 enzymes differ from
GH68 in that they contain an additional C-terminal β-
sheet domain that probably allows for the maintenance
of structural stability during protein oligomerisation [9].
In terms of their known distribution across the Tree of
Life, GH32 and GH43 occur in plants, fungi and
bacteria, GH68 in bacteria only and GH62 in bacteria
and fungi [10].
GH32 enzymes have diverse biological roles and they are

also exploited for commercial and medical purposes. In
plants they influence developmental processes, supply car-
bohydrates to sink tissues and link intracellular and extra-
cellular stimuli to regulate source/sink relations [11, 12].
In bacteria and fungi they allow for the utilization of plant-
derived sucrose as a carbon source [2, 13]. From an indus-
trial perspective, microbial GH32 invertases have various
applications [14]. They are used in the confectionery in-
dustry to produce short-chain fructooligosaccharides
(FOS), which are utilized as calorie-free and non-
cariogenic sweeteners [1]. These enzymes are also associ-
ated with benefits for human health, for example as
immune boosters and antioxidants [15].
Fungi utilize plant-derived sucrose through the produc-
tion of different GH32 enzymes [2, 16]. In Saccharomyces
cerevisiae, two forms of this protein are produced. The
first is a non-glycosylated cytoplasmic form that is consti-
tutively expressed, while the second is a glycosylated form
that is secreted and repressed by the presence of glucose
in the growth medium [17]. Indeed, the overall access to
plant-synthesized sucrose appears to be determined by the
GH32 family gene copy number [2]. It was previously
shown that the number of GH32 genes in a particular spe-
cies is related to its ecological strategy [2, 13]. Plant patho-
gens typically show GH32 family expansions, likely
because these enzymes play a key role in pathogen nutri-
tion [2, 18]. In contrast, sucrose-independent species, such
as animal pathogens and some mycorrhizal fungi, gener-
ally lack the genes encoding these enzymes [2]. Such dif-
ferences in gene copy number can arise from intrinsic
molecular processes like unequal crossover and chromo-
somal duplication, or from processes linked to the activity
of mobile genetic elements like transposons [19].
The potential link between GH32 protein family evo-

lution and ecological adaptation has not been explored
in the Ceratocystidaceae. This monophyletic family of
fungi includes several ecologically diverse lineages that
lend themselves to functional comparison [20]. The
genus Huntiella, for example, includes exclusively sapro-
phytic species that typically colonize the wounded tis-
sues of trees and other plants [20]. In contrast, the
economically important genus Ceratocystis includes
mainly pathogens of woody and herbaceous plants, some
of which cause devastating tree diseases [21, 22]. Not-
able examples include the sweet potato pathogen C. fim-
briata [23], the mango pathogen C. manginecans [24],
and the Acacia pathogen C. albifundus [25]. Despite the
availability of whole genome sequence information for
all three of the latter species, as well as for H. monilifor-
mis [21] and H. omanensis [26, 27], very little is known
regarding their GH32 genes, much less their overall
sucrolytic capabilities. In this regard, only one GH32
gene and its associated product has been characterised
(i.e., CmINV of H. moniliformis) and tested for its ability
to produce FOS [28].
This study considered the structure and evolution

of the GH32 protein family in pathogenic and non-
pathogenic species in the Ceratocystidaceae. The
specific research objectives were: (i) Sequence and as-
semble the genome of a third Huntiella species, H.
savannae, to allow for meaningful genomic compari-
son between Huntiella and Ceratocystis; (ii) Identify
and annotate putative GH32 family genes in H.
savannae and publicly available genomes of Ceratocys-
tis and Huntiella using an in silico approach; (iii)
Infer the evolutionary history of the GH32 family in
Ceratocystidaceae and other Sordariomycetes; (iv)
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Identify potential genomic processes that shaped the
evolution of the GH32 gene family.

Methods
Genome sequences
Genome sequence information for three Huntiella spe-
cies and three Ceratocystis species was utilized in this
study (Table 1). Genomes for H. moniliformis ([Gen-
Bank:JMSH00000000]; [26]), H. omanensis ([GenBank:-
SUI00000000]; [27]), C. manginecans ([GenBank:JJRZ01
000000]; [26]), C. fimbriata ([GenBank:APWK00000
000]; [21]) and C. albifundus ([GenBank:JSSU00000000];
[27]) were generated in previous studies and are
available from the GenBank database of the National
Centre for Biotechnology Information (NCBI; http://
www.ncbi.nlm.nih.gov/). The genome sequence for H.
savannae (isolate CMW17300, [29]) was determined in
the current study (see below).
Isolate CMW17300 of H. savannae was grown on

medium containing 20 g/L malt extract agar (MEA, Bio-
lab, Johannesburg, South Africa). Mycelia were scraped
from the growth medium and genomic DNA extracted
using a phenol/chloroform protocol as previously de-
scribed by Barnes et al. [30]. The DNA was then se-
quenced using the Genome Analyzer IIx platform
(Illumina) at the Genome Centre, UC Davis, California,
USA. Paired-end libraries with an insert size of approxi-
mately 350 and 600 bases were used to produce reads
with an average length of 100 bases. CLC Genomics
Workbench 6.0.1 (CLC Bio, Aarhus, Denmark) was used
to discard poor-quality reads and/or terminal nucleo-
tides at a threshold of Q13 (P = 0.05) after which de novo
assembly was done using Velvet [31], and an optimal K
mer length of 67 determined using VelvetOptimiser
(http://bioinformatics.net.au/software.velvetoptimiser.sht
ml). The pre-assemblies were scaffolded using SSPACE
v.2.0 [31] with default parameters, except -x = 0 and -k
= 20. The gaps were reduced with GapFiller v.2.2.1 [32]
using default parameters. Open reading frames (ORFs)
were predicted using AUGUSTUS [32] based on the
gene models for Fusarium graminearum (http://bioin-
f.uni-greifswald.de/augustus), while genome complete-
ness was evaluated using the Core Eukaryotic Genes
Mapping Approach (CEGMA) pipeline [33].

GH32 gene identification and characterisation
To identify putative GH32 homologs in the genomes con-
sidered in this study, we utilized representative sequences
that spanned the fungal GH32 gene family phylogeny [2].
These included Aspergillus oryzae (XP001823245, Group
1), A. niger (ABB59682.1, Group 2), F. verticillioides
(FVEG10082.3, Group 3), Botryotinia fuckeliana
(BCIG16010.1, Group 4), Stagonospora nodorum
(SNOG01192.1, Group 5), Neurospora crassa (EAA32020
Group 6), A. niger (ABB59678.1 Group 7), H. moniliformis
(AGV22100.1 Group 8) [29], and A. terreus
(XP001218601 Group 9). In the various Huntiella and
Ceratocystis genomes, putative invertase homologs were
identified by performing local BLAST searches (tblastn,
expect (E)-values < 10−5) using BioEdit v 7.2.5 [34]. For
comparative purposes, putative invertase homologs
among representative Sordariomycetes were identified
and obtained using BLAST searches (blastp and tblastn,
E-values < 10−5) on the Joint Genome Institute (JGI) por-
tal (www.genome.jgi.doe.gov) (Table 1).
For the identified genes, functional domains and fea-

tures of the predicted proteins were annotated using Inter-
ProScan (v.4.8) (http://www.ebi.ac.uk/Tools/pfa/iprscan/),
NCBI’s Conserved Domain (CD) (http://www.ncbi.nlm.-
nih.gov/Structure/cdd/wrpsb.cgi) and Pfam searches
(http://pfam.xfam.org/search), as well as SignalP v.4.1
(www.cbs.dtu.dk/services/SignalP/) and NetNGlyc v.1.0
(www.cbs.dtu.dk/services/NetNGlyc/) analyses. Sub-
cellular localization analysis was performed using SignalP.
Three-dimensional (3D) models of the N-terminal and C-
terminal domains were respectively generated and
visualised using the Swiss-Model Web server (http://
www.expasy.org/swissmod/SWISS-MODEL.html) and
Swiss-PdbViewer v.4.04 (http://spdbv.vital-it.ch/). To pre-
dict the 3D structure of the identified invertases, a 3D
structure of a fructosyltransferase in A. japonicus (PDB id:
3lfi.1) was used as a template.

GH32 orthology relationships
Several methods were employed to establish the orthol-
ogy relationships among the Ceratocystidaceae GH32
homologs. This was important as the characterization of
homologous proteins/genes (i.e., those derived from a
common ancestry) facilitates inferences regarding their
evolution and function [35]. In this study, we used the
definitions proposed by Koonin [36] for the terms “par-
alogy” and “orthology”. While orthologs (i.e., homologs
that evolved from a common ancestor through speci-
ation) are expected to encode proteins with equivalent
functions, paralogs (i.e., homologs that are the product
of an ancestral duplication) are thought to more readily
acquire novel functional roles [36].
The orthology relationships among the Ceratocystida-

ceae GH32 homologs were predicted using phylogenetic
criteria [34, 37]. For this purpose, a Maximum Likeli-
hood (ML) phylogeny was constructed with the putative
Ceratocystidaceae and Sordariomycetes GH32 members
identified in this study, as well as the protein sequences
of currently described members of family GH32 in the
Carbohydrate-Active enZYmes (CAZY) database (http://
afmb.cnrs-mrs.fr/CAZY/), which were obtained from the
NCBI database. For this purpose, the sequences were
aligned using MAFFT (Multiple sequence alignment
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Table 1 Genome information of the Huntiella, Ceratocystis and Sordariomycetes species included in this study

Taxon Assembly size
(Mbp)

Number of
scaffoldsa

Number of gene
modelsb

Referencesc

C. manginecans 31.71 980 7 494 Van der Nest et al. 2014.

C. fimbriata 29.40 2 641 7 266 Wilken et al. 2013

C. albifundus 27.15 939 6 967 Van der Nest et al. 2014.

H. moniliformis 25.43 365 6 832 Van der Nest et al. 2014.

H. savannae 28.54 361 7 361 This study

H. omanensis 31.50 1 638 8 395 Van der Nest et al. 2014.

Acremonium alcalophilum v2.0 54.42 13 9 521 JGI

Anthostoma avocetta NRRL 3190 v1.0 56.23 786 15 755 JGI

Apiospora montagnei NRRL 25634 v1.0 47.67 686 16 992 JGI

Beauveria bassiana ARSEF 2860 33.69 235 10 364 Xiao et al. 2012 Scientific Reports 2

Chaetomium globosum v1.0 34.90 37 11 124 JGI

Colletotrichum graminicola M1.001 51.60 653 12 006 O’Connell et al. 2012 Nat Genet 2012
44:1060–5

Colletotrichum higginsianum IMI 349063 49.08 10 235 16 172 O’Connell et al. 2012 Nat Genet 2012
44:1060–5

Coniochaeta ligniaria NRRL30616 V.1.0 42.38 135 13 657 JGI

Cordyceps militaris CM01 32.27 32 9 651 Zheng et al. 2011 Genome Biol 12:R116

Cryphonectria parasitica EP155 v2.0 43.90 26 11 609 JGI

Daldinia eschscholzii EC12 v1.0 37.55 398 11 173 JGI

Eutypa lata UCREL1 54.01 2 334 11 685 Blanco-Ulate et al. 2013 Genome
Announc 1:e00390–13

Fusarium fujikuroi IMI 58289 43.83 12 14 813 Wiemann et al. 2013 PLoS Pathog
9:e1003475

Fusarium graminearum v1.0 36.45 31 13 322 Cuomo et al. 2007 Science 317:1400–2

Fusarium oxysporum v1.0 61.36 114 17708 JGI

Fusarium verticillioides 7600 v1.0 41.78 36 14 188 JGI

Nectria haematococca v2.0 51.15 72 15 707 JGI

Glomerella acutata v1.0 50.04 307 15 777 JGI

Glomerella cingulata 23 v1.0 58.84 119 18 975 JGI

Grosmannia clavigera kw1407 29.79 289 8 312 DiGuistini et al. 2011 PNAS 108:2504–9

Hypoxylon sp. CI-4A v1.0 37.70 899 11 712 JGI

Ilyonectria sp. v1.0 63.66 325 22 250 JGI

Metarhizium acridum CQMa 102 39.42 241 9 849 Gao et al. 2011 PLoS Genet 7:e1001264

Metarhizium robertsii ARSEF 23 39.15 176 10 583 Gao et al. 2011 PLoS Genet 7:e1001264

Myceliophthora thermophila v2.0 38.74 7 9 110 Berka et al. 2011 Nature Biotech
29:922–927

Neurospora crassa OR74A v2.0 41.04 20 10785 JGI

Neurospora discreta FGSC 8579 mat A 176.0 37.3 9 948 JGI

Neurospora tetrasperma FGSC 2508 mat A v2.0 39.10 81 10 380 Ellison et al. 2011 Genetics 189:55–69

Ophiostoma piceae UAMH 11346 32.84 45 8 884 Haridas et al. 2013 BMC Genomics 14:373

Phaeoacremonium aleophilum
UCRPA7

47.47 624 8 834 Blanco-Ulate et al. 2013 Genome
Announc 1, e00390–13

Podospora anserina S mat+ 35.01 7 10588 JGI

Sodiomyces alkalinus v1.0 43.45 29 9 411 JGI

Thielavia antarctica CBS 123565 v1.0 40.66 153 9 204 JGI

Thielavia appendiculata CBS 731.68 v1.0 32.74 109 11 942 JGI
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Table 1 Genome information of the Huntiella, Ceratocystis and Sordariomycetes species included in this study (Continued)

Thielavia arenaria CBS 508.74 v1.0 30.99 69 10 954 JGI

Thielavia hyrcaniae CBS 757.83 v1.0 31.18 251 11 338 JGI

Thielavia terrestris v2.0 36.91 6.00 9 813 Berka et al. 2011 Nature Biotech 29:922–927

Trichoderma atroviride V2.0 36.10 29.00 11 863 JGI

Trichoderma asperellum CBS 433.97 v1.0 40.87 2 282 13 932 JGI

Trichoderma harzianum CBS 226.95 v1.0 40.98 532 14 095 JGI

Trichoderma longibrachiatum ATCC
18648 v3.0

40.87 2 282 13 932 JGI

Trichoderma virens Gv29-8 v2.0 39.00 93 12 427 JGI

Trichoderma reesei v2.0 34.10 89 9 129 JGI

Verticillium dahliae v1.0 33.83 52 10 535 Klosterman et al. 2011 PLoS Pathogens 7: e1002137
a Number of scaffolds/supercontigs that make up an individual genome assembly
b Number of the genes predicted for each genome assembly
c JGI = Joint Genome Institute portal (www.jgi.doe.gov)
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based on fast Fourier transform) v.7.0 (http://
mafft.cbrc.jp/alignment/software/) with the L-INS-i op-
tion [38]. Motifs that were not present in all of the se-
quences (e.g., eukaryotic signal motif for extracellular
localization and transmembrane motifs for intracellular
localisation) were excluded from the alignment. ML ana-
lysis was performed using PhyML v.3.0 [39] with the
best-fit amino acid substitution model as indicated by
ProtTest v.2.4 [40]. The GH32 family ML analysis incor-
porated the Le-Gascuel (LG) model [41], a proportion of
invariable sites (I) and the observed amino acid frequen-
cies (F). Branch support was estimated with PhyML
using 1000 bootstrap replicates and the same best-fit
models and parameters. Phylogenetic trees were viewed
and edited using MEGA v.5 [42].
Gene order (i.e., synteny) and gene structure informa-

tion was also used to investigate orthology relationships
among the Ceratocystidaceae GH32 gene family m-
embers. According to Jun et al. [43] orthologous genes
typically share homologous neighbouring genes, while
non-orthologous genes are typically not flanked by hom-
ologous neighbours. Also, orthologous genes will more
likely be structured similarly (i.e., share specific domains
and introns) than non-orthologous genes [43]. For the
gene order analyses, genes and proteins were predicted
on all the scaffolds harbouring GH32 gene family mem-
bers using AUGUSTUS [32]. The predicted genes were
then annotated using Blast2GO [44] in the CLC Genom-
ics Workbench 6.0.1 (CLC Bio, Aarhus, Denmark). The
sequences of these predicted genes, on each side of the
GH32 gene family members, were then used in local
BLAST searches in BioEdit. Homology between neigh-
bouring genes was defined as those with blastp and
tblastn E-values < 10−5. Gene structure similarity was
measured using the intron conservation ratio (ICR) be-
tween two intron-bearing genes [43]. The ICR between
two homologous genes was calculated as the number of
positionally homologous introns (i.e., introns that occur
at the same position in different genes) divided by the
total number of intron positions from the protein align-
ment [43]. Non-orthologous genes are expected to have
ICR-values < 0.5 according to Jun et al. [43].
Finally, OrthoMCL v.2.0.9 [35] was used in an all-

against-all BLAST search, followed by a Markov Cluster
analysis to group putative orthologs and paralogs be-
tween the Huntiella and Ceratocystis species. For this
analysis, we constructed a sequence database consisting
of 43 052 predicted proteins, which consisted of all the
AUGUSTUS-predicted proteins for each of the Hun-
tiella and Ceratocystis species. OrthoMCL was run
according to the recommended parameters, with an E-
value threshold of 10−5 [35].

Analysis of GH32 gene family evolution
To make inferences regarding GH32 gene family expan-
sions and contractions across the fungi examined in this
study, we employed CAFE v.3.1 (Computational Analysis
of gene Family Evolution) [45]. For these analyses, the
birth (λ) and death (μ) rates were estimated using the
lambdamu tool with ‘-s’ option, while the number of
gene gains and losses on each branch of the tree was es-
timated with the ‘-t’ option. The estimated birth and
death rates (λ and μ) used in the subsequent analysis
were 0.003 and 0.005, respectively. CAFE was run with
default parameters of a P-value cut-off of 0.01 (option
-p) and the number of random samples used the default
value of 1000 (option -r). A time-calibrated Sordariomy-
cetes tree (see below) was used in this analysis where
transitions over individual branches were considered sig-
nificant at P<0.005.
To generate the time-calibrated Sordariomycetes tree

needed for the CAFE analysis, the Bayesian Evolutionary

http://mafft.cbrc.jp/alignment/software/
http://mafft.cbrc.jp/alignment/software/
http://www.jgi.doe.gov
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Analysis by Sampling Trees (BEAST) package v.2.2.1
[46] was used. For this purpose, we utilized five single
copy genes routinely used for phylogenetic analyses
[20, 47, 48]. The data (see Additional file 1: Table S1)
for the analysis were extracted from the Huntiella
and Ceratocystis genomes by performing local tblastn
analysis (E-value < 10−5) in BioEdit using reference se-
quences from A. clavatus. These were elongation factor-
1 alpha [EF-1a, GenBank:7000001156883129], elongation
factor-3 alpha [EF3, GenBank:7000001156847434], mini-
chromosome maintenance complex component 7 [MCM7,
GenBank:7000001156824401], RNA polymerase II largest
subunit [RPB1, GenBank:XP_001268791] and RNA poly-
merase II second largest subunit [RPB2, Gen-
Bank:XP_001272355)]. These respective gene sequences
were also extracted from the representative Sordariomy-
cetes included in the JGI database. The relevant sequences
for outgroup taxa in the Dothideomycetes (Alternaria bras-
sicicola, Stagnospora nodrum and Mycosphaerella fijiensis)
were also obtained using the JGI portal.
The five protein sequences were aligned with MAFFT

as described above and the alignment served as input for
a Bayesian tree search with BEAST. A ProtTest analysis
suggested the Whelan and Goldman (WAG; [49]) model
as the best-fitting evolutionary model for this data. To
generate a time-calibrated tree, the analysis was run
using the Markov chain Monte Carlo (MCMC) method
and four calibration points, which included the Dothi-
deomycetes crown group (mean 350 Million years ago
[Mya] with a 95 % credibility interval [CI] of 273–459)
[50], the last common ancestor (LCA) of the Hypo-
creales (181 Mya with a 95 % CI of 150–213) [51], the
Clavicipitaceae crown group (117 Mya with a 95 % CI of
95–144) [51], as well as the Nectriaceae crown group
(125 Mya with a 95 % CI of 98–155) [51, 52]. The pro-
gram BEAUTi v.2.0 was used to prepare an xml file to
create a starting tree for the BEAST analyses. Priors in-
cluded the strict molecular clock model with a Yule
process for the model of speciation [53]. The standard
deviation of all distributions was set to 1.0. Two analyses
were run with 10,000,000 generations, sampling data
every 1000th generation. The first 15 % of the trees were
removed (burn-in) and a consensus of the remaining
trees was obtained using LogCombiner and TreeAnnota-
tor [46] and viewed using FigTree v.1.3.1 (http://tree.-
bio.ed.ac.uk/software/figtree). Tracer v.1.5 (http://
beast.bio.ed.ac.uk/Tracer) was used to inspect the chains
for convergence, and to ensure that ESS (Effective Sam-
ple Size) values exceeded 200 [46].

Fot5 analysis
The genomic distribution of pogo-like elements, which
are homologous to F. oxysporum transposase 5 (Fot5;
[54]) in the Ceratocystidaceae, were investigated, as this
element was located near the GH32 family genes in the
genomes of the Ceratocystis species examined. For this
purpose, the F. oxysporum Fot5 protein sequence [Gen-
Bank: AJ608703] was used in local BLAST searches
(tblastn E-value < 10–5) with BioEdit to identify homo-
logs in the Huntiella and Ceratocystis genomes. The
conserved DDD catalytic domain of Fot5 (i.e., triad of
acidic amino acids [Asp-Asp-Asp or Asp-Asp-Glx] that
forms the catalytic pocket for the cleavage of DNA
strands) [55] of the homologs identified here, and the
previously characterised pogo-like transposons [56] were
aligned with MAFFT as described above. This alignment
was subjected to ML tree reconstruction using PhyML
with the best-fit model parameters (WAG plus gamma
to account for among site rate variation) as indicated by
ProtTest. Branch support was estimated with PhyML
using 1000 bootstrap replicates and the same model
parameters.
Whether the Fot5 homologs identified in Ceratocystis

have been subjected to repeat-induced point mutation
(RIP) was also considered. In filamentous fungi, RIP is a
defense mechanism against mobile genetic elements [56]
and involves the transition from C:G to T:A nucleotides
in pairs of duplicated sequences during meiosis [57].
Therefore, the TpA/ApT ratio across the various Cerato-
cystis Fot5 sequences was measured. This simple index
reflects the frequency of TpA RIP products, and was
used as an indication of the RIP response [58]. We also
calculated the (CpA + TpG)/(ApC +GpT) index, which
considers both the products (TpA) and the targets (CpA
and TpG) of RIP [58]. RIPCAL (http://www.sourcefor-
ge.net/projects/ripcal) was used to calculate these indi-
ces in the aligned Fot5 nucleotide sequences of
Ceratocystis.

Results
Genome sequences
Illumina sequencing of the H. savannae isolate pro-
duced a total of 2 884 747 186 bases of trimmed
reads with an average length of 85.68 bases (Table 2).
The draft genome of this isolate contained 28.54
megabases (Mb) and was made up of 361 scaffolds
larger than 500 bases, of which the largest was 1 009
760 bases in length (Table 2). The assembly had an
N50 scaffold size of 229 095 bases with a GC content
of approximately 47.39 %. The H. savannae draft gen-
ome assembly was predicted to encode 7 687 putative
ORFs with CEGMA completeness scores of 96.37 %
(partial), which is comparable to the draft genomes of
H. omanensis (31.5 Mb in size and encodes 8 395
ORFs, [27]), H. moniliformis (25 Mb in size and en-
codes 7000 ORFs, [26]), C. fimbriata (29.4 Mb in size
and encodes 7 266 ORFs), [21], C. albifundus
(27.2 Mb in size and encodes 6 967 ORFs, [27]) and

http://tree.bio.ed.ac.uk/software/figtree
http://tree.bio.ed.ac.uk/software/figtree
http://beast.bio.ed.ac.uk/Tracer
http://beast.bio.ed.ac.uk/Tracer
http://www.sourceforge.net/projects/ripcal
http://www.sourceforge.net/projects/ripcal


Table 2 Statistics of the Huntiella savannae genome assembly
and gene annotations

Summary data Huntiella savannae

Total reads before trim (bp) 33 168 540

Total reads after trim (bp) 33 055 449

Average length of reads before trim (bp) 101

Average length of reads after trim (bp) 85.68

Number of scaffolds 361

Total sequence length (Mb) 28.54

Largest scaffold (bp) 1 009 760

N50 Scaffold size (bp) 229 095

GC % 47.39

Predicted gene models 7 687

CEGMAa 96.37
a Genome completeness was evaluated using the Core Eukaryotic Genes
Mapping Approach (CEGMA) pipeline [38]
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C. manginecans (31.7 Mb in size and encodes 7 494
ORFs, [26]).
With the exception of C. fimbriata, the Ceratocystida-

ceae GH32 gene family members were all located on sin-
gle contigs (C. manginecans: scaffold JJRZ01000038; C.
albifundus: scaffold JSSU01001085; H. omanensis: scaf-
fold JSUI01006495; H. savannae: scaffold NODE_2; H.
moniliformis: scaffold JMSH01000004) (see Table 3 for
gene locations and sizes). The GH32 genes of C. fim-
briata were located on two scaffolds (C. fimbriata: scaf-
fold APWK02000925 and scaffold APWK02000924). To
join the two C. fimbriata scaffolds, as well as extend the
scaffolds harbouring these genes in C. fimbriata and C.
albifundus we employed the option ‘Map Reads to Refer-
ence’ in the CLC Genomics Workbench (mismatch cost
= 2, insertion and deletion cost = 3, length fraction = 1.0,
similarity fraction = 0.9) using scaffold JJRZ01000038 of
C. manginecans as a reference. Scaffolds that harboured
the GH32 genes in H. savannae and H. omanensis were
Table 3 GH32 family members identified in Huntiella and Ceratocyst

Gene Name Taxona Genomic

CmINV_V Ceratocystis manginecans JJRZ0100

CmINV_CW Ceratocystis manginecans JJRZ0100

CfINV_V Ceratocystis fimbriata APWK020

CfINV_CW Ceratocystis fimbriata APWK020

CaINV_V Ceratocystis albifundus JSSU0100

CaINV_CW Ceratocystis albifundus JSSU0100

HmINV_CW Huntiella moniliformis JMSH010

HaINV_CW Huntiella savannae NODE_2:

HoINV_CW Huntiella omanensis JSUI0100
a The GenBank accesssion numbers for the C. manginecans, C. fimbriata and C. albif
for the H. moniliformis, H. savannae and H. omanensis genomes are JMSH00000000,
b The name of the contig is followed by the nucleotide position of the gene within
similarly extended using scaffold JMSH01000004 of H.
moniliformis as reference. The C. manginecans and H.
moniliformis scaffolds were selected as references be-
cause these assemblies were most complete (Table 1)
and also had the longest scaffolds that contained the
GH32 genes.

GH32 gene identification and characterisation
All of the Ceratocystis and Huntiella genomes investigated
in this study contained at least one putative member of
the GH32 family. For the Ceratocystidaceae, the Huntiella
species each contained a single copy of the gene (desig-
nated as HaINV-CW, HsINV-CW and HmINV-CW [pre-
viously named as CmINV; [28]), while the Ceratocystis
species each contained two copies (designated as CaINV-
CW, CaINV-V, CfINV-CW, CfINV-V, CmINV-CW and
CmINV-V) (Fig. 1; Table 3). The distribution of the GH32
family genes among other Sordariomycetes varied greatly
and some taxa lacked a GH32 gene altogether (Fig. 1). For
example, 0–4 genes were identified in the Xylariales, 0–12
in the Hypocreales, and 0–3 in the Sordariales and Glo-
merellales. As expected [2], the plant pathogens generally
contained more GH32 genes (e.g., 12 in F. oxysporum; and
6 in each of A. terreus, Talaromyces stipitatus and Nectria
haematococca). These genes also appeared to be absent
from insect pathogens and plant pathogens that evolved
from insect pathogens (e.g., Cordycipitaceae and Clavicipi-
taceae) [47].
Among the examined Ceratocystidaceae GH32 family

members, the InterProScan and SignalP analyses identi-
fied a conserved N-terminal (IPR013148) (Fig. 2). These
analyses also identified a less conserved C-terminal
(IPR013189) that is likely essential for overall protein
stability ([59]; Fig. 2). These sequences, including those
identified for the Ceratocystidaceae, also contain the
eight well-conserved domains (A-G) and three highly
conserved acidic residues characteristic of GH32 gene
family members ([60]; Fig. 2). The latter include an
is

Locationb Length (bp) Length (aa)

0038:33284-34837 1945 627

0038:36427-37962 1952 625

00925:4324-5817 1945 627

00924:3-1490 1938 625

1085:20903-22444 1829 627

1085:17498-19033 1952 625

00004:78747-80591 1848 615

199823- 201667 1848 615

6495:45419-47263 1848 615

undus genomes are JJRZ01000000, APWK00000000 and JSSU00000000. Those
LCZG00000000 and SUI00000000
the contig



Fig. 1 Glycoside hydrolase 32 (GH32) gene family expansions and contractions mapped onto the Sordariomycetes chronogram. Significant
(P< 0.05) expansions (indicated with red lines) and contractions (indicated with green lines) were inferred using CAFE v3.1 (Computational
Analysis of gene Family Evolution) [45]. The probable ancestral gene family size for each node is indicated within white circles, while the family
sizes in extant species are indicated at the tips of terminal branches. Colour-coding designates the Sordariomycetes taxa to either order or family
level. The chronogram was inferred in this study (see Additional file 2: Figure S1). The sequences from Dothideomycetes were used for
outgroup purposes
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aspartic acid located in the WMNDPNG motif (also
known as β-fructosidase motif or sucrose-binding box)
of domain A that acts as a nucleophile, and an aspartic
acid located in the RDP motif of domain D that acts as a
transition-state stabiliser, as well as a glutamic acid lo-
cated in the EC motif of domain E that acts as the acid/
base catalyst [3]. Compared to the NG present in the
WMNDPNG motif of other fungi [57], the Huntiella
GH32 genes contain a CA, while those of the Ceratocys-
tis genes contain a CG. NetNGlyc analysis also revealed
that all of the Ceratocystidaceae GH32 genes contained
a potential N-glycosylation site. This indicates that the



Fig. 2 (See legend on next page.)
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(See figure on previous page.)
Fig. 2 Alignment of the conserved motifs of the glycoside hydrolase 32 (GH32) enzymes. These include conserved regions (labelled A-G) and
various amino acids (shown with black stars). The N-terminal β-propeller module (indicated in the blue block) and the C-terminal β-sandwich
module (indicated in the red block) are also highlighted. The translated sequences of one group of the Ceratocystis GH32 gene possess a trans-
membrane domain (shown with dotted lines) characteristic of vacuolar invertases [5], while the translated sequences of the other Ceratocystis
GH32 gene and the Huntiella GH32 gene possess an eukaryotic secretion signal (shown with dotted lines) needed for secretion [60]
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genes identified in these fungi encode a conserved as-
paragine residue that is predicted to attach to a glycan
chain to facilitate various co- and post-translational
modifications and enhance the stability, transport and
secretion of proteins [61, 62]. The inferred 3D structures
of the proteins encoded by Ceratocystidaceae GH32
genes further confirmed the presence of the five-bladed
β-propeller catalytic module at the N-terminal, as well
as the presence of two six-stranded β-sheets composed
of antiparallel β-strands forming a sandwich-like fold at
the C-terminal domain (Fig. 3).
The SignalP analyses showed that parts of the inferred

amino acid sequences of the Huntiella genes (i.e., the
first 28 residues encoded by HaINV-CW, HsINV-CW
and HmINV-CW), as well as one of the Ceratocystis ho-
mologs (i.e., the first 31 residues encoded by CaINV-
CW, CfINV-CW and CmINV-CW) are comprised of a
eukaryotic secretion signal. This suggests an extracellu-
lar localisation for the proteins, which is typical of cell
wall invertases [16]. These analyses also predicted pos-
sible signal peptide cleavage sites between amino acids
25 and 26 for the Huntiella homologs and between
Fig. 3 3D structure of the C. manginecans invertase (CmINV-CW).
Roman numerals (I–V) show the five blades of the β-propeller
module, while the C-terminal β-sandwich module is indicated in
dark red. These structures were inferred with the Swiss-Model Web
server (http://www.expasy.org/swissmod/SWISS-MODEL.html) by
making use of a fructosyltransferase from Aspergillus japonicus (PDB
id: 3lfi.1) as template
residues 19 and 20 for the one Ceratocystis homolog
(Fig. 2). However, the second homolog of the gene in
Ceratocystis species lacked the N-terminal signal se-
quence. Instead, parts of the translated sequences of this
gene (i.e., the first 32 residues encoded by CaINV-V,
CfINV-V and CmINV-V) comprised a transmembrane
region, which is characteristic of vacuolar invertases [5]
suggesting an intracellular localisation for the protein.
Our analysis also suggested that this homolog adopts the
NinCout configuration that consists of a short N-
terminal segment in the cytosol and a long C-terminal
region in the vacuole, which is typical of MEnM of type
II single-pass membrane proteins [5]. We therefore clas-
sified the Ceratocystidaceae GH32 gene family homologs
as either cell wall invertases (with a CW suffix to gene
and protein names; for the Huntiella homologs and one
group of homologs in Ceratocystis), or as vacuolar inver-
tases (with a V suffix to gene and protein names; for the
second homolog in Ceratocystis).
The SignalP analyses of GH32 gene family members in

the other Sordariomycetes showed that genes belonging
to the groups designated by Parrent et al. [2] as extracel-
lular invertases contained the eukaryotic secretion signal
motif. In contrast, this motif was absent from genes that
belonged to the groups they designated as intracellular
invertases. Indeed, previous molecular and biochemical
studies have shown that the eukaryotic secretion signal
motif is present in genes encoding extracellular inver-
tases and absent from genes encoding intracellular inver-
tases [63, 64]. Except for the three Ceratocystis genes
(i.e., CaINV-V, CfINV-V and CmINV-V), none of the
other Sordariomycetes GH32 genes contained the trans-
membrane motif, which is characteristic of vacuolar in-
vertase genes.

GH32 orthology relationships
Gene order analysis of the Ceratocystis scaffolds har-
bouring GH32 family members revealed that the cell
wall and vacuolar invertase genes are located adjacent to
each other in all three of the species studied. However,
the Huntiella cell wall invertase gene is located at a dif-
ferent genomic region when compared to that of Cerato-
cystis (Fig. 4). This was confirmed using the gene order
analysis, where homologous flanking genes (tblastn, E-
values < 10−5) were only obtained for the within-genus
comparisons. Genes encoded on the examined scaffolds,

http://www.expasy.org/swissmod/SWISS-MODEL.html


Fig. 4 The predicted genes flanking the Glycoside hydrolase 32 (GH32) gene family members in Huntiella and Ceratocystis. Genes present on the
scaffolds harbouring the putative invertases were predicted using AUGUSTUS [32] and annotated using Blast2GO [44]. Note that the genes are
not drawn to scale. The Huntiella GH32 family gene is flanked by putative G1/S-specific cyclin Pcl5 (Colletotrichum orbiculare, ENH86823), RNAse
P Rpr2/Rpp21 subunit domain-containing protein (Gaeumannomyces gramini, EPQ63823), Malate synthase-like protein (Acremonium chrysogenum,
XP003651419), serine/threonine-protein kinase (Metarhizium acridum, EFY93082.1), nitrogen response regulator (Colletotrichum gloeosporioides,
ELA29612.1), DEAD/DEAH box helicase (Colletotrichum sublineola, KDN64774), 2-dehydropantoate 2-reductase (Colletotrichum gloeosporioides,
EQB48758), and structural maintenance of chromosomes 5 (Villosiclava virens, KDB17190) genes. The two Ceratocystis GH32 family genes were
flanked by putative Phosphatidylinositol-specific phospholipase (Metarhizium anisopliae, KFG82763), putative WD domain-containing protein
(Togninia minima, EOO00810.1), reverse transcriptases (Sclerotinia sclerotiorum, XP_001588999 and Blumeria graminis, CCU77161), transcription
elongation factor 5 (Scedosporium apiospermum, KEZ42236), adenylate kinase (Magnaporthe oryzae, XP003716198), and Fot5 transposase
(Colletotrichum gloeosporioides, ELA33194.1) genes
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other than the GH32 family genes, had homologs else-
where in the genomes of the two fungi (e.g. the Cerato-
cystis scaffolds harboured various putative reverse
transcriptase genes, which were also present on scaffolds
other than the one harbouring the GH32 gene in the
Huntiella genomes). An exception was for the Fot5
transposase genes that were only present in the genomes
of the Ceratocystis species (see below). According to Jun
et al. [43], such an observed lack of synteny points to-
wards a non-orthologous relationship between the
GH32 genes of Ceratocystis and Huntiella.
Analysis of gene and protein structures of the Cerato-

cystidaceae and Sordariomycetes GH32 family members
revealed that coding sequences were interrupted by in-
trons that vary greatly in number and distribution across
all of the taxa examined in this study (Fig. 2). For ex-
ample, the Huntiella genes (consisting of 1 848 bases
and encoding 615 aa) did not harbour any introns, while
both the Ceratocystis genes (consisting of 1 945–1 952
bases and encoding 625–627 aa) contained a single in-
tron at the same position (Table 3). This corresponded
to an ICR of 1 for the Ceratocystis GH32 family mem-
bers, and an ICR value of 0 for the Ceratocystidaceae
GH32 family members. According to Jun et al. [43], the
latter ICR value indicates non-orthology between the
GH32 genes of Ceratocystis and Huntiella.
The ML phylogeny revealed that the Huntiella and

Ceratocystis GH32 genes grouped with known members
of this protein family (Fig. 5). The Ceratocystis vacuolar
invertases formed part of a well-supported clade previ-
ously designated as Group 8 [2], which include inver-
tases with intracellular localisation and that lack signal
peptide cleavage sites (Fig. 5). Despite the presence of
signal peptides for extracellular localisation, however, the
Huntiella and Ceratocystis cell wall invertases also
formed part of Group 8. Within this clade, the Cerato-
cystidaceae genes grouped according to their evolution-
ary relationships (i.e., the two genes in Ceratocystis were
more closely related to each other than to the gene in
Huntiella). Within Ceratocystis, the cell wall invertases
formed a sister group to the vacuolar invertases; and
within each of these sister groups, the relationships
among the genes matched the known relationships
among species, with the sequences of C. fimbriata and
C. manginecans grouping together and C. albifundus at
their base. The same was also true for the Huntiella cell
wall invertase genes. Therefore, CaINV-V, CfINV-V and
CmINV-V are orthologs, CaINV-CW, CfINV-CW and
CmINV-CW are orthologs and HaINV-CW, HsINV-CW
and HmINV-CW are orthologs (Fig. 6) [34]. The Cerato-
cystis GH32 genes represent co-orthologs of the Hun-
tiella genes (i.e., the two Ceratocystis GH32 genes are
collectively orthologous to the Huntiella GH32 gene due
to a lineage-specific duplication in the former, Fig. 6)
[34]. Because the duplication that gave rise to the two
Ceratocystis GH32 genes occurred in the ancestor of this
genus, the cell wall and vacuolar invertase genes of these
species represent outparalogs (i.e., paralogous genes de-
rived from a gene duplication event that precedes
lineage radiation [34], Fig. 6). These orthology relation-
ships were consistent with the results of the OrthoMCL
analysis. Therefore, the non-orthology of the GH32
genes in Ceratocystis and Huntiella, suggested by the re-
sults of the synteny and ICR analyses, likely reflects the
involvement of retrotransposition in the evolution of
these genes (see below).



Fig. 5 (See legend on next page.)
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Fig. 5 Maximum likelihood phylogeny of the Sordariomycetes Glycoside Hydrolase 32 (GH32) gene family. Representative sequences of the 8
groups that span the fungal GH32 gene phylogeny [2] were included in this study. GenBank accession numbers or sequence identifiers from
genome projects for each of these sequences are provided in parentheses. Percentage bootstrap support (based on a 1000 repeats) is indicated
at the internodes. The exon-intron structure of the genes is diagrammatically indicated next to each taxon where gaps within solid lines indicate
intron positions. Colour-coding designates the groups previously identified [2]. The sequences from Arabidobsis thaliana were used for
outgroup purposes
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GH32 gene family evolution
BEAST and CAFE analyses were used to identify and
estimate the relative ages of the losses/gains of the
GH32 family genes in several orders and families in
the Sordariomycetes, including Ceratocystidaceae
(Fig. 1, Additional file 2: Figure S1). The ESS-values
for the BEAST analysis parameters were higher than
200, which is the recommended threshold for ensur-
ing appropriate estimation of the posterior distribu-
tion of each parameter [46]. As expected from the
analysis, the root node that represents the divergence
of the Sordariomycetes and Dothideomycetes was
Fig. 6 The inferred evolutionary history of the Ceratocystidaceae Glycoside
among these genes. a The evolutionary tree shows nine homologous gene
depicted as HsINV-CW, HmINV-CW and HoINV-CW, while the Ceratocystis va
and those encoding the Ceratocystis cell wall invertases as CaINV-CW, CmIN
Ceratocystidaceae ancestor likely encoded two invertase (INV) genes, one o
the Ceratocystis and Huntiella lineages (depicted by grey broken line) befor
(depicted in orange) was duplicated in the Ceratocystis ancestor resulting in
species. This duplication was also reconstructed using NOTUNG 2.6 which
[89] (results not shown). All of the invertase genes in the extant Ceratocysti
the Ceratocystidaceae ancestor (depicted by the orange line). The respectiv
emergence (i.e., gene duplication) in the last common ancestor. b Followin
Koonin [36]), the Huntiella cell wall invertase genes share an orthologous re
vertical decent from the common ancestor). The same is also true for the r
each represent a set of orthologs. Because the duplication that gave rise to
Ceratocystis cell wall and vacuolar invertase genes represent outparalogs (i.
lineage radiation/speciation) [36]. However, all of the Ceratocysistis invertase
the lineage-specific duplication in Ceratocystis gave rise to a set of genes th
around 362 Mya (with CI of 346–377 Mya) [51–65].
Based on these data, the estimated divergence time
for the LCA of Huntiella and Ceratocystis was ca. 62
Mya (with CI of 50–70 Mya).
The CAFE analysis identified several gene loss and

gain events in the GH32 gene family (Fig. 1). Many of
these were inferred to be lineage-specific, which in-
cluded significant expansions (e.g., F. oxysporum with 12
gene copies and N. haematococca with 6 gene copies)
and contractions (e.g., Hypoxylon sp., Thielavavia are-
naria, Myceliophthora thermophila, and Colletotrichum
higginsianum all lacking GH32 family members) at the
hydrolase 32 (GH32) gene family and the orthology relationships
s from six species (A). The Huntiella cell wall invertase genes are
cuolar invertase genes are depicted as CaINV-V, CmINV-V and CfINV-V
V-CW and CfINV-CW. As indicated by CAFE, the genome of the
f which (depicted by the grey line) was subsequently lost from both
e the radiation of species. However, the remaining invertase gene
the two invertase genes encoded by the genomes of the extant

detects duplications based on gene tree to species tree reconciliation
s and Huntiella species thus evolved from the same ancestral gene in
e Ceratocystis genes each evolved through vertical decent after their
g the standard nomenclature for duplicated genes (reviewed by
lationship (i.e., orthologs are related via speciation and are derived via
espective cell wall and vacuolar invertase genes of Ceratocystis, where
the Certocystis genes occurred before radiation of this genus, the

e., homologs that derive from a gene duplication event that precedes
genes represent co-orthologs of the gene in Huntiella. This is because
at are collectively orthologous to those of Huntiella [36]



Van der Nest et al. BMC Evolutionary Biology  (2015) 15:273 Page 14 of 20
tips of branches. At deeper phylogenetic levels, signifi-
cant expansions were predicted for branches leading to
the Nectriaceae and the outgroup taxa in the Dothideo-
mycetes, while significant contractions were predicted
for branches leading to the Sordariales, Ophiostoma-
tales, Xylariales, as well as the branch leading to Hypo-
creaceae, Clavicitpitaceae and Cordycipitaceae. Among
the Ceratocystidaceae, a GH32 family contraction was
predicted for the Huntiella species (ca. 62 Mya). Other
GH32 family contractions and expansions in the Sordar-
iomycetes predicted for the first time in the current
study include an expansion on the branch leading to the
Glomerellaceae and an expansion on the branch leading
to the Nectriaceae, as well as a contraction on the
branch leading to the Hypocreaceae-Clavicipitaceae-
Cordycipitaceae clade.

Fot5 analysis
Local BLAST searches with the F. oxysporum Fot5 se-
quence revealed that this gene family is apparently ab-
sent from the Huntiella genomes, while the Ceratocystis
genomes harbour numerous Fot5 homologs (Additional
file 3: Table S2). Phylogenetic analysis of the 202 se-
quences (i.e., 60 from C. fimbriata, 19 from C. albifun-
dus and 106 from C. manginecans, as well as 17
previously characterised pogo-like transposon se-
quences) spanning more than 75 % of the DDD catalytic
domain of Fot5, confirmed that most of these sequences
indeed represent putative Fot5 homologs (Fig. 7 Add-
itional file 4: Figure S2). The identified Ceratocystis Fot5
sequences formed a monophyletic group with the known
Fot5 sequence from F. oxysporum with high bootstrap
support (81 %) (Fig. 7 Additional file 4: Figure S2). How-
ever, some sequences of Ceratocystis also clustered to-
gether with the other Fot family members: three copies
of C. fimbriata clustered with Fot2, two copies of C. fim-
briata and three copies of C. manginecans clustered
with Pot3 and SCSCL. Several groups of identical and
closely related Fot5 homologs were detected, where ho-
mologs belonging to the same species and homologs be-
longing to different species often grouped together.
The putative Fot5 homologs identified in the Ceratocys-

tis genomes displayed the hallmarks of RIP. Overall, the
Fot5 sequences had TpA/ApT index values above 1 (1.5
for C. albifundus, 1.3 for C. fimbriata and 1.5 for C. man-
ginecans), possibly due to the introduction of C:G to T:A
mutations [58]. The Fot5 sequences also had lower (CpA
+ TpG)/(ApC +GpT) index values (1.2 for C. albifundus,
1.1 for C. fimbriata and 1.3 for C. manginecans), indicat-
ing a possible RIP response [58]. Analysis of individual se-
quences revealed a mixture of RIPped and non-RIPped
copies, with 56 % of the C. albifundus Fot5 homologs,
35 % of the C. fimbriata Fot5 homologs and 32 % of the
C. manginecans Fot5 homologs having TpA/ApT ratios of
>1 and A +T richness > 55 % [56]. According to Dufresne
et al. [56] this is indicative of a mild RIP response, allow-
ing the presence of potentially active Fot5 copies.

Discussion
All of the identified Ceratocystidaceae invertase genes
and inferred proteins carry hallmarks of the GH32 gene
family and were considered homologs. They all have an
N-terminal catalytic domain and a C-terminal β-
sandwich domain needed for structural stability [9].
They also contained three conserved residues (i.e., two
aspartates and one glutamate) referred to as ‘the cata-
lytic triad’ (see Fig. 2), which are indispensable for bind-
ing and catalysis [3, 5]. For example, it was suggested
that the aspartate present in the RDP-motif provides
hydrogen bonds to bind the C3 and C4 hydroxyls of
fructose [3]. Although the WMNDPNG-motif present in
the Ceratocystidaceae invertases is not fully conserved,
they do contain the two critical amino acids (W and N)
needed for transfructosylation [66]. Typical of vacuolar
and cell wall invertases, all of the Ceratocystidaceae se-
quences also contained an N-glycosylation site where a
glycan chain can potentially attach to an asparagine resi-
due of the acceptor proteins [67]. Given these common-
alities with other GH32 enzymes, it is likely that the
invertases encoded by the Ceratocystidaceae represent
active enzymes with sucrolytic activities. Thus far, heter-
ologous expression of the HmINV-CW gene of H. moni-
liformis in S. cerevisiae yielded an active invertase that
allowed the mutant yeast to utilize sucrose as sole carbo-
hydrate source [28]. However, further studies are re-
quired to determine if both the vacuolar and cell wall
invertase genes identified in this study are functional in
all of the Ceratocystidaceae that harbour them.
Most functional studies of fungal cell wall invertases

have focused on industrial applications [14, 68], and very
little is known regarding the biological functions of these
enzymes. It is possible that the cell wall and vacuolar in-
vertases of Huntiella and Ceratocystis may enable
colonization of plant tissue by facilitating uptake and
transport of plant-derived sucrose [62]. Previous studies
have shown that during plant-fungus interactions, both
partners contribute to the overall invertase activity [69].
Plants use invertases for sugar signalling linked to stress
and defence responses in addition to nutrition, whereas,
fungal invertases convert extracellular and intracellular
sucrose to fructose and glucose, and ensure the availabil-
ity of nutrients during infection [70–72]. These enzymes
may also be involved in glucose signalling that may in-
fluence fungal virulence [73]. In these fungi, vacuolar in-
vertases may streamline sucrose utilization, especially if
the sucrose-cleaving activity becomes rate-limiting for
provision of sugars to the fungus during infection [71].
The functional expression of GH32 enzymes in



Fig. 7 Maximum likelihood phylogeny of the Fot5 DDD catalytic domain. This analysis was done using the WAG substitution model [49] and
gamma correction to account for among site rate variation. The Ceratocystis Fot5 sequences are included in the grey area and indicated
according to species (green dots = C. albifundus, blue dots = C. fimbriata, red dots = C. manginecans). The branch labelled with an asterisk received
81 % bootstrap support based on the analysis of 1000 pseudoreplicates (see Additional file 4: Figure S2 for full information regarding bootstrap
support for the tree, as well as the sequence identifiers of putative Ceratocystis Fot5 homologs and Additional file 3: Table S2 for their genomic
coordinates). GenBank accession numbers or for previously identified Fot5 homologs are: Fot2 [Genbank:JN624854, F. oxysporum), Fot5
[Genbank:CAE55867, F. oxysporum], Fot1 [Genbank:X64799, F. oxysporum], Fot4 [Genbank:AF076632, F. oxysporum], Fot9 [JGI:2517, F. graminearum],
Fotyl [Genbank:CAG33729.1 Yarrowia lipolytica], Molly [Genbank:CAD32687, Parastagonospora nodorum], Ophio [Genbank:ABG26269, Ophiostoma
novo-ulmi], PABRA [Genbank:ACY56713, Paracoccidioides brasiliensis], Pixie [Genbank:CAD32689, Parastagonospora nodorum], Pot2
[Genbank:CAA83918, Magnaporthe grisea], Pot3 [Genbank:AAC49418, M. grisea], SCSCL [Genbank:XP001592252, Sclerotinia sclerotiorum], Taf1
[Genbank:AAX83011, Aspergillus fumigatus], Tan1 [Genbank:U58946, Aspergillus awamori] USMA [Genbank:UM03882, Ustilago maydis), Flipper
[Genbank:AAB63315, Botryotinia fuckeliana] and Cirt1 [Genbank:XP710204, Candida albicans]
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interactions between Ceratocystidaceae and their plant
hosts and substrates, should be investigated to provide
insights into the potential role this gene family plays in
the infection biology and pathogenesis of this group of
fungi.
To the best of our knowledge, these are the first vacu-

olar invertases identified in fungi. It is conceivable that
gene duplication followed by functional divergence of
the outparalogs gave rise to the two types of invertases
in the Ceratocystidaceae (see Fig. 6). In fact, gene dupli-
cation followed by functional divergence have been
shown to be important drivers of the evolution of GH
families [74]. For example, small changes in the primary
structure of GHs can result in changes to their substrate
specificities [75], while changes at their N-terminals
might influence cellular localisation [8]. Such changes at
the N-terminal could have allowed for the evolution of
the Ceratocystidaceae cell wall invertases from ancestral
Group 8 intracellular invertases. Consistent with this
view, the cell wall invertases of Ceratocystis and Hun-
tiella both contain eukaryotic signal sequences for
directing proteins into the endoplasmic reticulum for se-
cretion [5, 76]. It is also consistent with previous predic-
tions that HmINV-CW in H. moniliformis represents an
extracellular invertase [28]. In turn, the vacuolar invert-
ase of Ceratocystis could have evolved from a cell wall
invertase as has previously been suggested for plant in-
vertases [5]. Such a process would be facilitated by the
loss of the eukaryotic secretion signal sequence and ac-
quisition of signature motifs, which in plants allow for
localisation to the lytic vacuole [5]. Indeed, structural
analysis suggested that the putative vacuolar invertases
of Ceratocystis adopt the characteristic NinCout config-
uration of type II single-pass membrane proteins that
are targeted to vacuoles [5]. These data, together with
the results of our phylogenetic analysis, strongly suggest
that the evolution of the two invertase outparalogs in
Ceratocystis involved divergence from a common ances-
tor by the loss and gain of motifs at their N-terminals to
ultimately yield a cell wall and a vacuolar invertase.
The evolutionary history of the GH32 gene family in

the Ceratocystidaceae was studied in CAFE by recon-
struction of ancestral states across the Sordariomycetes.
This approach involves an evaluation of the probabilities
of changes in family size (i.e., gene copy number expan-
sions and contractions) from “parent to child nodes” in a
time-calibrated phylogeny [77]. The CAFE analysis
showed that the LCAs of most of the Sordariomycetes
orders, as well as the subclass Hypocreomycetidae, likely
encoded two GH32 genes (i.e., a gene family size of two
represents the ancestral or plesiomorphic state for these
groups) (see Fig. 1). This was also true for the Ceratocys-
tidaceae, where the only significant transition (a contrac-
tion) in GH32 gene family size occurred approximately
62.0 Mya in the LCA of Huntiella. However, based on
the GH32 gene phylogeny, the Ceratocystidaceae inver-
tases represent a nested and monophyletic cluster within
GH32 Group 8, suggesting that all of the invertases in
this fungal family evolved from a single ancestral gene
(i.e., the Ceratocystis genes are collectively co-
orthologous to the Huntiella GH32 gene). The most par-
simonious explanation for these findings is therefore that
the evolution of the Ceratocystidaceae GH32 gene family
involved the loss of one of the two ancestral genes pre-
dicted by CAFE (i.e., one of the two GH32 genes pre-
dicted to have been encoded by the LCA of the
Ceratocystidaceae was lost from both the Ceratocystis
and Huntiella lineages) (Fig. 6). On the Huntiella
branch, the remaining gene gave rise to the extant GH32
gene in this genus. In the LCA of Ceratocystis, a lineage-
specific duplication of the remaining ancestral gene gave
rise to the two GH32 genes of the extant species (Fig. 6).
This duplication in the LCA of Ceratocystis also estab-
lished a membership of two for its GH32 gene family.
This superficially resembles the inferred ancestral state
for the overall family, but the data clearly showed that
the extant condition of having two GH32 genes emerged
in the LCA of Ceratocystis, thus indicating that it repre-
sents the synapomorphic state for the genus.
The GH32 gene duplication in the Ceratocystis LCA

likely allowed for the acquisition of novel invertase activ-
ities. A classic view popularized by Ohno [78], is that
gene family expansions associated with gene duplications
are the principal source of new genes that acquire new
functions. This is because duplication creates a redun-
dant gene copy that is free from selection and that can
evolve a new function (i.e., neofunctionalization). It is
therefore possible that following the gene duplication,
relaxed selection allowed for the acquisition of novel do-
mains by the GH32 paralogs. During this process, one of
the Ceratocystis paralogs likely acquired the transmem-
brane region characteristic of vacuolar invertases, while
the other acquired the eukaryotic signal motif character-
istic of cell wall invertases. Based on the results of our
ML and CAFE analyses, the evolution of the Huntiella
GH32 gene followed a parallel evolutionary trajectory
during which it independently acquired its eukaryotic
signal motif.
As have been demonstrated for other Ascomycetes [2],

the data presented here suggested a link between the
ecological strategy of Ceratocystidaceae and GH32 gene
family size. In fungi, changes in the repertoire of GH32
functional products are thought to influence the effi-
ciency at which sucrolytic compounds are exploited [79].
In the Hypocreales, for example, the respective GH32
family expansions and contractions appear to be linked
to the evolution of the Nectriaceae with their
plant pathogenic lifestyles [80], and to that of the
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Cordycipitaceae-Clavicipitaceae clade that are often in-
sect pathogens or have undergone a host jump from in-
sects to plants [81]. The evolution of the Glomeralles
also appeared to be associated with such changes in the
GH32 family, where a significant contraction was ob-
served at the base of the Plectosphaerellaceae with its
alkaliphilic representatives [82], while the Glomerella-
ceae clade with its plant pathogens [83] were associated
with several significant expansions. Plant associated
fungi likely adapted to hosts through a larger repertoire
of invertases that allow these species to access plant-
synthesised sucrose [2]. This might be the case for Cera-
tocystis species with their two GH32 invertases. On the
other hand, restrictions in functional invertase reper-
toires (e.g., in the saprophytic Huntiella) might be im-
portant for exploiting niches with limited sucrose
resources, as well as for potentially avoiding plant de-
fence mechanisms, thus conferring the ability to colonise
plant-associated niches [84]. Although the apparent link
between GH32 gene family size and the ecology of the
Ceratocystidaceae is consistent with the results of
previous studies [2, 75], additional work is needed to
fully understand the role(s) of GHs or carbohydrases
available to these fungi in determining their ecological
capabilities.
Similar to previous studies, results of this study

suggest that transposon-like elements may have
played a role in the evolution of the Ceratocystida-
ceae GH32 invertases. For example, retrotransposon-
like elements that are part of Class I transposable ele-
ments (TEs) [5] have been used to explain why the
number of introns differ between certain groups of
plant invertases [5]. Local synteny information and in-
tron conservation ratios indicated that the Huntiella
invertase might represent a retrotransposed copy of
the ancestral gene (i.e., the ancestral GH32 gene that
gave rise to all of the Ceratocystidaceae genes exam-
ined here). Similar to what has been shown for other
retrotransposed gene copies [43], the Huntiella invert-
ase genes lack introns, and the genomic region con-
taining them appears to be non-homologous to the
invertase gene-bearing genomic region of Ceratocystis
(i.e., the GH32 genes of these two genera are flanked
by completely different sets of genes). Retrotranspo-
sons facilitate intron loss/gain via a copy and paste
mechanism involving, first, reverse transcription of
messenger RNA (mRNA) into complementary DNA
(cDNA), followed by homologous recombination be-
tween the original gene (or a homolog) and cDNA
[55]. Therefore, as have been suggested for Oryza
sativa and A. thaliana [5], the activity of
retrotransposon-like elements in the genomes of the
Ceratocystidaceae and its ancestors could have been
responsible for or involved in the initial loss of one
of the two ancestral GH32 genes predicted for the
Ceratocystidaceae, and the subsequent duplication in
the LCA of Ceratocystis.
Another group of transposon-like elements that could

have influenced the evolution of the Ceratocystidaceae
invertases is the Fot5 or pogo-like elements (Class II of
TEs; also referred to as DNA transposons). Fot5 utilizes
a ‘cut-and-paste’ mechanism for transpositioning, during
which a specific DNA region is excised and inserted into
a target site elsewhere in the genome [85]. The activity
of Fot5 in Ceratocystis may thus have given rise to gen-
omic rearrangements that also affected the region har-
bouring the two GH32 invertase genes. In fact, the
apparent abundance of Fot5 homologs in the genomes
of the Ceratocystis species and the presence of short ter-
minal branches on the Fot5 phylogeny suggests that
these elements were active relatively recently [56]. Our
Fot5 phylogeny further suggests that many Fot5 ele-
ments were active in the ancestral lineages of Ceratocys-
tis (i.e., homologs from different Ceratocystis species
group together in a cluster), while others were active
after speciation (i.e., homologs represent unique Fot5
lineages or group according to species) [56]. Analysis of
the Ceratocystis Fot5 elements also showed that their
lifestyles most likely match those of other TEs and para-
sitic DNA elements [85]. Once inside the genome of the
fungal individual, the Fot5 element likely increased in
copy number and persisted until all its copies become
inactive due to either vertical inactivation by the TE it-
self [86] or host-associated mechanisms that protect
the genome from parasitic DNA elements (e.g., RIP)
[55, 85]. Indeed, our analysis of the Fot5 elements sug-
gested a possible RIP response in Ceratocystis. Over time,
these inactivated copies will degenerate further through
mutation and genetic drift, until no identifiable remnants
of the original TE remain in the genome [85]. The fact
that none of the three Huntiella genomes harboured de-
tectable Fot5 elements thus suggests that the lineage never
harboured these TEs, and if they were present they have
degenerated to a point where standard in silico tools can
no longer detect them.
An important hypothesis emerging from this study is

that the activity of Fot5 elements facilitated assembly of a
genomic region or island key to the ecological success of
Ceratocystis species. In addition to the two GH32 invert-
ase genes, this genomic region encodes various other
genes potentially involved in the ability of this taxon to in-
fect and colonize health woody and herbaceous plants. In
Fusarium, the genomic regions harbouring Fot5 elements
are commonly associated with strain- or species-specific
regions that are enriched for genes involved in pathogen-
icity and/or adaptation [87]. Virulence genes in other
pathogens are also often found in genomic regions dense
with TEs where the genomic plasticity associated with
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these elements is believed to contribute to the evolution
of virulence and pathogenicity related genes [88]. The
GH32-bearing genomic region identified in Ceratocystis
may therefore represent a key target for future studies into
the molecular basis of the ability of these fungi to cause
plant disease. Also, further investigation of the diversity
and evolution of Fot5 and other TEs will undoubtedly pro-
vide valuable clues regarding gene and genome evolution
in the Ceratocystidaceae with their diverse ecologies,
modes of reproduction and potential biotechnological
benefits.
Conclusions
In this study, we considered the capacity of Ceratocystida-
ceae and a selection of Sordariomycetes species to utilize
sucrose by GH32 invertase enzymes. The publicly avail-
able genome sequences for these taxa, and the H. savan-
nae genome sequenced here, were used to identify novel
GH32-like sequences. The number of GH32 gene family
members in a particular fungus appeared to be related to
the ecological strategy employed by the fungus, which was
similar to previous studies. The genomes of the plant
pathogenic Ceratocystis species harboured two invertase
genes. This was in contrast to their saprophytic relatives
in the genus Huntiella that contained only one. Our re-
sults further showed that several processes have shaped
the evolutionary trajectories of these Ceratocystidaceae
genes. Based on these data, we posit that the evolution of
the Ceratocystidaceae GH32 gene family involved diver-
gence of invertase gene paralogs that presumably arose
from a single Group 8 type of intracellular invertases
present in the LCA of this fungal family. These paralogs
acquired specific terminal motifs to give rise to genes en-
coding a cell wall invertase and a vacuolar invertase in ex-
tant species of Ceratocystis. A similar scenario likely also
occurred in Huntiella where the ancestral invertase was
remodelled into a cell wall invertase through the acquisi-
tion of relevant sequence motifs. The genes in the GH32
family of Ceratocystis and Huntiella were also located at
non-homologous loci or regions in the genomes and were
flanked by completely different sets of genes in the exam-
ined species, which indicated these genes are not ortholo-
gous (sensu Koonin; [36]) between the two sister genera.
The genomic rearrangement that caused this was poten-
tially linked to the activity of the putative Fot5 element(s)
found in Ceratocystis. Our results thus suggested a role
for TEs in shaping the evolution of GH32 family genes,
and thereby the sucrolytic activities and related ecological
strategies of the Ceratocystidaceae that harbour them.
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