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Fungal pathogens severely impact global food and fibre crop security. Fungal

species that cause plant diseases have mostly been recognized based on their

morphology. In general, morphological descriptions remain disconnected

from crucially important knowledge such as mating types, host specificity,

life cycle stages and population structures. The majority of current fungal

species descriptions lack even the most basic genetic data that could address

at least some of these issues. Such information is essential for accurate

fungal identifications, to link critical metadata and to understand the real

and potential impact of fungal pathogens on production and natural ecosys-

tems. Because international trade in plant products and introduction of

pathogens to new areas is likely to continue, the manner in which fungal

pathogens are identified should urgently be reconsidered. The technologies

that would provide appropriate information for biosecurity and quarantine

already exist, yet the scientific community and the regulatory authorities are

slow to embrace them. International agreements are urgently needed to

enforce new guidelines for describing plant pathogenic fungi (including

key DNA information), to ensure availability of relevant data and to moder-

nize the phytosanitary systems that must deal with the risks relating to

trade-associated plant pathogens.

This article is part of the themed issue ‘Tackling emerging fungal threats

to animal health, food security and ecosystem resilience’.
1. Introduction
Global travel and trade in food and fibre products have become a way of life

and underpin the global economy. Current estimates of a world population of

9.1 billion people projected by 2050, changing diets and consumption patterns,

and the increasing inability of some regions of the world to produce sufficient

food for local consumption (www.fao.org) suggest that (i) intercontinental

travel and trade of agricultural and forestry produce will increase and

(ii) production of produce will need to become more efficient to meet ever

increasing needs. Thus pre- and post-harvest losses, whatever the cause, will be

increasingly intolerable.

Importing countries are vulnerable to accidental introductions of new and

potentially devastating plant pathogenic fungi [1–3]. Quarantine systems,

including trade restrictions from areas where pathogens occur, required treat-

ment of goods and inspections for infected material are all intended to

reduce this risk. Given the increase in travel, as well as the volume of trade

around the world, including in live plants and fresh produce, the capacity to

apply these systems is wholly inadequate, even in the most resourced countries

such as the USA [4]. Furthermore, the rate at which goods are being moved
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around the world is also increasing. For example, bananas

grown in South America are served in European households

within days of harvest and this is true for many other plant

products globally. This implies that the window of opportu-

nity to intercept, identify and act on a potential new invasion

is minute at best.

Currently, applied quarantine systems are complicated by

the fact that most well-known fungal plant pathogenic

species are primarily known from a specific suite of disease

symptoms and general morphology based on only a part of

their life cycle [5]. Many pathogens remain undetected as

latent infections in apparently healthy tissue and they are

unlikely to be detected in routine inspections [6,7]. Further-

more, many of the fungi that cause major problems remain

unknown or unnamed until well after they begin to cause

major losses and will neither be sought nor detected in quar-

antine inspections. Once they are studied more intensively,

especially where modern molecular tools are applied, many

of the fungi that are detected are often found to represent

species complexes that would earlier have passed unnoticed

[8]. Pathogen detection that relies on visual plant symptoms

and pathogen morphology is quite evidently unable to effec-

tively cope with the threats posed by fungi found in traded

plants or plant products.

Quarantine systems have traditionally relied on fungal

names. These names are increasingly being shown as simplistic

and ineffectual as representatives of the relevant information

associated with a particular pathogen. Beyond the species

level, knowledge relating to mating types, and even clones of

particular pathogens, is crucially important when seeking to

understand or manage fungal invasions [9,10]. The same is

true for the variable presence or absence of small dispensable

chromosomes carrying genes involved in pathogenicity,

which can influence the ability of a species to infect a specific

host, e.g. in Alternaria alternata [11] and Fusarium oxysporum
[12]. To further complicate matters, quarantine lists with

names as actionable organisms are often found only in inaccess-

ible national databases or government publications. These are

frequently not linked to relevant data; neither are they consistent

with modern taxonomic treatments of the species in question.

Although it is unknown how many species of fungi

occur on the Earth, and estimates range anywhere from 1.5

to several million [13–15], it is reasonable to conclude that

the majority of species have not yet been seen or recorded

[16,17]. Communication relating to these species by means

of fungal names that remain largely linked to the phenotype,

and detached from the genotypic, ecological and other data

[16,18], is clearly insufficiently informative to deal with

risks associated with increasing volumes and rates of trade

in food and fibre. This approach also poses a serious threat

to the global security of plant production and the environ-

ment alike. In this review, we consider several of these

issues and approaches that could help to traverse seemingly

unnecessary barriers to efficient identification procedures

and management of fungal threats linked to global trade in

agricultural and forestry products.
2. One fungus, but which name?
Scientific names remain the foundation of how we communicate

regarding species of phytopathogenic fungi; also with regards

to quarantine. Names are ideally linked to knowledge of the
biology, distribution, ecology, host range, control and risks

associated with fungal pathogens. The concept of pleomorph-

ism relates to the fact that many ascomycetous fungi are

known by either their sexual, asexual or synasexual morphs,

to which different names have been attributed based on their

morphology; commonly referred to as dual nomenclature

[11,19,20].

In practice, this dual nomenclature has meant that a single

fungus could be listed on the quarantine list of a country under

any one of three valid names (e.g. apple scab caused by Ven-
turia inaequalis, asexual morph Fusicladium pomi or synasexual

morph Spilocaea pomi [21]). This is in a conservative scenario.

Where known synonyms are considered, the list of names

can be disturbingly long; all of which confuse the literature

and they commonly persist in national quarantine lists. Other

than having different names to contend with, quarantine

officers are also faced with the difficult reality that many

reported asexual–sexual relationships have never actually

been experimentally confirmed and can also be incorrect.

Following the ‘One Fungus: One Name’ symposium, and

the publication of the ‘Amsterdam Declaration on Fungal

Nomenclature’, several radical changes were proposed to the

code of nomenclature that governs the naming of fungi [19].

This subsequently led to the amendment of the International

Code of Nomenclature for algae, fungi and plants (ICN)

(Article 59) to abolish the use of dual nomenclature, as well as

other sensible changes including registration of nomenclatural

details of fungal novelties in databases such as MycoBank

[22], the acceptance of electronic publication, and English (as

alternative to Latin) descriptions of new names [19,20].

Moving to the application of single names for plant

pathogens was strongly supported by the plant pathology com-

munity [5], which needed to have meaningful names for species

associated with important plant diseases. The concomitant

changes to the ICN code, together with the increased under-

standing of systematic relationships among fungi based on

more representative DNA sequence-based phylogenies, have

resulted in a large number of taxonomic revisions in recent

years. While these name changes might have caused confusion

for plant health and quarantine practitioners in the short

term, the more accurate application of generic names based on

DNA-based data will ensure longer-term stability in the use of

names. Appropriate names of fungal pathogens are also impor-

tant for fundamental plant pathology research, such as various

‘omics’ approaches aimed at understanding the mechanisms of

plant–pathogen interactions through comparisons among

related species. Past taxonomic treatments lead to confusion in

this regard; for example, genome comparisons of ‘Mycosphaer-
ella’ that were later shown to represent members of different

genera, e.g. Zymoseptoria tritici [23,24], Pseudocercospora fijiensis
[25,26] and Dothistroma septosporum [27,28].

Unfortunately, many genera and species remain to be

revised or they are devoid of critical data that would allow

for accurate identification and phylogenetic placement.

Between 2000 and 2013, 1833 fungal genera were described

for which only 155 (8.4%) have type specimens linked to

reliably annotated ITS nrDNA sequence data in public data-

bases [29]. This implies that the number of newly described

fungi lacking DNA data continues to increase rather than

decrease. In an attempt to alleviate this problem, ‘The Genera

of Fungi’ project was launched, with the aim of sequencing,

restudying and/or recollecting the type species of genera of

fungi, focusing on a subset of names that are currently accepted

http://rstb.royalsocietypublishing.org/
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[29,30]. Furthermore, to help plant pathologists to know which

generic names they should apply to pleomorphic genera, com-

mittees under the auspices of the International Commission for

the Taxonomy of Fungi have been tasked with preparing lists of

accepted names recommended for use (e.g. [31,32]). These

names will be evaluated by the Nomenclature Committee for

Fungi, and formally accepted or not at the Nomenclature

Session of the 2017 International Botanical Congress to be

held in Shenzhen, Southern China.

Another major constraint to appropriate naming is the

general lack of appropriate, well-characterized reference speci-

mens and/or cultures of quarantine and related species in

publicly accessible collections (see review by [33]). Such bio-

logical resource centres are also under constant threat from

decreasing budgets and increasing costs. These invaluable

reference specimens and cultures are critically important for

the establishment of reliable identification systems. Their loss

would represent a huge impediment for future generations of

mycologists, plant pathologists and other end users.

The above-mentioned efforts to clarify the names of

fungal pathogens and link their phenotypes to genotypic

information are critical to ensure a useful framework for effi-

cient identification and communication of fungi. This is also

essential to ensure the continued discovery and characteriz-

ation of the millions of fungi that are estimated to remain

unnamed. It is, therefore, important that plant pathologists

take note of these efforts and support them with urgency.
3. Cryptic species, mating types and clones
A key question in considering global biosecurity is when to

stop considering a pathogen as an ‘actionable organism’, e.g.

when is it accepted as established in a country? It is important

here to recognize that a species is not ‘one dimensional’ as is

suggested by a name on a list. By contrast, it represents a com-

plex or pool of different ‘sexes’ or mating types, virulence

factors and genes. All these influence its response to hosts,

environments and a wide range of other factors. Furthermore,

many pathogens represent cryptic species that pose a particu-

lar problem with regard to understanding invasion and

potential quarantine procedures (e.g. [8,34,35]).

Fungi can reproduce either asexually or sexually. In the latter

case, they typically have two or more sexual mating types that

are needed for sexual recombination to occur [36,37]. Under-

standing these cycles is critical for disease management. This

is because it significantly affects the ability of fungal pathogens

to overcome resistance mechanisms of their hosts; with sexually

reproducing strains having an ecological advantage to infect and

invade [9]. Mating types should, therefore, have significant rel-

evance for the status of quarantine organisms. For instance, D.
septosporum, the causal agent of the devastating pine disease

Red Band Needle Blight, has been introduced into many

countries. By generating the mating-type primers for this patho-

gen, Groenewald et al. [38] were able to show that although the

species was introduced into South Africa, Australia and New

Zealand, both mating types were present in South Africa (i.e.

sexual recombination possible), but that only a single mating

type can be found in Australia and New Zealand (i.e. sexual

recombination not possible). It is clearly not only the species,

but also the mating types that are of quarantine concern.

Specific and even clonal lineages in a pathogen population

have relevance to quarantine. This is well illustrated in
bananas, which represent one of the important global staple

food crops, having evolved in the Indo-Malayan archipelago.

Panama disease, which is caused by F. oxysporum f.sp. cubense
(Foc), appears also to have originated in Southeast Asia [39].

Based on molecular studies, it appears that Foc is a haploid

asexual pathogen with a clonal population structure, and that

temporal and spatial dispersal of devastating disease linked

to Tropical Race 4 is actually due to a single clone [39]. If

additional clones were thus to move from Southeast Asia, the

disease would become even more difficult to manage because

a broader range of cultivars are likely to be affected. A further

complicating factor is that species in the F. oxysporum complex

also undergo horizontal gene and chromosome transfer as a

means for lineages to broaden their host range, and this can

influence their pathogenicity [40].

In some genera of phytopathogenic fungi, names mask

variation in host specificity and pathogenicity that is present

below the species level. Although such variation in plant

pathogenic fungi is often found to represent several cryptic

species, the opposite situation also occurs. One case in point

is the A. alternata species complex, to which the quarantine

species A. mali, causal agent of Alternaria blotch of apple,

belongs. Woudenberg et al. [11] employed whole-genome

and multi-gene analysis to reduce 35 Alternaria morpho-

species to synonymy under the older name, A. alternata. The

authors concluded that it is the presence or absence of the

gene cluster that codes for a specific toxin that is of quarantine

concern, and not necessarily a specific synonym of A. alternata.

McTaggart et al. [10] recently called for ‘gene-based biose-

curity’. They point out that our knowledge of genes that

underlie complex traits such as pathogenicity is growing expo-

nentially. Prediction of lifestyle (e.g. biotrophic versus

saprotrophic), the presence of pathogenicity factors and other

elements in the genome are known to be linked to pathogen-

icity. It will still be some time before such information is

known for a sufficient number of fungi to rely solely on

genome scans. But it is relevant to consider the fact that such

an approach would allow much more predictive and preventa-

tive action than any name-based biosecurity system. Until

such information is available for all actionable quarantine

organisms, a more detailed identification system is urgently

needed and in many cases it is already feasible.
4. Latent or endophytic fungal infections
Apart from systematic problems to identify fungal threats in

traded plants and plant products, biosecurity is also currently

unable to deal with the cryptic nature of fungal infections.

There are a great many plant pathogenic fungi that cause

latent infections. These represent a particularly difficult

challenge for international trade and associated quarantine

measures. Latent infections involve a parasitic relationship

between a pathogen and a host that might remain asympto-

matic for some period of time, even years, but that eventually

induces disease symptoms [41]. In this situation, a pathogen

remains latent until environmental or nutritional conditions

or the stage of maturity of the host or pathogen allow it to pro-

duce symptoms of disease [42]. A few pertinent case studies are

provided in figures 1–3.

The key issue illustrated by the three case studies (and

there are many others that could be used) is that many

genera include important plant pathogens that have a latent

http://rstb.royalsocietypublishing.org/


C. nymphaeae

C
. sim

m
ondsii

C
.godetiae

C.salicis

C.a
cu

tat
um

C. fi
or

in
ia

e

Figure 1. Parsimony phylogeny depicting the host range and geographical distribution of strawberry-associated species belonging to the Colletotrichum acutatum species
complex. Strains from Fragaria are indicated in red text and the branches and micromorphology photos of the different fungal species are colour coded. The alignment is
based on a subset of the six-locus alignment of Damm et al. [43], see TreeBASE (study number 12762). Anthracnose disease of strawberry is a particularly serious problem
for commercial fruit production [44], which resulted in C. acutatum being listed as a regulated plant quarantine pest by the European and Mediterranean Plant Protection
Organization (EPPO) and the EU Council Directive 2000/29 Annexes I and II, from which it was removed in 2009. Sources of inoculum include infected plants, weeds and
other hosts [45,46], while the pathogen is also well known to survive via latent infections on strawberries [47]. To further complicate matters, Damm et al. [43] recently
separated the morpho-species C. acutatum into 31 taxa, of which 21 were shown to represent novel species. Under these circumstances, it is difficult to imagine how
quarantine can be applied through attempts at visual inspection for symptoms or morphological identification of species.
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phase in their life cycles. This easily leads to unwanted intro-

ductions, further complicated by the fact that these pathogens

frequently also have wide host ranges and thus spread

throughout local plant communities. The only way to over-

come this problem is through the application of molecular

based detection. DNA barcoding technologies and data shar-

ing abilities for such an approach already exist [54,55], but are

not used widely yet for quarantine purposes. For this goal to

be realized, much work is required to firstly provide a solid

taxonomic framework (as discussed above). And there

will be a need for human capacity development within

quarantine structures to utilize this information.
5. Conclusion
Global trade in plant products faces major challenges related

to fungal pathogens that threaten food and fibre security, as
well as ecosystem health. Unfortunately, these challenges

are exacerbated by inefficiencies in the systematic and phys-

ical identification of fungi, which is due to the reliance on

outdated taxonomic information and systems, as well as

our inability to recognize the cryptic fungal infections.

Given the enormity of the risks, it is unfortunate that there

is a general lack of global urgency to incorporate already

existing tools to deal with them. These tools would make it

possible to implement a barcoding-based information and

identification system to screen plants and plant products

that are traded internationally.

One of the major issues that hamper progress towards an

effective DNA-based barcoding system for biosecurity is the

present ICN, which governs the naming of fungi, and essen-

tially allows plant pathogenic fungal species to be described

without DNA data. This leaves researchers and practitioners

trying to play ‘catch-up’ at huge additional cost, having to

recollect isolates to provide molecular data for previously

http://rstb.royalsocietypublishing.org/
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Figure 2. Species of Botryosphaeriaceae associated with cankers on (a – d ) Acacia, Protea, Eucalyptus and Pinus. Diseases caused by Botryosphaeriaceae mostly follow
the onset of stress [7]. Many species of Botryosphaeriaceae are known to exist via localized, latent infections in their hosts, which appears to be a common charac-
teristic of this group [7,48]. Once introduced into a new area as latent infection or endophyte on one host, they can easily move to other hosts where these
otherwise ‘innocent’ endophytes become serious pathogens. Some species of Botryosphaeriaceae can remain latent for many years as localized infections deep
inside woody or other tissues. Diplodia sapinea, for example, is a common global pathogen of Pinus spp., but is also well known to exist as latent infections
in wood of stems, branches, twigs, seed cones and (to a limited extent) seed [49 – 52]. It has evidently been introduced with its host multiple times around
the world, which illustrates the extent to which quarantine systems have failed to halt the movement of such latent infections [49,52].

(b)(a) (c) (d )

Figure 3. Foliar diseases caused by (a,b) Pseudocercospora eumusae and P. fijiensis on Musa, (c) Dothistroma septosporum on Pinus and (d ) Pseudocercospora
angolensis on Citrus. The Mycosphaerellaceae comprises one of the largest families in the Phylum Ascomycota, in which some species have evolved as latent patho-
gens, saprophytes or symbionts. For example, D. septosporum, the causative agent of Red Band Needle Blight disease, is an important pathogen of Pinus spp. [27],
which has also been isolated from asymptomatic pine needles. Species of Pseudocercospora are commonly associated with leaf spots, with some taxa such as
P. angolensis on Citrus [53], and P. fijiensis, P. musicola and P. eumusae on Musa [26] being of major quarantine concern. Other than these examples, a great
number of species from diverse genera in the Mycosphaerellaceae are commonly isolated as latent pathogens, occurring on a wide range of asymptomatic
host plants [25].
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described plant pathogens. A potential remedy would be for

the International Commission for the Taxonomy of Fungi to

implement a set of guidelines that authors, editors and

reviewers could follow to ensure that, wherever possible, rel-

evant genotypic data are provided to supplement novel

species descriptions of suspected or known plant pathogens.

The current absence of such guidelines hampers both progress

and the application of broadly accepted best practices in fungal

identification and description. This is not only to the detriment

of mycology, but also of global food and fibre production and

ecosystem health.

A major constraint to effective plant quarantine is the poor

linkage between resources that carry layers of information

regarding plant pathogens. Unfortunately, there is a general

lack of support to maintain and link databases such as Q-bank

(http://www.q-bank.eu/), MycoBank (http://www.myco-

bank.org/), Index Fungorum (http://www.indexfungorum.

org), UNITE (https://unite.ut.ee/), GenBank (http://www.

ncbi.nlm.nih.gov/) and the ARS-USDA fungus–host distri-

bution database (http://nt.ars-grin.gov/fungaldata bases/
fungushost/fungushost.cfm), to name but a few. Each of these

databases includes unique information about species, their

identification, strains, hosts and much more. Linking them,

and supporting their expansion, appears to be ‘low-hanging

fruit’ from a global quarantine and plant health management

perspective. Doing so would immediately unlock large volumes

of data for important pathogens globally. Only specialists who

understand the intricacies of navigating this maze of data

resources can currently access much of this information.

As handy as DNA barcodes can be as tools for species recog-

nition, the real value of these data collections will emerge once

the fungal genomes have been analysed and linked to function,

e.g. using secondary metabolites to infer ecology, the identifi-

cation of pathogenicity factors, transposable elements, as well

as life cycle and population structure [10,56]. There is a growing

realization that not only future biological studies but also future

quarantine and management systems will be reliant on this

information. If we are serious about reducing the impact of

fungal pathogens on trade in food and fibre, a fundamental

change in how we operate will be required. Names, morphology
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and visual inspection for fungal pathogens are simply not

sufficient to deal with the problem.
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