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Euphorbia ingens, landmark succulent trees in savannas of South Africa, have been dying in large numbers over 
the last 10–15 years. Initial studies conducted in the Limpopo province of South Africa revealed a diverse group 
of biotic agents including fungi, beetles and moths associated with dying trees, but due to the limited geographic 
extent of these studies, it was not known if the same agents were associated with dying trees regionally. In this 
study, diseased and insect-infested trees were sampled for fungal pathogens and insects at six sites in four 
provinces located across South Africa. Fungi were identified based on morphology and DNA sequencing of the 
ITS, LSU, β-tubulin and TEF 1-α gene regions, and insects were identified based on morphology. Fungal isolates 
were identified as Aureovirgo volantis, Fusarium solani, Lasiodiplodia × egyptiacae, Ophiostoma thermarum and 
a Readeriella species. Five insects were identified, all in the family Curculionidae, including two ambrosia beetles, 
Cyrtogenius africus and a Stenoscelis species. All fungi and insects collected are known to be opportunistic and 
occur on stressed trees as secondary agents of mortality or disease. These results suggest that the die-off is not 
related to attack of the trees by aggressive insects or pathogens, but rather that E. ingens in this region is under 
stress from environmental factors that supports the ability of opportunistic insects and pathogens to establish.
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Introduction
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Euphorbia ingens (common names include giant euphorbia 
tree, candelabra tree and naboom) are dying at a rapid 
rate in some regions of South Africa. The first reports of 
large-scale E. ingens mortality were from the Limpopo 
province. Causes of mortality were speculated to be from 
stress due to climate change or infestation by invasive 
insects or pathogens (Malan 2006; Roux et al. 2008, 
2009). A subsequent study, comparing mortality at sites 
in the Limpopo and North West provinces, indicated that 
die-off was most severe in the Limpopo region (van der 
Linde et al. 2012) and was most likely related to changes 
in temperature and rainfall patterns that contributed to 
insect attack and disease development (van der Linde et 
al. 2012). Additional studies implicated several fungal and 
insect agents as possible causes of tree mortality (Roux et 
al. 2008, 2009; van der Linde et al. 2011a, 2011b). These 
studies suggested that E. ingens die-off may be the result 
of environmental factors that create stress in the trees, 
leading to attack by opportunistic insects and pathogens 
(van der Linde et al. 2011a, 2011b, 2012). However, given 
the limited geographic extent of the initial studies, surveys 
made across a broader area were needed to know if this 
was indeed the case. 

The aim of this study was to conduct surveys assessing 
symptoms associated with the die-off and associated 
insects and fungi across the range of E. ingens in South 

Africa. Furthermore, we wished to determine if any of these 
biotic agents were consistently associated with trees in 
areas experiencing die-off. 

Materials and methods

Estimation of mortality and disease symptoms 
associated with E. ingens die-off
In 2014, disease symptoms and mortality in declining 
E. ingens stands were scored at nine sites (Figure 1) across 
South Africa, including five sites previously investigated 
by van der Linde et al. (2012) in 2009 and 2010. Eight 
belt transects of 100 m × 50 m were established at each 
site and their location recorded using a global positioning 
system (GPS). Based on van der Linde et al. (2012), two 
specific symptoms were evaluated for individual E. ingens 
trees: grey discoloration and rotting of succulent branches. 

Grey discoloration and moth damage were scored, 
independently from one another, based on a ranking 
system of zero (no grey discoloration or moth damage) to 
four (1: 1–25% succulent branches grey and rotting from 
moth damage, 2: 26–50%, 3: 51–75%, 4: 76–100%). Grey 
discoloration and the rotting of succulent branches affect 
E. ingens trees differently, and even with cases where the 
two symptoms occur on the same tree, they do not typically 
occur on the same branch. The moths attack succulent 
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branches randomly with no clear pattern of rotting, hence 
the succulent crown was visualised as a quadrant with 
succulent branches scored accordingly. Grey discoloration 
was easier to score, occurring as a gradual progression 
starting at the lower ends of the succulent branches just 
above the main trunk.   

Mortality was scored as a percentage of dead trees in 
each transect compared with living trees. The mean rank 
proportion of grey and moth-damaged trees, as well as 
percentage mortality, was calculated (data were tested 
for normality using Shapiro–Wilk’s W) and compared 
among the nine sites using analysis of variance (ANOVA). 
Mean separation analyses were conducted using Tukey–
Kramer’s test. Linear regression analysis, among all sites, 
was conducted to test if mortality was dependent on moth 
damage and/or grey discoloration. All statistical analyses 
were conducted using JMP 12.0.1 (SAS Institute, Cary, NC, 
USA, 1989–2007) with α ≤ 0.05.

Fungus and insect collections  
Surveys of diseased E. ingens were conducted in 2012 
and 2013 at six sites with one inspection conducted at 
each site per year (Figure 1; Sites 1 to 6). The same area, 
within which the belt transects were established for the 
symptom and mortality scoring survey, was used for the 
surveys at each site. At each site, one branch exhibiting 
each symptom type (grey discoloration of the succulent 
branches, rotting of the succulent branches surrounding 
moth damaged areas, or staining in the main woody stems 
associated with insect infestation) was collected from 
10 different trees for each symptom. Symptomatic tissue 
samples were placed in paper, and/or plastic bags and 
transported to the laboratory for further investigation.

Isolations for fungi were made by surface disinfesting 
plant tissue and cutting small segments from the leading 
edges of diseased areas and transferring the tissue 
to 2% malt extract agar (MEA; 15 g agar and 20 g malt 
extract L−1; Biolab, Merck, Midrand, South Africa) amended 
with streptomycin (0.4 g L−1; Sigma-Aldrich, St Louis, 
MO, USA). When fungal fruiting bodies were present on 
lesions or in insect tunnels, spore drops and/or hyphae 
were carefully removed from the plant material using 
a sterilised needle and placed on 2% MEA plates. The 
resultant colonies from tissues and fungal material were 
purified using single spore or hyphal tip transfers onto 2% 
MEA plates. After 5 d of growth, cultures were grouped 
according to each disease symptom and then further 
grouped based on the most commonly occurring pure 
cultures. Representatives from each morphological group 
were sequenced (using the ITS, LSU, β-tubulin and TEF 
1-α gene regions) and identified to genus and, where 
possible, species level. Representative isolates have been 
deposited in the Culture Collection (CMW) of the Forestry 
and Agricultural Biotechnology Institute (FABI), Pretoria, 
South Africa. 

Insects associated with diseased trees were obtained 
from freshly infested branches and stems by collecting 
10 logs from 10 different trees from each site within the 
already established transect areas. Collections were made 
during March 2013 and 2014. For each site, four logs were 
placed in four emergence chambers, which were monitored 
daily for insect emergence over a period of two weeks. Logs 
could not be kept for a longer period within the emergence 
chambers as E. ingens branches and stems rot and 
disintegrate very quickly due to their high moisture content. 
The remaining six logs, from each site, were dissected 
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Figure 1: Sites at which insect and fungal surveys and die-off symptom scoring were conducted. 1 = Enzelsberg, 2 = Wolfaan, 3 = Bela-Bela, 
4 = Lydenburg; 5 = Ulundi, 6 = Eshowe, 7 = Euphorbia Drive, 8 = Capricorn, 9 = Last Post
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in the laboratory and insects collected pre-emergence. 
Insects collected from emergence chambers and dissected 
logs were grouped based on morphology using the 
keys in Wood (1986), and counts made for each group. 
Insects were identified by Dr Roger Beaver (Thailand). 
Representative specimens of beetles were pinned and 
deposited with the National Collection of Insects, Plant 
Protection Research Institute, Agricultural Research 
Council, Roodeplaat, Pretoria, South Africa as well as the 
collection of the Tree Protection Co-operative Programme 
(TPCP), Forestry and Agricultural Biotechnology Institute 
(FABI), University of Pretoria, South Africa. 

Results 

Estimation of mortality and disease symptoms 
associated with E. ingens die-off
Symptoms associated with die-off were present at all sites 
investigated and at varying levels of severity (Table 1). 
There was a significant difference in severity of the two 
main die-off symptoms (greying and rotting) as well as in 
the percentage mortality among the sites (Table 1). The 
sites with the highest proportion of rotting (moth damage) 
were Enzelsberg, Wolfaan, Ulundi followed by Bela-Bela, 
Euphorbia Drive, Last Post and Capricorn, Eshowe and 
Lydenburg. The sites with the highest proportion of grey 
discoloration were Euphorbia Drive, Last Post, and Ulundi 
followed by Capricorn, Eshowe, Lydenburg, Bela-Bela, 
Enzelsberg, and Wolfaan. Overall, the most severely 
affected sites (highest mortality) were Enzelsberg, 
Euphorbia Drive and Last Post with the least affected sites 
being Capricorn, Eshowe and Lydenburg. 

Sites with the highest mean rank greying did not always 
have the highest percentage of mortality of E. ingens and 
does not seem to be correlated (R 2 = 0.01, P = 0.3180). 
Euphorbia Drive, Last Post and Ulundi exhibited the 
highest mean rank greying with a correspondingly high 
percentage of mortality, while Capricorn had a high mean 
rank of grey discoloration with the lowest percentage 
mortality. Enzelsberg had the highest percentage mortality 
but the lowest mean rank of greying among all the sites. 
Moth damage was correlated (R 2 = 0.212, P < 0.001) 
with higher percentage mortality, with the sites with 
the highest degree of die-off having higher levels of 
moth-related damage. 

Fungus and insect collections
Isolations from diseased tissue yielded a total of 351 
isolates for the six sites, with most isolates being 
saprophytes such as Penicillium species. From the 351 
isolates, 100 were identified as the most consistently 
associated with the observed disease symptoms (Table 2). 
The isolates were divided into three main groups based on 
morphology. Representative isolates (Table 3) from each 
morpho-group were further identified using DNA sequence 
analysis, from which five genera were identified (Table 3). 

Based on DNA sequence data, isolates were identified 
as Aureovirgo volantis (TreeBase: 17782, 17783) described 
previously by van der Linde et al. (2016) from E. ingens, 
an undescribed Fusarium sp. (TreeBase: 17784, 17785) 
in the Fusarium solani species complex, Lasiodiplodia 
× egyptiacae (TreeBase: 17788, 17789) (recently identified 
as a hybrid of L. theobromae and possibly L. parva 
or L. citricola; Cruywagen et al. 2016), Ophiostoma 
thermarum (TreeBase: 17782, 17783) described previously 
by van der Linde et al. (2016) from E. ingens, and an 
apparently undescribed Readeriella sp. (TreeBase: 17786, 
17787). Lasiodiplodia × egyptiacae and F. solani were 
isolated from stained areas of the main stems of trees 
heavily infested with weevils as well as rotted tissues 
associated with moth damage. Readeriella sp. was isolated 
from fruiting bodies in grey as well as green succulent 
areas on the outside of the branches. Aureovirgo volantis 
and O. thermarum were commonly found within the 
tunnels of the ambrosia beetles Cyrtogenius africus and 
Stenoscelis sp., in succulent branches and the sapwood of 
the main stems (Figure 2). 

Fungal isolations were successful from only 55 (out of the 
180 collected) branches (each branch from a different tree, 
N = 55 trees). Most of the isolates obtained were associated 
with insect damage (rotting associated with moth attacks 
and staining associated with weevil attacks) with only six 
isolates from greyed areas. Isolates associated with insect 
damage were obtained from all of the sites, while isolates 
from the grey discoloured tissue were obtained from only 
two sites (Table 2). 

Five Curculionidae species (two ambrosia beetles 
and three weevils) were collected from the emergence 
chambers (Table 2). The ambrosia beetles (Scolytinae), 
Cyrtogenius africus (AcP9546) and a Stenoscelis sp. 
(AcP9549), were reared from the main stems, whereas 

Table 1: Mean die-off factor and percentage mortality of Euphorbia ingens at nine sites and one-way ANOVA statistics of comparisons 
among sites for each factor and mortality. Values in parentheses are the SE. The same letter within a column indicates that means are not 
significantly different (α ≤ 0.05)

Site Grey discoloration Moth damage Mortality (%)
Enzelsberg 0.148 (0.056)c 0.689 (0.120)ab 32.50 (3.694)a

Euphorbia Drive 1.695 (0.073)a 0.597 (0.054)ab 25.52 (5.102)ab

Last Post 1.407 (0.062)a 0.584 (0.047)ab 20.90 (4.454)abc

Ulundi 1.659 (0.083)a 0.775 (0.047)a 17.47 (5.889)abcd

Wolfaan 0.351 (0.044)bc 0.774 (0.080)a 16.40 (4.061)abcd

Bela-Bela 0.560 (0.071)b 0.504 (0.092)ab 14.90 (2.039)bcd

Eshowe 0.657 (0.118)b 0.406 (0.068)bc 10.62 (3.196)bcd

Lydenburg 0.594 (0.141)b 0.166 (0.048)c 7.00 (2.479)cd

Capricorn 0.739 (0.082)b 0.170 (0.026)c 2.50 (1.732)d

ANOVA statistics F = 43.847, df = 8, P < 0.001 F = 10.863, df = 8, P < 0.001 F = 5.702, df = 8, P < 0.001
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two weevils, Mechistocerus sp. (Molytinae) (AcP9551) and 
Coleobothrus germeauxi (Scolytinae) (AcP9544), were 
reared from the secondary phloem. The weevil Cossonus 
sp. (Cossoninae) (AcP9548) was reared from the vascular 
cambium (Figure 3). Larvae of the moth Megasis sp. 
(Lepidoptera: Pyralidae) were identified at all sites and were 
associated with the rotting of the succulent branches. 

Discussion

The results of this study expand on those of Roux et al. 
(2008, 2009) and van der Linde et al. (2011a, 2011b, 2016) 
who reported a number of fungi and insects associated with 
the large-scale die-off of E. ingens in the Limpopo province of 
South Africa. Sites for the present study were selected over 

a wider geographic distribution of E. ingens in the country, 
allowing a more comprehensive evaluation of the factors 
associated with the die-off. There were differences in severity 
of symptoms associated with die-off and mortality among the 
sites. Higher levels of moth damage were observed at sites 
with higher tree mortality. Megasis sp. occurred at all sites, 
suggesting a stronger correlation between tree death and 
infestation by this moth compared with grey discoloration. 
Isolations from grey discoloured branches yielded very few 
fungal isolates and the grey discoloration of the branches is 
not caused by fungal infections.

Relatively few fungal isolates were obtained from 
diseased material sampled in this study, despite the large 
number of samples collected. These results are similar to 
previous studies by van der Linde et al. (2011a, 2011b) 

Disease symptoma Enzelsberg Wolfaan Lydenburg Bela-Bela Ulundi Eshowe Total isolates
Fungal speciesb

Fusarium solani Rotting of succulent 
branch

3 [2] – 27 [7] 5 [2] 2 [1] 2 [1] 39

Lasiodiplodia × 
egyptiacae

Rotting of succulent 
branch

– 12 [4] – – 3 [3] – 15

Readeriella sp. nov. Grey discoloration – – 2 [2] – – 4 [4] 6
Ophiostoma thermarum Stain/galleries in main 

woody stem
– – – 16 [7] – – 16

Aureovirgo volantis Stain/galleries in main 
woody stem

6 [6] 4 [4] 7 [7] 4 [3] – 3 [3] 24

Insect presencec

Megasis sp. + + + + + +
Cossonus sp. – + (32) – – + (22) –
Mechistocerus sp. + (5) +(15) – – – –
Stenoscelis sp. + (105) + (53) + (23) + (45) – –
Coleobothrus germeauxi + (163) + (180) – – – –
Cyrtogenius africus + (90) + (145) + (41) + (28) – + (38)
a 10 branches from 10 trees were collected for each disease symptom
b Values are the number of isolates [no of branches]
c Values are the number of beetles that emerged from rearing containers

Table 2: Number of isolates obtained from isolations from dying Euphorbia ingens trees exhibiting the three main symptoms of disease at six 
sites in South Africa

Table 3: Genbank accession numbers and locality of collection of representative isolates sequenced and identified in this study

Species CMW Locality ITS TEF 1-α LSU β-tubulin
Fusarium solani – Enzelsberg KU519629 KU519634 – –
F. solani – Lydenburg KU519630 KU519635 – –
F. solani – Bela-Bela KU519631 KU519636 – –
F. solani – Ulundi KU519632 KU519637 – –
F. solani – Eshowe KU519633 KU519638 – –
Lasiodiplodia × egyptiaceae 38914 Wolfaan KU519639 KU519643 – –
L. × egyptiacae 38915 Wolfaan KU519640 KU519644 – –
L. × egyptiacae 38916 Wolfaan KU519641 KU519645 – –
L. × egyptiacae 38917 Ulundi KU519642 KU519646 – –
Ophiostoma thermarum 38929 Bela-Bela KR051114 – KR051126 KR51102
O. thermarum 38930 Bela-Bela KR051115 – KR051127 KR51103
O. thermarum 38931 Bela-Bela KR051116 – KR051128 KR51104
Aureovirgo volantis 42282 Eshowe KR051123 – KR051133 KR51109
A. volantis 42285 Lydenburg KR051121 – KR051134 KR51110
A. volantis 42287 Bela-Bela KR051124 – KR051135 KR51111
A. volantis 42290 Enzelsberg KR051122 – KR051136 KR51112
A. volantis 42292 Wolfaan KR051125 – KR051137 KR51113
Readeriella sp. 44675 Eshowe KU519647 KU519649 – –
Readeriella sp. 44676 Lydenburg KU519648 KU519650 – –
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and may either be a result of low isolation success and/or 
an indication of the secondary nature of fungal involvement 
in the death of E. ingens. Of the isolates obtained, only a 
few represented possible pathogens. Of these, A. volantis, 
F. solani, L. × egyptiacae and O. thermarum were most often 
isolated from E. ingens trees that were heavily infested by 
the moth Megasis sp. and ambrosia beetles (C. africus and 
Stenoscelis sp.). Lasiodiplodia species (Botryosphaeriaceae) 
are well-known opportunistic fungal pathogens known to 
cause staining within wood, dieback and cankers of stressed 
trees and are associated with a wide variety of hosts 
(Damm et al. 2007; Slippers and Wingfield 2007; Phillips et 
al. 2008; Jami et al. 2015). Species in this genus, such as 
L. theobromae and L. mahajangana, have been reported 
previously from dying E. ingens trees (van der Linde et al. 
2011b) and are also known from Acacia, Eucalyptus, Pinus 
and native Syzygium in South Africa (Crous et al. 2000; 
Burgess et al. 2003; Pavlic et al. 2004, 2007). Lasiodiplodia 
× egyptiacae was described from mango (Mangifera indica) 
plantations in Egypt (Ismail et al. 2012) and has been 
reported from physic nut (Jatropha curcas) in Brazil as 
well as baobabs (Adansonia grandidieri) in Madagascar 
(Machado et al. 2014; Cruywagen et al. 2016). 

Aureovirgo volantis and O. thermarum are members of 
the Ophiostoma sensu lato complex (Ophiostomataceae). 
Ophiostoma thermarum resides in the Sporothrix schenckii–
Ophiostoma stenoceras complex, a group of fungi known 
to be associated with soil and hardwoods as well as with 

conifer-infesting bark beetles (Zhou et al. 2001; de Beer et 
al. 2003; de Meyer et al. 2008; Roets et al. 2008). Even 
though fungi in this complex are known to cause staining 
in wood, their pathogenicity in host trees has been 
questioned, and they are considered as secondary agents 
to tree disease and mortality (de Beer et al. 2003; de Meyer 
et al. 2008). Species within this complex, in South Africa, 
have also been recorded from Protea species, Eucalyptus 
grandis and pine-infesting bark beetles (Wingfield et 
al. 1993; Zhou et al. 2001, 2006; Roets et al. 2008). 
Pathogenicity trials, conducted by van der Linde et al. 
(2016) using A. volantis and O. thermarum on E. ingens, 
produced small lesions and internal rotting on succulent 
branches (van der Linde et al. 2016). Van der Linde et al. 
(2016) did not find that A. volantis and O. thermarum are 
primary pathogens of E. ingens. Given that they are not 
known to be virulent pathogens, the species isolated in this 
study are unlikely to be major drivers of E. ingens die-off.

The Fusarium solani species complex (FSSC) comprises 
at least 45 closely related species (Zhang et al. 2006). 
The FSSC fungi are known to be soil borne or to occur in 
decaying organic material (Zhang et al. 2006; Bogale et al. 
2009). Species in this group have been isolated from soil 
and lesions on a wide variety of crops, including potato, 
tomato, citrus, pea and soybean (Roy et al. 1989; Cho et 
al. 2001; Romberg and Davis 2007; Zaccardelli et al. 2008; 
Rehman et al. 2012). In South Africa, F. solani has been 
reported to cause the die-back of English walnut (Juglans 

Figure 2: Symptoms of disease and insect infestation associated with Euphorbia ingens die-off. (a) Moth-attacked branch from which 
Lasiodiplodia × egyptiacae and Fusarium solani were isolated, (b) larvae and damage caused by Megasis sp., (c) staining associated with 
beetle tunnelling from which Aureovirgo volantis and Ophiostoma thermarum were isolated, (d) black fruiting bodies of Readeriella sp. on 
succulent branches



van der Linde, Six, Wingfield and Roux6

regia) and lisianthus (Eustoma grandiflorum) (Chen and 
Swart 2000; Truter and Wehner 2004). Species within FSSC 
are known to be associated with ambrosia beetles (Baker 
and Norris 1968; Windels et al. 1976; Beaver 1989; Rojas 
et al. 1999; Mendel et al. 2012) and in some cases occur 
as mutualists, e.g. of Hypothenemus hampei (coffee borer 
beetle) (Rojas et al. 1999; Morales-Ramos et al. 2000). It 
has been suggested that these fungi could be opportunist 
pathogens causing disease and death in stressed plants 
(Sherbakoff 1953; Kavroulakis et al. 2007; Bogale et al. 
2009; Rehman et al. 2012). In the present study, isolates 
of F. solani were consistently isolated from disease margins 
of rotten succulent branches, which had been fed on by 
Megasis larvae and infested by weevils. It seems unlikely 
that this fungus would be the primary cause of tree die-off 
and is more likely a secondary agent of disease.  

The fungal genus Readeriella belongs to the family 
Teratosphaeriaceae, a well-known group of fungi that 
causes diseases of the stems and leaves of Eucalyptus 
species (Crous 1998; Crous et al. 2004; Burgess et al. 2007; 
Carnegie 2007; Cheewangkoon et al. 2008, 2009; Hunter et 
al. 2011). This is the first report of a Readeriella species from 
E. ingens trees. The fungus was commonly isolated from 
black fruiting bodies on the outside of the grey discoloured 
and green succulent branches of E. ingens. The black 
fruiting bodies only occurred on the exterior of the branches 
in a very superficial manner, never extending into the tissue.

The insects reared from diseased and dying E. ingens 
trees have all previously been reported from Africa. 
Coleobothrus germeauxi is known to occur in dead 
branches of trees and has been recorded from Euphorbia 
teke Schweinf. ex Pax in Kenya and Uganda (Jordal and 
Hewitt 2004; Mandelshtam and Danielsson 2004), while 
Mechistocerus sp. has only one record from Africa, namely 
from Liberia (Briscoe 1947). Stenoscelis species are known 
to attack trees that are stressed, with recorded collections 
from Algeria, Kenya and South Africa (Konishi 1956). 

Cossonus species have been reported from decaying 
trees in Ethiopia and the KwaZulu-Natal province in South 
Africa (Marshall 1905; Colonnelli 2014). Cyrtogenius 
africus was first recorded in 1988 from various Euphorbia 
species in Africa (Democratic Republic of the Congo 
[formally known as Zaire from 1971–1997], Guinea, Kenya, 
Tanzania, Uganda) and again in 2009 from dead branches 
of Euphorbia triangularis Desf. in South Africa (Wood and 
Bright 1992; Jordal 2009). However, there is limited informa-
tion on how and when these beetles infest trees, with the 
only records existing being for diseased trees or decaying 
wood (Marshall 1905; Briscoe 1947; Konishi 1956; Wood 
and Bright 1992; Jordal and Hewitt 2004; Mandelshtam and 
Danielsson 2004; Jordal 2009; Colonnelli 2014). The beetles 
appear to be secondary, infesting stressed trees (Konishi 
1956; Jordal 2009). Limited information is also available 
for host preferences and distribution of the moth, Megasis 
sp. Our specimens could only be identified to genus and 
are believed to be a species native to South Africa (Martin 
Kruger, The Ditsong National Museum of Natural History, 
Pretoria, South Africa, pers. comm.). 

Van der Linde et al. (2012) found that E. ingens mortality 
was related to a specific province with temperature 
and rainfall having a significant effect on tree mortality. 
Temperature over the last 60 years has increased more 
significantly in the Limpopo province compared with the 
North West province and was identified as the main trigger 
for E. ingens die-off (van der Linde et al. 2012). However, 
in this study, sites within a province had different levels of 
tree mortality. Euphorbia Drive and Last Post had higher 
tree mortality compared with Bela-Bela and Capricorn, with 
Last Post having significantly higher percentage mortality 
compared with Capricorn (two sites that are 18 km from 
each other). Wolfaan had half the percentage mortality 
compared with Enzelsberg (North West), while Eshowe 
had lower percentage mortality compared with Ulundi 
(KwaZulu-Natal). Percentage mortality, therefore, does 

Figure 3: Insects identified from diseased Euphorbia ingens trees. (a) Cyrtogenius africus (sapwood), (b) Stenoscelis sp. (sapwood), 
(c) Cossonus sp. (vascular cambium), (d) Mechistocerus sp. (secondary phloem), (e) Coleobothrus germeauxi (secondary phloem), (f) adult 
Megasis sp. (secondary phloem). Scale bars: (a–d) 500 µm, (e) 200 µm and (f) 5 mm
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not seem to be related to a specific province or area, as 
previously believed, and might be affected, not only by 
climate, but by more site-specific conditions as suggested 
by van der Linde et al. (2017). 

Conclusions 

It is known that trees in disturbed environments can 
be under substantial stress leading to susceptibility to 
secondary fungi and insects that can lead to the death of 
the trees (Mueller-Dombois et al. 1983; Akashi and Mueller-
Dombois 1995; Dale et al. 2000; Holdenrieder et al. 2004; 
Foden et al. 2007; Allen 2009; Allen et al. 2010). Our results 
lead us to believe that E. ingens die-off is likely driven by 
stressors in the environment that lead to attack by insects 
and infection by pathogens that ultimately kill the tree. In 
order to understand the ‘triggers’ for E. ingens die-off, it will 
be necessary to study the environment in which these trees 
occur more closely. Such studies should then consider 
all of the abiotic factors, analysing the system as a whole 
together with the accompanying biotic factors.   
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