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ABSTRACT 28 

Janoušek, J., Wingfield, M.J., Marmolejo Monsivais, J. G., Jankovský, L., Stauffer, C., 29 

Konečný, A., Barnes, I., 2015, Genetic analyses suggest separate introductions of the pine 30 

pathogen Lecanosticta acicola into Europe, Phytopathology 31 

Lecanosticta acicola is a heterothallic ascomycete that causes brown spot needle blight on 32 

native and non-native Pinus spp. in many regions of the world. In this study we investigated 33 

the origin of European L. acicola populations and estimated the level of random mating of the 34 

pathogen in affected areas. Part of the Elongation Factor 1-α gene was sequenced, eleven 35 

microsatellite regions were screened, and the mating type idiomorphs were determined for 36 

201 isolates of L. acicola collected from three continents and 17 host species. The isolates 37 

from Mexico and Guatemala were unique, highly diverse and could represent cryptic species 38 

of Lecanosticta. The isolates from East Asia formed a uniform and discrete group. Two 39 

distinct populations were identified in both North America and Europe. Approximate 40 

Bayesian Computation analyses strongly suggest independent introductions of two 41 

populations from North America into Europe. Microsatellite data and mating type 42 

distributions indicated random recombination in the populations of North America and in 43 

Europe. Its inter-continental introduction can most likely be explained as a consequence of the 44 

movement of infected plant material. In contrast, the spread of L. acicola within Europe 45 

appears to be primarily due to conidial dispersion and probably also ascospore dissemination.46 
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Increasing human activity related to globalisation and climate change is increasing the risks of 47 

biological invasions by plant pathogens (Grunwald and Goss 2011; Wingfield et al. 2011). 48 

Such biological invasions by fungal pathogens have already resulted in diseases that have 49 

modified environments and reduced natural biodiversity (Desprez-Loustau et al. 2007; Fisher 50 

et al. 2012; Garbelotto 2008). In this regard, there is considerable concern for the long-term 51 

preservation of sensitive forest ecosystems (Boyd et al. 2013; Wingfield et al. 2015) 52 

especially since invasions by forest pathogens have been increasing exponentially in Europe 53 

during the last four decades (Santini et al. 2013). Serious consequences of such introductions 54 

into new environments are well documented, e.g. ash dieback in Europe caused by 55 

Hymenoscyphus fraxineus (Gross et al. 2014) and Phytophthora ramorum that causes sudden 56 

oak death of oak and tanoak in native forests in North America, and a rampant nursery disease 57 

known as Ramorum blight (Eyre and Garbelotto 2015). It is, therefore, important to correctly 58 

identify fungal pathogens and to understand the processes underpinning introductions into 59 

new environments.  60 

Population genetics can provide a reliable means to indentify and understand the invasion 61 

history of plant pathogens (Giraud et al. 2008; Grunwald and Goss 2011). In this regard, a 62 

statistical method receiving increasing attention is Approximate Bayesian Computation 63 

(ABC; Beaumont et al. 2010; Beaumont et al. 2002). ABC is a statistical framework that 64 

calculates the relative probabilities of complex, competing models of evolutionary history of 65 

populations and estimates the demographic parameters underlying a given model (Bertorelle 66 

et al. 2010; Sunnåker et al. 2013). This approach can be used to reconstruct the demographic 67 

history of invasive species (Boissin et al. 2012; Guillemaud et al. 2010; Konečný et al. 2013), 68 

including fungal plant pathogens (e.g. Dilmaghani et al. 2012; Dutech et al. 2012). 69 

Mode of reproduction plays an essential role in the genetic diversity of ascomycetes and in 70 

their infection biology (McDonald and Linde 2002; Milgroom 1996). The presence of sexual 71 
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reproduction in a population can reflect the ability of the pathogen to become invasive in a 72 

new environment because it has an influence on pathogen overwintering, dissemination, 73 

infection biology and its ability to adapt to environmental conditions (Barrett et al. 2008; 74 

Bazin et al. 2014; Giraud et al. 2008). It is, however, commonly difficult to detect sexual 75 

recombination in a fungal population where this mode of reproduction is cryptic or facultative 76 

(Milgroom 1996; Saleh et al. 2012). To overcome this obstacle, the distribution of the mating 77 

type idiomorphs can be determined in a given population. The presence of both idiomorphs at 78 

approximately equal frequencies suggests that regular sexual reproduction is occurring, while 79 

presence of single idiomorph would indicated the population is undergoing asexual 80 

reproduction (Barnes et al. 2014; Linde et al. 2003; Taylor 1999).  81 

Lecanosticta acicola (Thüm.) Syd. (sexual state: Mycosphaerella dearnessii M. E. Barr) is a 82 

heterothallic (Janoušek et al. 2014) ascomycete that causes brown spot needle blight on pines. 83 

The pathogen is reported to infect more than 30 pine species, variable levels of susceptibility 84 

being reported across and within pine species (Sinclair and Lyon 2005; Tainter and Baker 85 

1996). Severe infection of needles by L. acicola can lead to retardation of growth and death of 86 

trees (Kais 1975). The pathogen reproduces asexually via conidia that are dispersed 87 

predominantly by rain splash and dew. Sexual ascospores are dispersed primarily in air 88 

currents over long distances (Kais 1971; Siggers 1944; Wolf and Barbour 1940). Little is 89 

known, however, regarding the extent to which sexual reproduction contributes to the life 90 

cycle or to the spread of brown spot needle blight in affected regions. 91 

Brown spot needle blight has been known on Pinus palustris and other pine species in the 92 

south and south-east of the USA since the 19th century where it has been an important 93 

constraint to P. palustris seedling regeneration (Sinclair and Lyon 2005; Thümen 1878). In 94 

the northern parts of North America, brown spot needle blight occurs predominantly on native 95 

P. strobus and non-native P. sylvestris (Boyce 1959; Laflamme et al. 2010; Stanosz 1990). In 96 
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Central America and Mexico, L. acicola has been described from sea-level tropical forests up 97 

to high altitude forests (Evans, 1984; Alonso and Perez 1987) on native pine species. In South 98 

America, it is has been reported from only non-native pine plantations in Colombia (Gibson, 99 

1980). In Europe, L. acicola was first reported in Spain in 1940's (Martínez 1942) and later, in 100 

former Yugoslavia, France and in Central Europe (Jankovský et al. 2009; Lévy and Lafaurie 101 

1994; Milatović 1976). It is currently listed as a quarantine pathogen by the European Plant 102 

Protection Organisation (EPPO; Pehl et al. 2015). L. acicola also causes severe defoliation of 103 

non-native pines in China (Huang et al. 1995) where it was suggested, based on RAPD 104 

marker analyses, that the pathogen was introduced from southern USA. However, the origin 105 

of the pahogen in Europe and other regions of the world remains unknown. 106 

The objective of this study was to consider the origin of European populations of L. acicola 107 

and to estimate the opportunities for its sexual reproduction in screened populations. More 108 

specifically, (i) we investigated the intra-specific variability of L. acicola on a global scale, 109 

(ii) determined the genetic structure and diversity of populations, (iii) deciphered the 110 

historico-demographical relationships between North American and European populations 111 

and (iv) determined and compared level of random mating in studied populations of L. 112 

acicola. Part of the elongation factor (EF) gene was sequenced, eleven microsatellites were 113 

screened and the mating type idiomorphs were determined for populations of isolates 114 

collected from three continents and 17 pine species.115 
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MATERIALS AND METHODS 116 

Sample collection, isolation, DNA extraction and isolate identification 117 

Needle samples with developed fruiting bodies of L. acicola were collected randomly from 118 

individual trees by authors or obtained from colleagues (for details about location and number 119 

of isolates, see Table 1 and Supplementary Table S1). Samples were collected from the 120 

Americas (Colombia, Guatemala, Mexico, USA and Canada), eleven European countries, 121 

China, South Korea and Japan.  122 

Needle samples were stored at -80°C to prevent their deterioration and to kill mite and insect 123 

contaminants. Needles with developed fruiting bodies and showing Lecanosticta-like 124 

discolouration were selected for isolation and conidia were isolated as previously described 125 

by Barnes et al. (2004). All isolates were cultivated on 2% malt-extract agar media with yeast 126 

extract (5g/l) for 3-6 weeks. Isolates showing typical Lecanosticta-like morphology (Pehl et 127 

al. 2015) were chosen for DNA extraction and DNA-based species identification.  128 

Fungal mycelium was transferred to Eppendorf tubes and lyophilised for several hours to 129 

facilitate subsequent homogenisation. DNA was extracted using the PowerSoil® DNA 130 

Isolation Kit (12888; MoBio; Carlsbad, CA, USA), eluted with 100 µl elution buffer 131 

following the manufacturer's instructions and stored at -20°C.  132 

DNA-based identification was performed for each isolate with species-specific primers 133 

LAtef-F/R as described by Ioos et al. (2010). Isolates testing positive for L. acicola amplified 134 

a product of 237bp with this primer set. PCR products were visualised on 2% agarose gel 135 

stained with GelRedTM (Hayward, CA, USA). 136 

DNA sequencing, intra-specific variation and phylogenetic analyses 137 
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The elongation factor (EF) region of 87 selected isolates from different locations was PCR 138 

amplified using elongation factor primers EF1/2 (Jacobs et al. 2004). PCR was performed 139 

using 2 mM MgCl2, 100 µM dNTPs, 0.2 µM of the primers, 0.2U Taq polymerase 140 

(Fermentas, Vilnius, Lithuania), 1x (NH4)2SO4 buffer (Fermentas), 2.0 µl of genomic DNA 141 

(gDNA) and H2O to 20 µl volume. The PCR profile was as follows: 94°C 10 min, 35 cycles 142 

94°C 30s, 58°C 45s, 72°C 60s and 72°C for 10 min. Correct amplification was verified by gel 143 

electrophoresis as described above and the amplicons were custom-sequenced at the Cancer 144 

Research Centre DNA Sequencing Facility (University of Chicago, Chicago, IL, USA).  145 

Sequence data were edited using BIOEDIT v 7.2.0. (Hall 1999) and aligned using MAFFT v. 146 

7 (Katoh et al. 2002; Katoh and Standley 2013). Additional EF sequences were retrieved from 147 

GenBank and included in the analyses: JX901650 (L. guatemalensis; Guatemala; IMI 148 

281598), JX901651 and JX901652 (L. longispora; Mexico; CBS 133789, CPC 17940), 149 

JX901648 (L. acicola; Mexico; CBS 133789), JX901647 (L. acicola; France; LNPV 243), 150 

KT737239 (L. acicola; France; CBS 871.95) and KC013002 (USA; CBS 133791) - epitype of 151 

L. acicola (Quaedvlieg et al. 2012). Sequence datasets were compiled using MEGA 5.2 152 

(Tamura et al. 2011) and EF haplotypes were defined using TCS 1.21 software (Clement et al. 153 

2000). Sequences of isolates representing each EF haplotype were submitted to GenBank 154 

(Supplementary Table S1) and their alignment to TreeBASE 155 

(http://purl.org/phylo/treebase/phylows/study/TB2:S18403).  156 

Nucleotide diversity (Pi) was calculated for selected groups of EF haplotypes using DnaSP v5 157 

(Librado and Rozas 2009). Median-joining haplotype network was constructed using program 158 

Network 4.613 (http://www.fluxus-engineering.com/sharenet.htm; Bandelt et al. 1999) to 159 

depict relationships amongst different EF haplotypes.  160 
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Phylogenetic analyses were done using maximum parsimony (MP), maximum likelihood 161 

(ML) and Bayesian Inference (BI) and results visualised in MEGA 5.2. MP analyses were 162 

performed using PAUP 4.0b10 (Swofford 2003). Random stepwise addition heuristic searches 163 

were performed with tree-bisection-reconnection branch-swapping. Alignment gaps were 164 

considered as a fifth character state and confidence was estimated by performing 1,000 165 

bootstrap replications (Felsenstein 1985) with simple sequence addition.  166 

For the ML analyses, the nucleotide substitution model with the best likelihood for the dataset 167 

was selected with jModelTest v. 2.1.1 (Darriba et al. 2012; Guindon et al. 2003) using the 168 

Akaike Information Criterion. ML analyses were carried out in PhyML 3.0 (Guindon et al. 169 

2010). Confidence levels were estimated from 1,000 bootstrap replicates. 170 

 BI analysis was performed with MrBayes 3.1.2 (Ronquist and Huelsenbeck 2003) running 171 

3·106 Markov Chain Monte Carlo (MCMC) generations. Four runs were performed and trees 172 

were sampled every 100th generation. The generalised time reversible substitution model with 173 

gamma-distributed rate variation across sites and the proportion of invariable sites was 174 

selected. The burn-in value was determined with TRACER v. 1.5 (Rambaut and Drummond 175 

2007; http://tree.bio.ed.ac.uk/software/tracer/) and the log-likelihood scores of sampled trees 176 

were plotted against the generation time to compare the results of each run. Nodes with a 177 

posterior probability ≥ 0.95 were considered to be significantly supported by the data.  178 

Microsatellite genotyping 179 

All isolates except those from Asia, South America, Guatemala and Mexico were screened 180 

with eleven microsatellite markers. PCR amplification of the microsatellite regions was 181 

performed as described in Janoušek et al. (2014) with the exception of the annealing 182 

temperature for primer set MD6 and MD8 being increased to 63°C to reduce stutter bands. 183 

Annealing temperatures were decreased for the isolates originating from Mexico and 184 
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Guatemala as follows: 54°C for MD1, 5, 9, 10 primer sets and to 56°C for primer set MD8. 185 

Correct amplification was verified by gel electrophoresis on a sub-set of samples. Amplicons 186 

were pooled into two panels (Janoušek et al. 2014) for fragment analysis on an ABI 3730XL 187 

(Applied Biosystems) and sized with LIZ 500 size standard (Applied Biosystems). Lengths of 188 

alleles were scored using GeneMapperTM 4.1 (Applied Biosystems). Isolates from the same 189 

location with identical multilocus haplotypes (MLHs) were considered as clones and excluded 190 

for selected analyses (clone-corrected data set). 191 

Analyses of population structure 192 

The program STRUCTURE 2.3.4 was used to identify genetically different sub-populations 193 

within and between North-American and European isolates. Using a model-based clustering 194 

method, the most likely number of genetic groups (K), was determined by employing a 195 

Bayesian MCMC clustering algorithm (Falush et al. 2003;  Hubisz et al. 2009;  Pritchard et al. 196 

2000).  197 

The full clone-corrected haploid data set was analysed running 2·105 burn-in iterations 198 

followed by 6·105 MCMC iterations. The model with correlated allele frequencies and 199 

allowing admixture was selected. Thirty replicates for each K (1-6) were performed to 200 

increase the precision of the parameter estimates and to reduce the effect of stochasticity of 201 

the MCMC algorithm (Excoffier and Heckel 2006). The analysis was repeated on a subset of 202 

isolates representing a cluster identified in the first run (marked by blue in Fig. 3), employing 203 

nine polymorphic markers (two loci were monomorphic within blue group). STRUCTURE 204 

HARVESTER (Earl and vonHoldt 2012) was used on-line to generate input files of each K 205 

for CLUMPP v1.1.2 (Jakobsson and Rosenberg 2007). CLUMPP was used to identify 206 

potential dissimilar solutions among the results of individual STRUCTURE runs for each K. 207 

For this purpose, the Greedy algorithm implemented in CLUMPP was used to calculate the 208 
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pair-wise 'symmetric similarity coefficient' (SSC) to identify similar runs (SSC > 0.9) of each 209 

K. The averaged results for similar runs from CLUMPP were then used to generate summary 210 

bar plots for each K with DISTRUCT version 1.1 (Rosenberg 2004). 211 

Complementary to the Bayesian analysis, Principal Component Analysis (PCA) was 212 

conducted on the clone-corrected data set. PCA presents genotypes in a multivariate space 213 

described by the principal components and it does not rely on any population genetic model 214 

(Jombart et al. 2009; McVean 2009). The analysis was performed using GENETIX v. 4.0.5.2 215 

(Belkhir et al. 1996–2004; http://kimura.univ-montp2.fr/genetix/). As in the STRUCTURE 216 

analyses, the full dataset with all microsatellite loci was analysed first and then repeated using 217 

only the isolates identified in the northern cluster with nine microsatellite loci. PCA graphics 218 

were visualised by two principal components as recommended by Jombart et al. (2009). 219 

Genetic differentiation was calculated between pairs of genetic STRUCTURE and PCA-220 

defined populations (CE, central and north Europe; MS, Mississippi; NA, north-east North 221 

America; SE, south-west Europe) using FSTAT v2.9.3.2 (Goudet, 2002). Additionally, 222 

hierarchical analyses of molecular variance (AMOVA; Excoffier et al. 1992) implemented in 223 

GenAlEx 6.5 (Peakall and Smouse 2006, 2012) were performed to investigate the relative 224 

contributions of host species and geographic origin to the partitioning of genetic variance. The 225 

non clone-corrected microsatellite data set of the European isolates was used for AMOVA 226 

and isolates originating from unknown pine species were excluded. All data were treated as 227 

haploid-SSR and permutation tests were performed with 9,999 random permutations of 228 

haplotypes.  229 

Genetic diversity in populations 230 

The isolates were divided into four STRUCTURE and PCA-defined populations for genetic 231 

diversity analyses (CE; MS; NA; SE; Table 2). Furthermore, isolates were divided based on 232 
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their geographic origin: isolates more than 100 km apart were divided into separate groups 233 

(Table 2 and Fig.1). Although in some cases, only one or two isolates represented a single 234 

location, these isolates were included in the analyses of populations representing larger 235 

geographic areas. Isolates from Asia and South America were excluded as the sample size 236 

was inordinately low. Isolates from Mexico and Guatemala amplified poorly at most loci and 237 

thus were excluded from the analyses. 238 

The number of MLHs was calculated for each population and location. The Clonal Fraction 239 

(CF) was calculated as 1-[(number of different haplotypes)/(total number of isolates)] (Zhan 240 

et al. 2003). Genotypic diversity (G), defined as the probability that two individuals taken at 241 

random have different haplotypes, was calculated on non clone-corrected datasets using 242 

MULTILOCUS v1.3 (Agapow and Burt 2001). Number of alleles (Na) and allelic richness 243 

(AR) was calculated using FSTAT. Gene diversity was estimated over all loci for each 244 

population and location by calculating unbiased expected heterozygosity (He, Nei 1978) in 245 

GENETIX. 246 

Migration scenarios 247 

The Approximate Bayesian Computation (ABC) framework was used to elucidate the 248 

demographic history of the North-American and European populations of L. acicola. All ABC 249 

analyses were performed on clone corrected microsatellite data using the program DIYABC 250 

v.2.0.4 (Cornuet et al. 2014), which allows inferences to be made on the demographic history 251 

of populations of haploid species. Only the markers constituting perfect microsatellite repeat 252 

motifs were used for the ABC analyses. These included seven makers, namely MD1, MD2, 253 

MD4, MD7, MD8, MD9 and MD12. 254 

The evolutionary scenarios were drawn based on four STRUCTURE and PCA-defined 255 

genetic clusters (CE; MS; NA; SE). In total, six different scenarios were tested to compare the 256 
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different evolutionary scenarios (graphically represented in Fig. 4). Prior distributions of the 257 

demographic parameters were defined as uniform and with a broad range, due to a very 258 

limited knowledge of L. acicola population history (see Supplementary Table S4 for details of 259 

priors). 260 

The default settings for the mutational parameters of microsatellites, rates and modalities of 261 

mutation were used in DIYABC software, as these settings are commonly used for most 262 

Eukaryotes (Cornuet et al. 2014). Each locus was assumed to follow a generalised stepwise 263 

mutation model (GSM; Estoup et al. 2002) with a possible range of 40 contiguous allelic 264 

states. The allelic range was extended to 63 allelic states for locus MD8. The genetic variation 265 

within and between populations was summarised using a set of 'one sample summary 266 

statistics' (mean number of alleles, mean size variance) and 'two sample summary statistics' 267 

(mean genic diversity, FST, classification index, (δµ)² distance) – as described in the DIYABC 268 

manual available at http://www1.montpellier.inra.fr/CBGP/diyabc/index.php. For each 269 

scenario, 106 data sets were simulated. 270 

All scenarios tested were first compared by their relative posterior probabilities using 271 

polychotomous logistic regression from 1% of the closest simulated data sets to the observed 272 

one in a multidimensional space of summary statistics, which were transformed by linear 273 

discriminant analysis (LDA; Estoup et al. 2012). The scenario with the significantly highest 274 

posterior probability value (95% confidence interval) was selected as best. Secondly, posterior 275 

distributions of parameters were estimated for the most likely scenario by the logit 276 

transformation of parameters and linear regression on 1% of the closest simulated data sets. 277 

Confidence in scenario choice was evaluated based on sets of 200 pseudo-observed data sets 278 

(pods), obtained by simulations for each scenario with parameter values taken from given 279 

distributions. The same number of loci and individuals as real data set was tested. The relative 280 
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posterior probabilities of each competing scenario were estimated for each pod using LDA-281 

transformed summary statistics. These probabilities were further used to calculate the type I 282 

and II errors for the scenarios chosen with our real data set. Type I error (false positives) is the 283 

probability of excluding the selected scenario when it is the true scenario. Type II error (false 284 

negatives) is the probability of selecting the scenario when it is not the true scenario (mean of 285 

type II error was calculated over the competing scenarios). 286 

The goodness-of-fit of the best scenario was evaluated using 'model checking' option. This 287 

analysis allows an evaluation of the extent to which the selected scenario and associated 288 

posterior distribution are supported by the observed L. acicola genetic data. The summary 289 

statistics, which were not used in the previous analyses, were used for model checking as 290 

recommended by Cornuet et al. (2010). 291 

Reproductive mode 292 

The mating type idiomorph for each isolate was determined using multiplex PCR runs in 6 µl 293 

volumes consisting of 2.5 mM MgCl2, 100 µM dNTPs, 0.2 µM of each MAT specific primer 294 

(Janoušek et al. 2014), 0.2U Taq polymerase (Fermentas), 1x (NH4)2SO4 buffer (Fermentas), 295 

0.8 µl of gDNA and H2O. The PCR products were visualised using gel electrophoresis and the 296 

idiomorph of each isolate was determined based on the expected size of 634 bp for MAT1-1-1 297 

and 323 bp for MAT1-2. The distribution of the mating type idiomorphs in the populations 298 

was calculated and an exact binomial test was performed using the programme STATISTICA 299 

10 (StatSoft CR s.r.o.) to determine whether populations / sampled locations deviated from 300 

the null hypothesis of a 1:1 ratio of random mating (McDonald 2009). 301 

Clone-corrected data-based parsimony tree-length permutation tests (PTLPT; Burt et al. 1996) 302 

and multilocus linkage disequilibrium analyses were performed to test for random mating 303 

amongst isolates from selected locations. In the populations where random mating occurred, 304 
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the expected parsimony tree length would be substantially longer. In contrast, a clonally 305 

reproducing population would produce one well-resolved, significantly shorter tree. The data 306 

sets were generated using MULTILOCUS v1.3 (Agapow and Burt 2001) and analysed using 307 

PAUP 4.0b10 (Swofford 2003). To assess the statistical significance associated with the null 308 

hypothesis of random mating, 1,000 randomisations were performed. MULTILOCUS v1.3 309 

was used to calculate the standardised index of association, expressed by rBarD, which is 310 

sample size independent (Agapow and Burt 2001). Datasets were randomised 10,000 times. 311 

The observed values of rBarD were compared with the values of the randomised datasets. If 312 

the observed value was significantly different from the randomised dataset (P ≤ 0.05), the null 313 

hypothesis was rejected. In contrast, if observed and randomised datasets were not 314 

significantly different, this indicated that the analysed population is undergoing random 315 

mating. 316 

317 
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RESULTS 318 

Sample collection, isolations, DNA extractions and isolate identification 319 

Isolates that showed morphologies typical of Lecanosticta were obtained from infected 320 

needles and DNA was extracted from these isolates. In total, 201 isolates were identified as L. 321 

acicola. Twenty two isolates originated from the south-east of Canada, 88 isolates from six 322 

states in the USA, 78 isolates from 11 countries in Europe, three isolates from Asia (China, 323 

South Korea and Japan), eight isolates from Mexico and Guatemala, and two isolates from 324 

South America (Colombia). Overall, the isolates originated from 17 pine species collected 325 

from three continents (Table 1 and Supplementary Table S1, Fig. 1). All isolates are 326 

maintained in the culture collection of the Department of Forest Protection and Wildlife 327 

Management, Mendel University in Brno, Czech Republic and/or in the culture collection 328 

(CMW) of the Forestry and Agricultural Biotechnology Institute (FABI), University in 329 

Pretoria, South Africa (Supplementary Table S1). 330 

DNA sequencing, intra-specific variation and phylogenetic analyses 331 

Partial EF amplicons of about 900 bp were sequenced and fourteen haplotypes were identified 332 

in 87 isolates originating from America, Europe and Asia (Fig. 1; Supplementary Table S1). 333 

All eight isolates from Mexico and Guatemala revealed a nucleotide diversity of Pi = 0.0356. 334 

For all other regions, the nucleotide diversity was considerably lower with the next highest 335 

diversity found in Mississippi (Pi = 0.0039) where four haplotypes were identified from 19 336 

sequenced isolates. One of these haplotypes (GenBank Access. no. KJ938451; designated in 337 

yellow in Fig. 1 and Supplementary Fig. S1; Fig.2; Supplementary Table S1) was present in 338 

14 isolates from Mississippi and all isolates from France, Spain and Colombia. A single 339 

haplotype (KJ938438; designated in blue in Fig. 1 and Supplementary Fig. S1; Fig. 2; 340 

Supplementary Table S1) was identified in all the isolates from five states in the northern 341 
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USA (n = 27), Quebec in Canada (n = 7) and from nine countries in Central and North Europe 342 

(n = 23). The three isolates from China, South Korea and Japan shared the same unique EF 343 

haplotype (KJ938450; designated as dark red in Fig. 1 and Supplementary Fig. S1; Fig. 2; 344 

Supplementary Table S1).  345 

Haplotype network (Supplementary Fig. S1) revealed high level of diversity for isolates from 346 

Guatemala and Mexico. All haplotypes detected in Europe, Asia, Colombia, Canada and USA 347 

are closely related to those originating from Mexico.    348 

The phylogenies generated with ML, BI and MP analyses were congruent and are represented 349 

as a single MP tree with corresponding bootstrap support values for the nodes indicated on the 350 

branches (Fig. 2). For the BI analysis, the burn-in period was determined for the first 10 000 351 

generations and all runs produced trees of the same log-likelihood.  352 

In the phylogenies, two major clades were obtained. One clade included only the isolates 353 

originating from Mexico and Guatemala also revealing high diversity (Fig. 2). The isolates 354 

from Mexico and all the isolates Europe, North America and Asia clustered together into one 355 

clade having high bootstrap support. Phylogenetic analyses suggested that the Mexican & 356 

Guatemalan clade is ancestral to the second clade (Fig. 2). 357 

Microsatellite genotyping 358 

All isolates were successfully amplified with the 11 microsatellite markers (Supplementary 359 

Table S2). The only exceptions were the isolates from Mexico and Guatemala that amplified 360 

with lower amplification success (80%) despite several PCR optimisation attempts. In 361 

addition, marker MD6 was monomorphic among all eight of these isolates. Isolates from 362 

Colombia and Asia were not included in some of the analyses due to small sample sizes in 363 

these populations.  364 
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Analyses of population structure 365 

From 30 runs, STRUCTURE consistently identified two major groups (K=2) for the 129 366 

isolates analysed. The first group included all the isolates from Mississippi (MS) and the 367 

south-west of Europe (SE) and collectively, is designated as the 'southern lineage'. The second 368 

group, designated as the 'northern lineage', included all the isolates from north-east of North 369 

America and those from central, south-eastern and northern Europe (Supplementary Fig. S2). 370 

At K=3, the isolates from SE (France and Spain) separated out from the MS population in the 371 

southern lineage. K=4 and above revealed a collapse of genetic structure within the MS 372 

population. In the northern cluster, 33% of 30 runs at K=5 and 63% of 30 runs at K=6 373 

distinguished a European (CE) group from a North American group (NA) cluster 374 

(Supplementary Fig. S2). Separate STRUCTURE analysis of the northern cluster at K=2 375 

confirmed the presence of these two distinct groups (Supplementary Fig. S3).  376 

The principal component analysis (PCA) also identified two major groups across the whole 377 

dataset, corresponding to those obtained with STRUCTURE at K=2. The SE population 378 

formed a cluster, distinct from the MS population (Fig. 3). When only the northern cluster 379 

obtained in STRUCTURE was analysed using PCA, a faint distinction was evident between 380 

the European and the North American group (Fig. 3). 381 

Genetic differentiation between pairs of STRUCTURE and PCA-defined clusters was highest 382 

between the populations from the 'southern lineage' and those from the 'northern lineage' (FST 383 

= 0.662 - 0.471; Supplementary Table 3). Lower population genetic differentiation was seen 384 

between populations of the same lineage (MS vs. SE: FST = 0.351; NA vs. CE: FST = 0.286). 385 

Analysis of molecular variance (AMOVA) based on φPT value shows that only a low 386 

percentage (12.18%) of molecular variance could be attributed to host species in Europe. 387 
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Geographic origin of European isolates contributed to molecular variance only marginally 388 

(3.2%; Supplementary Table S3).    389 

Genetic diversity in populations 390 

A total of 43 multilocus haplotypes (MLHs) from 67 isolates were detected in the NA 391 

population from collections made in seven locations in the north-east of North America (CF = 392 

0.358; Table 2). The population from a single location in Mississippi contained 34 MLHs 393 

from 40 isolates analysed (CF = 0.150). The population originating from two locations in 394 

south-west Europe consisted of nine isolates in which five MLHs were determined (CF = 395 

0.444). The CE population, spanning 10 locations, was comprised of 69 isolates in which 48 396 

MLHs were obtained (CF = 0.289; Table 2). 397 

The population from MS had the highest level of allelic richness (7.1±0.89), highest number 398 

of alleles (8.81), highest genotypic diversity (0.992) and highest genetic diversity (0.46±0.32) 399 

of all the populations analysed (Table 2). The NA population, representing isolates from a 400 

considerably larger area than the MS population, revealed a lower allelic richness 401 

(1.59±0.21), number of alleles (3.55), genotypic diversity (0.955) and genetic diversity 402 

(0.32±0.30). The SE population revealed the lowest values of the indices calculated (Table 2). 403 

The CE population had an allelic richness of 3.65±0.71, 4.54 number of alleles, a genotypic 404 

diversity of 0.931 and a genetic diversity of 0.35±0.27. 405 

Migration scenarios 406 

ABC analysis showed that the introduction of L. acicola into Europe was most likely from 407 

North America (scenario 6, relative posterior probability: 0.505; Fig. 4 and 5). This scenario 408 

assumed an unknown ancestral population that gave rise to the NA population. The MS 409 

population split from the NA and these two American populations gave rise to the two 410 

European populations, SE and CE, respectively. Scenarios assuming the opposite direction of 411 

migration, i.e. from Europe to North America, had the least support (relative posterior 412 
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probability of scenario 2 and 3: 0.000, 0.0087; Fig. 4). Relative posterior probabilities were 413 

higher for scenarios assuming the presence of an ancestral population having given rise to one 414 

of the American populations (Fig. 4).  415 

Posterior distributions of parameters for the best-supported scenarios are shown in 416 

Supplementary Table S4. Posterior distributions of effective population sizes for all sampled 417 

populations were relatively narrow and thus informative. The mode of the MS population was 418 

determined at 5,530, whereas it was 88 for the SE population. The mode of the NA population 419 

was identified at 829 and at 1,410 for the European CE population. The posterior distribution 420 

for the time of the split was determined as follows: divergence of CE from NA (t1c) occurred 421 

127 generations ago, the divergence of SE from MS (t1h) occurred 654 generations ago, the 422 

divergence of NA+CE populations from the MS+SE populations occurred probably 3,410 423 

generations ago.  424 

Power analyses revealed that the type I error (false positive) associated with the best- 425 

supported scenario (scenario 6) was relatively high (0.34). The mean of the type II errors 426 

(false negatives) associated with the best-supported scenario was low (0.078), indicating that 427 

the probability of selecting the best scenario when the data were simulated with an alternative 428 

scenario, was low. Twenty-six summary statistics that had not been previously used for model 429 

selection were used for model checking. Only one of the 26 statistics had a low probability 430 

value when the model was checked (Supplementary Table S5), indicating that the selected 431 

scenario fitted the observed data well. 432 

Reproductive mode  433 

Frequency of the mating type idiomorphs for the isolates of L. acicola differed for different 434 

regions (Table 2 and Supplementary Table S1). Both mating type idiomorphs were identified 435 

at equal ratios (MAT1-1/2: 4/4) in Guatemala and Mexico. Similarly, the mating types did not 436 
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differ significantly from a 1:1 ratio in the population from Mississippi but they did differ from 437 

this ratio for the NA population (Table 2). At a smaller geographical scale, isolates from CAP 438 

and VMW showed a similar skewed ratio for the MAT1-1/MAT1-2 at 17/1 and 22/1, 439 

respectively. Both mating type idiomorphs were found for isolates collected from the same 440 

needle originating from Canada. In Europe, the mating type ratio was 4/5 in SE and 23/44 in 441 

CE population (Table 2). For individual locations such as GBU (Germany) and ATN 442 

(Austria), the ratios did not significantly differ from 1:1. Only the MAT1-2 idiomorph was 443 

identified in isolates from the Czech Republic site Červená Blata (25 isolates), whereas only 444 

the MAT1-1 idiomorph was identified in isolates (three) collected in Borkovická Blata. Both 445 

mating type idiomorphs were found in isolates from a single needle collected in France. Only 446 

the MAT 1-2 idiomorph was found in isolates from South America (Colombia; two isolates) 447 

and Asia (China, South Korea and Japan; three isolates; Supplementary Table S1). 448 

Parsimony tree-length permutation tests (PTLPT) revealed relatively long trees for the MS 449 

dataset and did not significantly differ from randomised trees (Table 2). The isolates 450 

originating from two locations in the north-eastern part of North America, CAP and VMH, 451 

had shorter tree lengths (22 and 18 steps, respectively), but they also did not differ 452 

significantly from randomised trees (Table 2). The same scenario was true for the isolates 453 

from two European locations (GBU, ATN) that produced relatively short trees at 12 and 23 454 

steps, respectively (Table 2). In contrast, isolates from location CZB in the Czech Republic, 455 

produced a tree of 22 steps, which was significantly different from randomised trees (Table 456 

2). 457 

Another measure of random mating in the populations, rBarD, did not reveal significant 458 

differences from a randomised dataset (Table 2) in the MS population or in the isolates from 459 

CAP (Quebec, Canada). Measure of linkage disequilibrium was significantly different for the 460 

isolates from VMW (Vermont, USA; Table 2). The three European locations showed 461 
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consistent results with the PTLPT analyses: isolates from GBU (Germany) and ATN (Austria) 462 

were not significantly different from randomised data simulating a recombining population. 463 

CZB (Czech Republic) showed significant linkage disequilibrium and therefore, did not show 464 

any evidence for sexual recombination (Table 2). 465 

466 
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DISCUSSION 467 

This is the first investigation to consider the global movement of the pine needle pathogen L. 468 

acicola in different regions of the world. We detected high diversity amongst the isolates from 469 

Guatemala and Mexico and some of these most likely represent cryptic species closely related 470 

to, but distinct, from L. acicola. The isolates from East-Asia formed a unique and discrete 471 

group. Furthermore, two distinct populations in North America (southern and northern one) 472 

were identified and both populations have very likely been introduced into Europe 473 

independently. Interestingly, these two European populations of L. acicola reflect the 474 

geographic distribution of North-American populations, which are probably related to 475 

climatic and host adaption for each of the lineages. In addition, evidence was provided for 476 

sexual recombination within the pathogen populations in parts of Europe and in North 477 

American. It was thus clear that L. acicola is an invasive alien in Europe that reproduces 478 

asexually and very likely also sexually. 479 

Phylogenetic relationships within L. acicola, population structure and genetic diversity 480 

Haplotype and nucleotide diversity, determined from the EF sequences, revealed high 481 

diversity amongst the isolates from Guatemala and Mexico. These results are consistent with 482 

the view of Evans (Evans 1984), who attributed substantial morphological variation to the 483 

existence of a species complex in L. acicola. The high level of genetic diversity for L. acicola 484 

in this region could be attributed to its long-term or native presence in Central America and 485 

Mexico, where it occurs from sea-level tropical forests to high altitude rain forests (Evans 486 

1984). The pathogen is omnipresent on native pines but it was occasionally also found to 487 

cause a serious needle blight (Evans 1984; I. Barnes, unpublished data). This suggests a high 488 

level of host resistance, probably as a result of long-term plant-pathogen co-evolution (Barrett 489 

et al. 2008). High diversity amongst the isolates originating from Mexico is probably also 490 
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related to the high diversity of pine species found in Mexico that is also the highest at global 491 

scale (Farjon 1996; Gernandt and Pérez-de la Rosa 2014).  492 

The fact that the microsatellite markers, designed from isolates from USA, Europe and Japan, 493 

amplified poorly in the Central American isolates adds credence to the view that L. acicola 494 

represents a species complex in Central America and Mexico. Phylogenetic analyses indicated 495 

that the Central American and Mexican haplotypes of L. acicola are ancestral to those found 496 

elsewhere in the world. Phylogenetic analyses indicated that Mexico is probably the area of 497 

origin of L. acicola populations in the USA and Canada. 498 

Haplotypic and nucleotide diversity for isolates of L. acicola from North America was lower 499 

than that found in Mexico and Guatemala. This corresponds to a more uniform conidial 500 

morphology observed by Evans (1984) in collections from North America. The population 501 

from Mississippi encompassed the highest genetic diversity and allelic richness of all 502 

populations analysed. Two distinct lineages ('southern' and a 'northern' lineage) reported by 503 

Huang et al. (1995) from their RAPD data, were also observed in this study using both EF 504 

sequence data and microsatellite markers. These two lineages have been reported to differ in 505 

culture morphology, conidial germination and pathogenicity to various pine species (Huang et 506 

al. 1995; Kais 1972). All these findings suggest a level of adaption to climatic conditions and 507 

host for isolates in the two lineages, a view also proposed by Huang et al. (1995). These two 508 

lineages could represent two distinct but cryptic species (Restrepo et al. 2014). This is likely 509 

given the fact that many cryptic species are being discovered in ascomycete fungi where DNA 510 

sequence data (e.g. Sakalidis et al. 2013; Walker et al. 2011) or microsatellite markers (e.g. 511 

Pérez et al. 2012; Schoebel et al. 2013) are applied to taxonomic and population genetic 512 

studies. 513 
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The same two lineages of L. acicola present in North America were also found in collections 514 

of isolates from Europe and they had similar geographical distributions. The southern lineage 515 

was identified in Spain and France, and the northern lineage in several other parts of Europe. 516 

Their distinct geographical distribution is very likely not associated with pine species but 517 

could be explained by their different climatic requirements (especially to temperature). The 518 

presence of the more virulent (Kais 1972) southern lineage in France could explain a serious 519 

outbreak of brown spot needle blight in the 1990's (Lévy and Lafaurie 1994). This epidemic 520 

resulted in the total loss of about 270 ha Pinus attenuata x radiata plantations (Lévy 1996). It 521 

is also interesting, that in both North America and Europe, neither the southern or northern 522 

lineages have overlapping geographical distributions. 523 

The southern lineage of L. acicola was identified in Colombia where the pathogen has caused 524 

severe defoliation in pine plantations in the past (Evans 1984). Pines are not native in South 525 

America and it is highly likely that L. acicola was introduced into this area with plant 526 

material. A similar human-mediated introduction has been documented for the related pine 527 

needle pathogen, Dothistroma septosporum, from Chile into Ecuador (Barnes et al. 2014). 528 

However, in order to determine the origin of L. acicola in Colombia, additional investigations 529 

will be required.  530 

The L. acicola lineage identified in East Asia was unique and found only in this region. Its 531 

introduction was suggested to have occurred from the southern or south-eastern USA (Huang 532 

et al. 1995). The present study shows clearly that the isolates sampled in East Asia do not 533 

form part of the same southern lineage that is present in the southern USA or Europe. 534 

However, the introduction of L. acicola into Asia from an un-sampled population in the 535 

south-eastern USA cannot be ruled out because only isolates from Mississippi were 536 

considered in this study. 537 
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Evolutionary relationships between North-American and European populations  538 

Analyses of demographic history revealed that both North-American lineages of L. acicola 539 

were most likely introduced into Europe independently after the divergence of the southern 540 

and northern lineages in North America. This pattern of multiple introductions from different 541 

sources seems to be common for worldwide invasive species as has been documented for 542 

various organisms using Approximate Bayesian Computation (ABC) approaches (Barrès et al. 543 

2012; Konečný et al. 2013). Historically (based on ABC analyses), the southern lineage was 544 

introduced into Europe first, followed by the northern lineage. This is, however, difficult to 545 

verify because there could be many interfering parameters including differing mean 546 

generation times in each lineage that could be influenced by climatic conditions. The time at 547 

which the southern lineage split from northern lineage was estimated to have been about 3400 548 

generations ago. Although this is an estimated value, it shows that the divergence of these 549 

lineages is relatively ancient. If we consider life cycle of 1 year, this would correspond to 550 

period of approximately 3400 years ago. Although it is clear that the European isolates of L. 551 

acicola originated in North America, determination of the exact origin of these isolates would 552 

require more intensive and precise sampling in North America as well as in other parts of the 553 

world. 554 

Reproductive mode 555 

Both mating type idiomorphs were identified in the isolates of L. acicola originating from 556 

Mexico and Guatemala. This confirms that the fungus is heterothallic and that it probably 557 

undergoes sexual reproduction. This would be consistent with EF sequence data and with the 558 

fact that Evans (Evans 1984) observed sexual structures in Lecanosticta spp. from Central 559 

America.  560 

Mating type idiomorph distribution and microsatellite data analyses provided strong 561 

indication that the population of L. acicola from Mississippi is undergoing sexual 562 
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reproduction. This result was expected, because sexual structures of the fungi were commonly 563 

found on infected needles in the south-eastern USA (Kais 1971; Siggers 1944) and ascospores 564 

have been detected throughout the whole year (Henry 1954). Results of this study also 565 

indicated that random mating occurs in the population from north-eastern North America. 566 

Moreover, the presence of both mating type idiomorphs in isolates from the same needle in 567 

Canada would clearly increase opportunities for individuals of opposite mating type to 568 

interact and reproduce sexually (Barnes et al. 2011; Linde et al. 2003). Neither asci, nor 569 

ascospores have, however, been observed in the northern regions of North America (Evans 570 

1984; Nicholls and Hudler 1972). Although windblown ascospores would be formed only 571 

occasionally in this population, they could play an important role in causing rapid outbreaks 572 

of L. acicola, such as those recently been observed in the north-east of USA (Munck et al. 573 

2012). Mating type idiomorph frequencies as well as microsatellite data analyses suggest that 574 

sexual reproduction is most likely occurring in L. acicola in Austria and Germany. In contrast, 575 

data obtained from the isolates from the Czech Republic showed that the pathogen reproduces 576 

predominantly asexually.  577 

This study provides the first indication for sexual reproduction of L. acicola in Europe. Sexual 578 

reproduction, which gives rise to windborne ascospores, could explain the current epidemics 579 

of brown spot needle blight in Switzerland, Germany and Austria (Angst 2011; Blaschke 580 

2002; Hintsteiner et al. 2012). Ascospore dissemination thus probably plays a major role in 581 

the long distance dispersal of L. acicola within Europe (Wingen et al. 2013) as has also been 582 

seen for the wheat pathogen Phaeosphaeria nodorum (Sommerhalder et al. 2010). Sexual 583 

reproduction allows for the formation of new haplotypes, while asexual reproduction can 584 

enhance fast multiplication of advantageous haplotypes. This could lead to local adaptation 585 

(Milgroom 1996) of L. acicola.  586 

Conclusions 587 
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We have shown that at least two introductions of L. acicola have occurred from North 588 

America into Europe in the past. This is another example of an inter-continental introduction 589 

of a plant pathogen into a new environment, most likely as a consequence of human activity. 590 

In addition, results showed that L. acicola most probably also reproduces sexually. The 591 

pathogen therefore has a substantial potential to adapt to new environments and infect new 592 

pine host species. Its presence in geographical areas with variable climates illustrates its high 593 

level of ecological tolerance and ability to adapt to new environments. It can thus be expected, 594 

that L. acicola will spread rapidly from infected trees to surrounding pine stands if climatic 595 

conditions were to become favourable for infection to occur. L. acicola is a serious pathogen 596 

and it remains on the European A2 list of quarantine pathogens. It is, therefore, important to 597 

monitor its spread and movement in future, including impact of a potential contact between 598 

isolates of the two lineages in Europe.   599 

600 
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Table 1. Information on Lecanosticta acicola isolates used in this study: number of isolates 888 

per location, geographic origin of the isolates and host species. 889 

Location 

number 

No. of 

isolates Country Sampling site/State/Region Pine host

1 18 Canada Lake Pinseault / Quebec P. strobus

Canada Lake Aberdeen / Quebec P. strobus

Canada Fort William / Quebec P. strobus

Canada Demers-Centre / Quebec P. strobus

Canada Waltham / Quebec P. strobus

2 4 Canada Lake Drummond / Quebec P. strobus

Canada Montréal / Quebec P. strobus

3 23 USA Washington, Waterbury / Vermont P. strobus

USA Windsor, Bethel / Vermont P. strobus

USA Orange, Brookfield / Vermont P. strobus

4 3 USA Merrimack / New Hampshire P. strobus

USA Hillsboro / New Hampshire P. strobus

USA Hopkinton-Everett / New Hampshire P. strobus

5 10 USA York, Lyman / Maine P. strobus

6 6 USA Androscoggin, Leeds / Maine P. strobus

7 3 USA Piscataquis, Sangerville / Maine P. strobus

8 2 USA Wexford County / Michigan P. sylvestris

9 1 USA Merrillan / Wisconsin P. sylvestris

10 40 USA Harrison County / Mississipi P. palustris

USA Harrison County / Mississipi P. taeda

11 5 Mexico Galeana / Nuevo León P. arizonica var. stormiae
Mexico Iturbide / Nuevo León P. halepensis

12 1 Mexico Piňal de los Amoles / Nuevo León Pinus sp.
13 2 Guatemala Santa Cruz Verapaz, near Tactíc P. oocarpa

14 2 Colombia Villanueva, Casanare P. caribaea

15 1 Spain San Sebastián de Garabandal / Cantabria P. radiata

16 8 France Pyrénées-Atlantiques P. radiata

France Landes P. attenuata  x radiata
France Gironde P. muricata

17 4 Switzerland Zürich, Nordheim P. mugo

Switzerland Zürich, Honggerberg P. mugo

Switzerland Walensee P. mugo

Switzerland Cham, Hammergut P. mugo

18 1 Italy Gardone / Brescia P. mugo

19 2 Germany Grassau P. mugo

20 12 Germany Murnau P. mugo

Germany Murnauer Filze P. mugo

Germany Pfrűhlmoos P. mugo

Germany Untersedlhof P. mugo

21 1 Croatia Zadar P. halapensis

22 2 Slovenia Bled P. mugo

23 15 Austria Gmunden P. nigra

Austria Weyer P. mugo

Austria Steyer, Pestalozzistraße P. mugo

Austria Saimannslehen Pinus sp.
Austria Sankt Gallen Pinus  sp.
Austria Hollenstein an der Ybbs P. mugo

Austria Opponitz P. mugo

Austria Sankt Gallen P. mugo

Austria Waidehofen an der Ybbs P. mugo

24 28 Czech Republic Borkovická Blata P. uncinata subsp. ulliginosa
Czech Republic Červená Blata P. uncinata subsp. ulliginosa

25 2 Lithuania Juodkrante for. distr. / Klaipėdský kraj P. mugo

Lithuania Smiltyné forest distr. / Klaipėdský kraj P. mugo

26 2 Estonia Tallin / Harju maakond P. ponderosa890 
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Table 2. Population characteristics based on microsatellite data and mating type idiomorphs 891 

for Lecanosticta acicola isolates from North America and Europe.  892 

 

ID Continent Country region N MLHs CF MAT1-1/MAT1-2 L(PTLPT) rd A R N a G H e

NA North America north-east 67 43 0.358 61/6** 1.59±0.21 3.55 0.955 0.32±0.30

CAP " Canada (Québec) Pontiac 18 13 0.278 17/1** 22ns -0.011ns 2.02±0.71 2.54 0.954 0.32±0.24

CAM " " Montréal 4 4 3/1nd

VMW " USA (Vermont) Washington County 23 14 0.391 22/1** 18ns 0.067* 1.83±0.59 2.55 0.944 0.26±0.21

NHM " USA (New Hampshire) Merrimack County 3 1 3/0nd

MEY " USA (Maine York 10 5 10/0**

MEL " " Leeds 6 4 5/1
ns

MES " " Sangerville 3 2 1/2
nd

MS North America USA (Mississippi) Harrison County 40 34 0.150 22/18ns 146ns 0.002ns 7.1±0.89 8.81 0.992 0.46±0.32

SE Europe south-west 9 5 0.444 4/5ns 1.00±0.59 1.27 0.888 0.09±0.14
ESS " Spain San Sebastián de Garabandal 1 1 0/1

FSW " France South-West regions 8 4 4/4
nd

CE Europe Central and North 69 48 0.289 23/44* 3.65±0.71 4.54 0.931 0.35±0.27

CHN " Switzerland northern Cantons 4 2 3/0
nd

ITG " Italy Gardone 1 1 0/1
nd

SLB " Slovenia Bled 2 2 0/2
nd

CRZ " Croatia Zadar 1 1 0/1
nd

GBU " Germany Upper Bavaria 12 9 0.25 6/5
ns

12
ns

-0.132
ns

1.66±0.48 2.09 0.878 0.26±0.23

GBG " " Grassau 2 2 0/2
nd

ATN " Austria northern regions 15 14 0.067 8/7
ns

23
ns

0.028
ns

2.19±0.35 2.72 0.942 0.30±0.25
CZB " Czech Republic Southern Bohemia 28 13 0.536 3/25** 22** 0.076* 2.18±0.94 2.72 0.793 0.23±0.21

LTC " Lithuania Curonian Spit 2 2 2/0nd

EET " Estonia Tallin 2 2 0/1nd

 893 

N, number of isolates; MLHs, number of multilocus haplotypes; CF, clonal fraction; MAT1-894 

1/MAT1-2 is the ratio of the mating type idiomorphs; the null hypothesis that the ratio is 1:1 895 

was tested using exact binomial test; L(PTLPT) is the length of the observed tree in number 896 

of steps; rBarD, multilocus linkage disequilibrium; for the L(PTLPT) and rBarD tests the null 897 

hypothesis of random mating was tested; nd, not determined; ns, P > 0.05; *P < 0.05; **P < 898 

0.001; Na, number of alleles; AR, allelic richness averaged across loci (±standard deviation); 899 

G, genotypic diversity; He, gene diversity (mean± standard deviation, Nei 1978). 900 

901 
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Table 3.  Genetic differentiation (FST) between pairs of genetically-defined clusters of 902 

Lecanosticta acicola populations. Abbreviations of populations: CE, central and north-903 

European population; MS, Mississippi population; NA, north-east North-American 904 

population; SE, south-west European population. 905 

MS NA CE
NA 0.481
CE 0.471  0.286
SE 0.351  0.662  0.642

906 
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 907 

 908 

Figure 1. Geographic representation of 14 EF haplotypes of Lecanosticta acicola in America, 909 

Europe and East Asia (enlarged areas). Numbers are the codes of locations corresponding to 910 

Table 1; each colour represents one haplotype (colours correspond to Fig. S1); size of circles 911 

represents number of isolates used in this study; scale bar indicate 500 km and 1000 km 912 

distance in each area. 913 

914 
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   915 

 916 

Figure 2. Phylogram based on maximum parsimony analyses of EF sequences. The 917 

representative isolates from GenBank are indicated in bold and the isolate indicated by  “(E)” 918 

represents the epitype of L. acicola. Maximum parsimony (MP), maximum likelihood (ML) 919 

and Bayesian inference (BI) bootstrap support values (1000 replicates) are indicated at the 920 

nodes (support values: MP > 75%; ML > 75%; BI > 95%; * - not significant). Scale bar 921 

indicates 10 nucleotide mutations. 922 
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 923 

Figure 3. Results of PCA analysis of the clone-corrected data of L. acicola isolates 924 

represented on two principal component axes. The isolates originating from Mississippi are 925 

designated with a dot, isolates from south-west Europe by a square, isolates from north-926 

eastern N. America ('NA' population) by a triangle and isolates representing 'CE' population 927 

(central, northern and south-eastern Europe) are indicated with a dash. Results of separate 928 

PCA analysis of NA and CE (northern lineage) populations are presented in the nested 929 

rectangle (axe 1: 7.11%; axe 2: 5.60%).  930 

931 
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 932 

Figure 4. Graphical representation of six scenarios of the demographic history and their 933 

relative posterior probabilities. Abbreviations used on time scales refer to time parameters 934 

used during simulations (description of each parameter is provided in Table S4). 935 

Abbreviations of populations: A, assumed ancestral population; CE, central and north-936 

European population; MS, Mississippi population; NA, north-east North-American 937 

population; SE, south-west European population. 938 
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 939 

Figure 5. Graphical representation of the most supported evolutionary scenario of 940 

Lecanosticta acicola invasion from North America to Europe. Ancestral population (A) gave 941 

origin of the blue lineage that gave arise MS population and parts of the two populations were 942 

introduced from North America to Europe independently. Abbreviations of populations: A, 943 

assumed ancestral population (its geographic location is unknown and does not correspond to 944 

its placement on this map); CE, central and north-European population; MS, Mississippi 945 

population; NA, north-east North-American population; SE, south-west European population. 946 

947 
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Supplementary Tables 948 

Table S1. Details for the Lecanosticta acicola isolates (N=201) obtained from needles of 949 

Pinus spp., used in this study including culture collection and GenBank accession numbers, 950 

mating type idiomorph, geographical origin and coordinates, description of site/stand type, 951 

host species, date of collection, collector/supplier and, where available, the altitude of the 952 

collection site. 953 

Table S2. Summary table of microsatellite genotyping results. Each isolate is characterised by 954 

the multilocus haplotype generated from eleven microsatellite markers and represented as the 955 

length of the amplified fragment. No amplification is indicated by a star. 956 

Table S3. Hierarchical analyses of molecular variance (AMOVA) of European isolates of L. 957 

acicola according to (1.) host species and (2.) geographic origin.  958 

Table S4. Prior and posterior distributions of demographic, historic and mutation parameters 959 

estimated and used in the ABC analyses. 960 

Table S5.  Model checking using 26 summary statistics not used for the previous ABC model 961 

selection in Table S4. 962 

963 
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Supplementary Figures 964 

 965 

Figure S1. Median-joining haplotype network constructed based on partial EF gene sequence 966 

data of L. acicola isolates. Each haplotype, presented as a node, is coloured according to Fig. 967 

1. The isolate indicated by “(E)” represents the epitype of L. acicola. The representative 968 

isolates from GenBank are indicated in bold. 969 

970 
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 971 

Figure S2. STRUCTURE results for K=2-6 presented as summary bar plots of 129 972 

Lecanosticta acicola isolates (clone-corrected data). Each isolate is represented by a single 973 

horizontal line divided into K clusters (different colours). The percentage indicates the 974 

proportion of independent STRUCTURE runs (from a total of thirty) that correspond to the 975 

significantly similar clustering pattern (SSC > 0.9).976 
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 977 

 978 

Figure S3. Refined results of STRUCTURE analysis for K=2 of the northern cluster observed 979 

in Fig. S2. 90 L. acicola isolates are presented as bar plots (clone-corrected data). Each isolate 980 

is represented by one vertical line. 981 

982 
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