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INTRODUCTION

Teratosphaeria leaf diseases (TLD; Crous et al. 2006, Hunter 
et al. 2006, Crous 2009, Crous et al. 2009a, b) have emerged 
as significant foliar diseases impacting on the eucalypt 
plantation industry in subtropical and tropical areas of 
Australia (Carnegie et al. 2007a, b, c). Teratosphaeria species 
with kirramyces-like asexual morphs have emerged as the 
most significant foliar pathogens of this genus; namely T. 
destructans, T. eucalypti, T. pseudoeucalypti, T. suttonii, and 
T. viscida (Wingfield et al. 1996, Park et al. 2000, Carnegie 
2007a, b, Andjic et al. 2010a). These five species cause a 
serious leaf blight disease, leading to premature defoliation 
and in some instances tree mortality (Andjic et al. 2007b, 
2010a, Carnegie 2007a, b, c). Symptoms are similar and 
include brown to purple spots on leaves with diffuse border 
and red brown margin, necrotic lesions delimited by veins and 
presence of spore masses and conidia (Dick 1982, Walker et 
al. 1992, Wingfield et al. 1996, Burgess et al. 2006, Andjic et 
al. 2007a, b, c, Andjic et al. 2010a). Conidia of these species 
are all long, variously curved, subhyaline to pale brown, 
smooth to verruculose and are virtually indistinguishable by 
morphology (excluding T. suttonii), thus making diagnostics 
based on morphology impossible (Andjic et al. 2010b, Hunter 
et al. 2011). 

Teratosphaeria destructans is an aggressive pathogen 
causing a leaf, bud and shoot blight disease (Wingfield et 
al. 1996). This pathogen was first discovered in Indonesia 
in 1996 and has since been detected in Thailand, China, 
Vietnam, and most recently South Africa (Burgess et al. 
2006, Old et al. 2003a, b, Wingfield et al. 1996, Greyling et 
al. 2016). In Australia, T. destructans is only reported from 

Tiwi Island in the Northern Territory (on introduced plantation 
Eucalyptus hybrids) and Derby in Western Australia (on 
amenity Eucalyptus sp.) (Burgess et al. 2007). Teratosphaeria 
eucalypti is a leaf parasite of endemic Eucalyptus species 
(eastern Australia) but under favourable conditions can cause 
a serious leaf blight disease mostly infecting juvenile leaves 
of some Eucalyptus species in plantations (Carnegie 2007b). 
Teratosphaeria eucalypti is known to have been introduced 
with plantings of E. nitens from Australia into New Zealand, 
where it has resulted in complete defoliation of juvenile leaves 
of E. nitens (Dick 1982, Miller et al. 1992). Teratosphaeria 
pseudoeucalypti was first discovered on an unidentified 
Eucalyptus sp. and hybrids of E. grandis × camaldulensis in 
Central Queensland, where it caused severe outbreaks and 
damage (Andjic et al. 2010a). Since then the pathogen has 
been detected in Argentina (Ramos & Perez 2015), Brazil 
(de Souza et al. 2014), and Uruguay (Soria et al. 2014). 
Teratosphaeria suttonii is known from many countries (Park 
et al. 2000, Sankaran et al. 1995, Taole et al. 2015) and can 
cause severe damage in eucalypt plantations (Carnegie 
2007b). Teratosphaeria viscida was first detected in 2005 
causing leaf and shoot blight in E. grandis and complete 
defoliation of E. grandis × camaldulensis hybrids in Mareeba, 
North Queensland (Andjic et al. 2007b). 

Whilst T. eucalypti, T. pseudoeucalypti, T. suttonii, and T. 
viscida are all native to Australia, the origin of T. destructans 
is still unclear (Andjic et al. 2011). Based on DNA sequence 
variation of Australian isolates, it was thought that T. 
destructans originated from Australia (Burgess et al. 2007). 
Teratosphaeria destructans was a high risk pathogen for 
Australia and was on the Northern Australia Quarantine 
Strategy (NAQS) biosecurity target list (as Kirramyces 
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destructans), but later removed after being reported in 
northern Australia by Burgess et al. (2007) (Jane Ray pers. 
comm.).

During surveys of native and plantation eucalypt species 
in northern Western Australia and the north-western Northern 
Territory over the years 2006–12, we observed leaves 
exhibiting symptoms similar to those of T. destructans. 
Samples were collected across several sites and preliminary 
examination revealed a fungus with a conidial morphology 
similar to that of T. destructans. This study describes two new 
species of Teratosphaeria with long conidia found in northern 
Western Australia and the Northern Territory that are distinct 
from T. destructans. 

MATERIALS AND METHODS

Collection and isolation
Eucalypt leaves with symptoms resembling those of 
Teratosphaeria destructans were collected from several 
different locations in Australia: (a) adult mature trees of a 
Eucalyptus sp. in Derby, Western Australia; (b) juvenile 
leaves from Eucalyptus hybrids in plantations on Tiwi Island, 
Northern Territory; and (c) juvenile and adult foliage from 
eucalypt woodlands at several locations in northern, Western 
Australia and north-western parts of Northern Territory (Table 
1, Fig. 1C). Isolations were made as described previously 
(Andjic et al. 2007 a). Isolates are maintained in culture 
collections at Murdoch University, Perth, Western Australia 
(MUCC) and the Department of Agriculture and Water 
Resources (AQISWA), Perth, Western Australia. Ex-type 
cultures and leaf material have been deposited in the fungal 
collection of Queensland Plant Pathology Herbarium (BRIP), 
Brisbane, Queensland, Australia, and the KNAW-CBS Fungal 
Biodiversity Centre (CBS), Utrecht, The Netherlands. 

Morphological identification and 
characterisation
Preliminary identification of the Teratosphaeria isolates was 
by microscopic examination and culturing. Plugs (2 mm 
diam) were cut from actively growing cultures and placed at 
the centres of Petri dishes (55 mm diam) containing 2 % Malt 
Extract Agar (MEA). After 30 d, cultures were assessed for 
growth-rate, by taking two measurements of colony diameter 
perpendicular to each other. Colony colour was described 
using notations in the Munsell® Soil Colour Charts (Gretag 
Macbeth, New Windsor, NY, revised 2000).

Squash mounts of sporing structures were prepared, 
from hand sections of lesions and from culture, on slides 
in lacto-glycerol (1:1:1 v lactic acid: glycerol: water) and 
observed at 1000× magnification with Leica DM5000 light 
microscope. Morphological characters used in this study to 
distinguish Teratosphaeria species producing kirramyces-
like long conidia included: conidial size, shape, pigmentation 
and number of septa. Wherever possible, 30 measurements 
of all potentially taxonomically relevant structures were 
recorded for each species and the extremes are presented in 
parentheses. Measurements of conidial size were obtained 
using image analysis software Leica Image Application Suite 
(LAS) and adjusted to the nearest 0.5 mm. Conidium lengths 

were recorded as straight-line (linear) length following the 
method of previous studies of Teratosphaeria (Wingfield et 
al. 1996). Data analyses were performed using descriptive 
statistics in Microsoft Excel. 

DNA Extraction, PCR amplification and 
sequencing
Isolates were grown on 2 % MEA at 20 °C for 4 wk and 
the mycelium was harvested and placed in a 1.5 mL sterile 
Eppendorf® tube. Harvested mycelium was ground to a fine 
powder using cordless motor pellet pestle (Sigma-Aldrich) 
and genomic DNA was extracted using a DNeasy® Plant 
Mini Kit (Qiagen) following the manufacturer’s instructions. 
ITS2 and part of the 5.8S region of the rDNA (ITS2), and two 
partial protein-coding genes, b-tubulin (tub2) and translation 
elongation factor (tef1), were sequenced for all isolates as 
described previously (Andjic et al. 2007a). 

Phylogenetic analysis
The phylogeny of the new Teratosphaeria isolates was 
estimated using parsimony and maximum likelihood 
methods. In order to compare Teratosphaeria species used 
in this study with other closely related species, additional 
ITS2, tub2 and tef1 sequences were obtained from GenBank 
(Table 1). Sequence data were assembled and aligned using 
the CLUSTALW algorithm implemented in Geneious R7 v. 
7.0.4 (Biomatters). Adjustments to the alignments were made 
manually by inserting gaps where necessary. 

Maximum parsimony analyses were performed on 
individual (data not shown) and combined data sets in 
PAUP (Phylogenetic Analysis Using Parsimony) v. 4.0b10 
(Swofford 2003) after a partition homogeneity test (PHT) of 
the combined ITS2, tub2 and tef1 alignments was conducted 
in PAUP (Phylogenetic Analysis Using Parsimony) v. 4.0b10 
(Swofford 2003) to test pairwise congruence between the 
sequence data sets. 

The equally most parsimonious trees were obtained using 
heuristic searches with random stepwise taxon additions in 
100 replicates, with the tree bisection-reconnection branch-
swapping option on and the steepest-descent option off. 
Maxtrees were unlimited, branches of zero length were 
collapsed and all multiple equally most parsimonious trees 
were saved. Estimated levels of homoplasy and phylogenetic 
signal (retention and consistency indices) were determined 
(Hillis & Heuelsenbeck 1992). Branch and branch node 
support was determined using 1000 bootstrap replicates 
(Felsenstein 1985). Trees were rooted to Teratosphaeria 
nubilosa (CBS 116005).

The same aligned datasets were used for the Bayesian 
analysis, which was performed with MrBayes v. 3.2.6 
(Ronquist & Heuelsenbeck 2003) as implemented as 
Geneious plug-in after MrModeltest v. 3.5 (Nylander 2004) 
was used to determine the best nucleotide substitution model 
per gene region. For all gene regions the Hasegawa, Kishino 
and Yano (HKY85) nucleotide substitution model with gamma 
(G) and proportion of invariable site (I) parameters was the 
best model. Two independent runs of Markov Chain Monte 
Carlo (MCMC) were run over 1 100 000 generations. The 
heating parameter was set at 0.2 and trees were saved each 
1 000 generations, resulting in 1 100 trees. Burn-in was set 
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Teratosphaeria spp. on Eucalyptus

Fig. 1. A. Bayesian phylogram obtained from the combined ITS2, translation elongation factor 1-α and the β-tubulin sequence alignment. 
Bootstrap support based on parsimony analysis and posterior probabilities of the branch nodes based on Bayesian analysis (italics) are given at 
the nodes. All trees are rooted to Teratosphaeria nubilosa. B. Haplotype network based on sequence data from ITS2, tub2 and tef1 gene regions. 
Colours following the blocks in Fig. 1. A indicate the isolates and the localities in Fig. 1. C. Red=T. destructans; Green=T. tiwiana; Orange=T. 
novaehollandiae; Brown=T. viscida C. Map showing collection localities of species described with colour coding aligned to the phylogram (Fig. 
1A) and haplotype network (Fig. 1 B).
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at 100 000 generations (i.e. 100 trees), well after the 
likelihood values converged to the stationery, leaving 
1 000 trees from which the consensus trees and 
posterior probabilities were calculated. 

Sequences obtained from this study have been 
deposited in GenBank and accession numbers 
are shown in Table 1. The sequence alignment 
was lodged in TreeBASE (www.treebase.org/) and 
taxonomic novelties in MycoBank (www.MycoBank.
org). 

Haplotype network estimation
Haplotype networks were used to compare isolates 
in order to infer which isolates were most closely 
related to one another. Haplotype networks were 
generated using the statistical parsimony method 
in the TCS v. 1.21 software programme (Clement et 
al. 2000). The program collapses DNA sequences 
into haplotypes and calculates the frequencies of 
haplotypes in the sample, which are used to estimate 
haplotype out-group probabilities that correlate with 
haplotype age (Donelly & Tavare 1986, Castelloe 
& Tempelton 1994). It then calculates an absolute 
distance matrix from which it estimates phylogenetic 
networks using a probability of parsimony, until the 
probability exceeds 0.95 (Templeton et al. 1992). The 
analysis was performed on the combined dataset of 
ITS2, tub1 and tef1 DNA sequences. 

RESULTS 

Morphological identification
The fungal isolates obtained in this study were 
characterised as slow-growing cultures on MEA. 
Morphological characteristics of the conidia of the 
Teratosphaeria isolates were similar in pigmentation, 
length, size, shape, and septa number (Table 2). 
Conidia were hyaline, subhyaline to pale brown, 
straight to variously curved, with 0–3 septa, and 
ranging from 30–50 × 2–3.5 μm (in vivo). These 
characteristics are typical for all Teratosphaeria 
species with kirramyces-like long conidia isolated 
from Eucalyptus. Morphological features of 
Teratosphaeria asexual morphs with long and short 
conidia are variable and not reliable for species 
separation, therefore the identification of those 
species relies on DNA sequencing (Andjic et al. 
2007c, 2010b).

Molecular identification and 
phylogenetic analysis
A BLASTn search was conducted in GenBank to 
compare the ITS2 sequences of the  Teratosphaeria 
isolates being examined in this study with those 
already there. The returned sequences were most 
similar to T. destructans (for isolates from Tiwi Island) 
and T. viscida (for isolates from Western Australia, 
WA, and Northern Territories, NT) and these and 
other less related species (T. eucalypti and T. 
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pseudoeucalypti) were used in the phylogenetic analyses. 
The aligned combined data set of ITS2, tub2, and tef1 
consisted of 870 characters, of which 72 were parsimony-
informative and were used in the analysis. The partition 
homogeneity test showed no significant difference (P > 0.01; 
P = 0.32) between data from different gene regions, and so 
these data were combined. These data contained significant 
phylogenetic signal (P< 0.01; gl = - 0.95). Heuristic searches 
of unweighted characters in PAUP resulted in 18 equally most 
parsimonious trees of 91 steps (CI=0.89, RI=0.98; TreeBASE 
S18826; Fig. 1). The Bayesian analysis resulted in a tree 
with the same topology and clades as those revealed in the 
parsimony analysis and presented as Fig. 1A (TreeBASE 
S18826; Fig. 2). In the Bayesian analysis, the tub2, tef1 and 
ITS2 regions consisted of 47, 55 and 31 unique site patterns 
respectively.

The phylogeny generated from the combined alignment 
(Fig. 1A) resulted in three major clades: the first major clade 
comprising T. destructans and isolates from Tiwi Island with 
93 % bootstrap support and a Bayesian posterior probability of 
1.0; the second comprising isolates from WA and the NT with 
100 % bootstrap support and a Bayesian posterior probability 
of 1.0; and the third containing isolates of T. viscida with 100 
% bootstrap support and a Bayesian posterior probability of 
1.0. Furthermore, the first major clade was subdivided in two 
sub-clades, one containing isolates of T. destructans and the 
second containing Teratosphaeria isolates from Tiwi Island. 
The T. destructans sub-clade was well supported with 78 
% bootstrap support and a Bayesian posterior probability of 
1.0. The Tiwi Island isolates subclade was supported with 
68 % bootstrap support and a strong Bayesian posterior 

probability of 0.93. Although the bootstrap support for isolates 
from Tiwi Island was relatively low, posterior probability was 
strong for that node and the tree topology was consistent 
in all 18 equally most parsimonious trees. Teratosphaeria 
isolates from Tiwi Island were monophyletic in all 18 equally 
most parsimonious trees and consistently separated from T. 
destructans (data not shown). 

The second clade containing isolates from WA and NT 
was well supported with a 100 % bootstrap value and a 
posterior probability of 1.0. The unnamed Teratosphaeria from 
this clade was closely related to, but phylogenetically distinct 
from T. viscida (Fig 1A). Isolates of both T. viscida and the 
undescribed Teratosphaeria were monophyletic with some 
sequence variation observed amongst new Teratosphaeria 
isolates. There were 12 fixed polymorphic sites distinguishing 
T. viscida from the new Teratosphaeria across the three gene 
regions indicating that isolates from this clade represent a 
new taxon (Table 3). 

Haplotype network
Haplotype networks constructed in TCS software resulted 
in ten haplotypes (H-1–H-10) amongst the isolates used 
in this study (Fig. 1B): Teratosphaeria destructans was 
represented by one haplotype, H-1 (six isolates from Asia, 
AAA); T. tiwiana from Tiwi Islands was represented by three 
haplotypes (H-2,two isolates, ABB; H-3, six isolates, BBB; 
and H-4, six isolates BBC); the new Teratosphaeria isolates 
were represented by five haplotypes: H-5 (two isolates from 
the Kimberly region in WA and one from the NT, CCD); H-6 
(one isolate from the NT, CCE); H-7 (two isolates from the 
NT, CDD); H-8 (four isolates from the Pilbara, WA, CED); 

Table 2. Morphological features of conidia of Teratosphaeria destructans, T. viscida, T. novaehollandiae, and T. tiwiana species from eucalypts. 
In vivo = herbarium specimens, in vitro = isolates from culture, n/a=not applicable (the isolates did not produce conidia in culture or were not 
available.)

Fungus Specimen 
number

Pigmentation Conidial 
length (in 
vivo) µm

Conidial 
length (in 
vitro) µm

Conidial 
width (in 
vivo) µm

Conidial 
width (in 
vitro) µm

Number 
of septa

T. destructans
Wingfield et al. 1992 PREM54416 Pale brown 50–65 n/a 2.5–3 n/a 1–3 

Andjic et al. 2007 PREM59261 Pale brown 38–47 35–40 2–2.5 2–3 1–3 

Andjic et al. 2007 PREM59259 Pale brown 49–55 33–40 2–2.5 2–2.5
1–3 

T. viscida
Andjic et al. 2007 BRIP 49804 Subhyaline to pale brown 47–60 35–40 2.5–3.5 2.5–3.5 0–3 

T. novaehollandiae

Present study BRIP59486 Hyaline to subhyaline 35–40 30–35 2.5–3 2.0–2.8 1–3 

Kununurra

Present study BRIP59488 Hyaline to subhyaline 30–35 25–30 2.0–3 1.5–2.0 1–3 

NT

Present study BRIP63523 Hyaline to pale brown 25–30 26–30 3–3.5 2.3–2.8 1–2 

Pilbara  

Present study AQISWA201513 Subhyaline to pale brown 45–50 n/a 2.5–3 n/a 1–3 

T. tiwiana
Present study BRIP63496 Pale brown 35–40 35–40 2.5–3 2.5–3 1–2 
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and H-9 (four isolates from Derby, WA, DFD); and T. viscida 
was represented by one haplotype, H-10 (four isolates from 
Queensland, EGF). 

Three different haplotypes (H-2, H-3, H-4) were observed 
in the population from Tiwi Island, but none of them were 
shared with the phylogenetically closely related T. destructans 
(H-1). 

Five haplotypes were detected in the population from 
WA and NT. Only one haplotype was shared among isolates 
from WA and the NT (H-5), and none of the haplotypes were 
shared with the closely related T. viscida (H-10). 

Morphological examination did not show any major 
differences between the Teratosphaeria isolates obtained 
in this study. This situation is common in species lacking 
a known sexual morph. However, the combination of 
phylogenetic inference and haplotype analysis provides 
robust evidence that isolates from Tiwi Island, NT and WA 
are distinct from both T. destructans and T. viscida. They  are 
therefore described as new species here. 

Fig. 2. Morphological features of Teratosphaeria destructans, T. tiwiana, T. novaehollandiae, and T. viscida from eucalypts. A–D. T. destructans 
specimen PREM 59261(CMW 17919). A. Leaf symptoms. B. Culture morphology on MEA. C. Conidia morphology. D. Conidiogenous cells and 
conidiogenesis. E–H. T. tiwiana holotype specimen and ex type culture BRIP 63496 (CBS 141549). E. Leaf symptoms. F. Culture morphology on 
MEA. G. Conidia morphology. H. Conidiogenous cells and conidiogenesis. I–L. T. novaehollandiae holotypespecimen  and ex type culture BRIP 
59486.  I. Leaf symptoms. J. Culture morphology on MEA. K. Conidia morphology. L. Conidiogenous cells and conidiogenesis. M–P. T. viscida 
specimen BRIP 49804 CBS 121156). M. Leaf symptoms. N. Culture morphology on MEA. O. Conidia morphology. P. Conidiogenous cells and 
conidiogenesis. Bars = 10 µm.
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TAXONOMY

Teratosphaeria novaehollandiae V. Andjic, T.I. 
Burgess, A. Maxwell, sp. nov. 

MycoBank MB815681
(Fig. 2I–L)

Etymology: Name refers to original Dutch name for the 
geographic western half of Australia, where the fungus was 
collected. 

Diagnosis: Distinguished from T. viscida (cfr. Figs. 2 I–L and 2 
M–P) in not producing highly hydrophobic and viscous spore 
masses. In vivo, T. novaehollandiae produces shorter conidia 
(33–40 μm) than those of T. viscida (47–60 μm). In vitro, T. 
novaehollandiae produce shorter conidia (27–31 μm) than 
T. viscida (35–40 μm). Unlike T. viscida, T. novaehollandiae 
does not produce a synasexual morph with chlamydospore-
like structures in culture. Based on phylogenetic analyses 
of sequence data obtained for the ITS2, tef1 and tub2 gene 
regions, T. novaehollandiae has 12 fixed polymorphic sites 
across three gene regions which distinguish it from the 
closely related T. viscida (Table 3). 

Type: Australia: Western Australia: Kununurra, isolated from 
leaves of Eucalyptus camaldulensis, Apr. 2012, A. Maxwell & 
V. Andjic (BRIP 59486 – holotype).

Description: Leaf spots circular to irregular, 2.5–35 mm 
diam, single to confluent, pale to medium brown with a red 
brown border on the top surface, and light brown from below. 
Conidiomata pycnidial, hypophyllous, single, dark brown 
to black. Conidiophores reduced to conidiogenous cells. 
Conidia solitary, 1–3-septate, hyaline to pale brown, slightly 
verruculose, cylindrical, straight to slightly curved, thick-
walled, base truncate sometimes with marginal frill, apex 
obtuse, (20–)33–40(–62) × (1.5–)2–3.5(–4.0) (mean = 38 × 
2.5 μm). 

Culture characteristics: Colonies 35 × 25 mm after 1 mo at 
25 °C in the dark on MEA, white 5YR 8/1 to pink 5YR 8/4 on 

the upper surface, olive grey 5YR 7/1 on reverse. Mycelium 
subhyaline to pale brown, septate, branched. Conidiomata 
pycnidial, single, dark brown to black, globose to subglobose, 
unilocular: wall of textura angularis. Conidiogenous cells not 
seen in culture. Conidia solitary, 1–3-septate but mostly 
3-septate, hyaline to subhyaline, slightly verruculose, 
cylindrical, straight to slightly curved (22–)27–30(–41) × (1–
)2–2.5(–4) (mean = 30 × 2.5 μm). 

Additional material examined: Australia: Western Australia and 
Northern Territory: Kununurra and Bachelor, isolated from E. 
camaldulensis, Apr. 2012, A. Maxwell & V. Andjic (BRIP 59487, BRIP 
59488 = CBS 141552, BRIP 59490, and BRIP 59481); Western 
Australia: Pilbara isolated from Eucalyptus victrix, Aug. 2013, G. 
Hardy (BRIP 63522, BRIP 63523 = CBS 141554, AQISWA 201403, 
AQISWA 201404);  Derby, isolated from leaves of Eucalyptus sp., 
July 2006, T.I Burgess & M.J. Wingfield (BRIP 64754, culture not 
viable). 

Teratosphaeria tiwiana V. Andjic, T.I. Burgess, A. 
Maxwell, sp. nov. 

MycoBank MB815680
(Fig. 2 E–H)

Etymology: Named after Tiwi Island, the type locality.

Diagnosis: Distinguished from T. destructans (cfr.Fig. 2 E–H 
v. A–D) by producing slightly shorter conidia and in septa 
number. In vivo, T. tiwiana produces shorter and less curved 
conidia (35–40 μm) than those of T. destructans (38–65 μm). 
In contrast to T. destructans, whose conidia is 1–3-septate, 
the conidia of T. tiwiana are 1–2-septate (Fig. 2C, G). Based 
on multi-gene phylogeny T. tiwiana can be distinguished 
from T. destructans with 6 bp differences across three gene 
regions. 

Type: Australia: Northern Territory: Tiwi Island, isolated from 
leaves of Eucalyptus hybrids E. grandis × E. urophylla, Aug. 
2007, T.I. Burgess (BRIP 63496– holotype; BRIP 63496 = 
CBS 141549– ex-type cultures).

Table 3. Polymorphic nucleotides from sequence data of ITS2, tef1 and tub2 gene regions showing the variation between isolates of 
Teratosphaeria viscida and T. novaehollandiae. Ex-type cultures are indicated in bold face.

tub2 tef1 ITS2
96 99 105 229 158 166 169 173 209 211 181 183

Teratosphaeria viscida

CBS 121156 G A G  T T G A A G G T G

CBS 121157 G A G  T T G A A G G T G

MUCC 456 G A G  T T G A A G G T G

MUCC 455 G A G  T T G A A G G T G

Teratosphaeria novaehollandiae

BRIP59486 A G T C C A C T A A C C

BRIP59488 A G T C C A C T A A C C

BRIP63523 A G T C C A C T A A C C

BRIP63523 A G T C C A C T A A C C

AQISWA201513 A G T C C A C T A A C C
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Description: Leaf spots circular to irregular, 3–20 mm diam, 
single to confluent, pale to medium brown with red brown 
border on the top surface, light brown below. Conidiomata 
pycnidial, hypophyllous, single, dark brown. Conidiophores 
reduced to conidiogenous cells. Conidia solitary, 1–2-septate, 
predominantly with 1-septum, pale brown, slightly verruculose, 
cylindrical, straight to variously curved, thick-walled, base 
truncate, sometimes with marginal frill, apex obtuse, (26.5–)35–
40(–44.5) × (2–)2.5–3.0(–3.5) (mean = 35 × 2.8 μm). 

Culture characteristics: Colonies 25 × 25 mm after 1 mo at 
25 °C in the dark on MEA, white 5YR 8/1 to pink 5YR 8/4 on 
the upper surface, olive grey 5YR 7/1 on reverse. Mycelium 
subhyaline to pale brown, septate, branched. Conidiomata, 
if present, pycnidial, single, dark brown to black, globose 
to subglobose, unilocular: wall of textura angularis. 
Conidiogenous cells not seen in culture. Conidia solitary, 
0–1-septate, subhyaline to pale brown, slightly verruculose, 
cylindrical, straight to variously curved (25–)35–40(–56.5) 
× (2–)2.5–3(–3.5) (mean = 38 × 3.0 μm), lateral branches 
occasionally present as secondary conidia.

Additional specimens examined: Australia: Northern Territory: 
Tiwi Island, isolated from E. grandis and E. urophylla hybrids, Aug. 
2007, T.I. Burgess (BRIP 63492 = CBS 141553, BRIP 63491 = CBS 
141551, BRIP 63493, BRIP 63494, BRIP 63497 = CBS 141550, 
BRIP 63495 = CBS 141548, BRIP 63524).

DISCUSSION

We describe two new cryptic Teratosphaeria species isolated 
from Eucalyptus in northern Australia: T. tiwiana and T. 
novaehollandiae. Australian isolates previously described 
as T. destructans were re-examined and are here assigned 
to these two new taxa. Teratosphaeria destructans s. str., 
therefore, has not been correctly recorded in Australia, and 
remains restricted to South-East Asia and Africa. 

The two new Teratosphaeria species could not be 
morphologically distinguished, thus the description was 
based on data inferred from multi-gene phylogeny: applying 
the Genealogical Concordance for Phylogenetic Species 
Recognition (GCPSR; Taylor et al. 2000) criteria, and noting 
the haplotype analysis of combined sequence data for the 
ITS2, tub2 and tef1 gene regions. The GCPSR concept 
uses the phylogenetic concordance of multiple unlinked 
genes to indicate a lack of genetic exchange and thus 
evolutionary independence of lineages (Geiser et al. 1998, 
Taylor et al. 2000, Starkey et al. 2007, Cai et al. 2011). It is a 
useful criterion for the discrimination of species when other 
species recognition criteria (morphological, physiological, 
reproduction, host specificity) fail (Cai et al. 2011). GCPSR 
has already proved to be a valuable tool for recognising 
cryptic species in Colletotrichum, Diaporthe, Phyllosticta, and 
Fusarium species complexes (Glienke et al. 2011, Damm et 
al. 2012, Shivas & Cai 2012, Gomes et al. 2013, Hansen & 
Olariaga 2015). 

Teratosphaeria tiwiana, a cryptic species similar to T. 
destructans, was isolated from non-endemic juvenile eucalypt 
leaves from a clonal taxa trial from Tiwi Island, NT, Australia. 

Previously, based on symptoms, conidial morphology and 
multilocus sequence data, the isolates from Tiwi Island had 
been identified as T. destructans although they grouped 
separately from T. destructans from Asia (Burgess et al. 
2007). As a consequence, T. destructans was removed from 
the NAQS target list for exotic invasive plant pathogens. This 
study included more isolates from Tiwi Island than the initial 
study, and re-evaluated the relationship between Australian 
and Asian isolates using multi-locus sequence data and 
haplotype analysis. The DNA sequence analysis obtained in 
this study was in agreement with the findings in Burgess et al. 
(2007); there were 6 bp differences amongst isolates across 
three gene regions. In that previous study, it was thought that 
6 bp difference was within the normal limits of infraspecies 
variation and the isolates from Australia were identified as 
T. destructans However, multigene phylogeny and haplotype 
analysis obtained in the present study provided sufficient 
evidence to support the separation of Australian isolates as 
a separate species described here as T. tiwiana. According 
to the Genealogical Concordance Concept of Dettman et al. 
(2003), a clade is recognised as an independent evolutionary 
lineage if the clade was present in the majority of the single 
locus genealogies and the clade is identified from the majority 
rule consensus tree regardless of its bootstrap or posterior 
probability support. In this study, the T. tiwiana clade was 
recovered in all three single strict consensus trees satisfying 
the criterion of genealogical concordance (data not shown); 
the clade was monophyletic in the phylogenetic trees inferred 
from single gene regions and from the combined dataset; 
and the lineage was supported by Bayesian analyses. 
Furthermore, T. tiwiana isolates showed sequence variation 
and were split in three haplotypes, while the sequences of T. 
destructans isolates were identical and contained only one 
haplotype. The haplotypes were not shared between these 
two species. This suggests that T. tiwiana is an endemic 
Australian cryptic species. 

Teratosphaeria novaehollandiae was found on amenity 
plantings of an unidentified native Eucalyptus species in 
Derby, endemic E. camaldulensis woodlands in northern WA 
and the NT, and on E. victrix in the Pilbara, WA. These isolates 
were collected from adult and juvenile eucalypt foliage across 
an extensive area of northern Australia and where present 
caused minor to moderate levels of damage to Eucalyptus 
leaves. The sequences of T. novaehollandiae were variable 
and split into five haplotypes. Two haplotypes contained 
isolates from northern WA, one haplotype contained isolates 
from NT, one contained isolates from Pilbara and one 
contained isolates from Derby, WA. Despite having unique 
haplotypes, isolates from across northern WA and the NT 
could not be consistently split into separate phylogenetic 
species. 

In a previous study, based on conidial morphology and 
phylogenetic analysis, isolates from Derby (WA) were 
assigned to T. destructans (Burgess et al. 2007). We have 
now re-evaluated the taxonomic position of the Derby isolates 
using multigene sequence data including haplotype analysis. 
The results obtained in this study have demonstrated that all 
isolates from Derby grouped together and were separated 
from Asian and Australian isolates previously named as T. 
destructans (i.e. T. tiwiana). The Derby isolates clustered 
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within the T. novaehollandiae clade, which was well 
supported (1.00 Posterior probabilities) and was distinct 
from both T. destructans and T. viscida. The Derby isolates 
were not consistently separated from other isolates within T. 
novaehollandiae and are therefore here recognised as the 
new cryptic species T. novaehollandiae. 

Sequence data and ex-type cultures are now available for 
for eight Teratosphaeria species described from eucalypts and 
for which a kirramyces-like asexual morph is known. Conidia 
range in size from the shortest T. novaehollandiae (33–40 µm) 
to the longest, T. destructans (50–65 µm), pigmentation and 
septation also varies, but generally conidia are septate. These 
species produce lesions on leaves with various symptoms. All 
except T. destructans have been reported in Australia. The 
expansion of eucalypt plantation forestry into the subtropics of 
Australia has led to the discovery of many new Teratopshaeria 
species, and it appears to be the dominant fungal genus on 
subtropical eucalypt leaves. Currently, the two species newly 
described in this study are not causing any significant damage 
to Australian eucalypt plantations, but the threat they may pose 
to the forestry industry is unknown.
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