

Article

Invasive Everywhere? Phylogeographic Analysis of the Globally Distributed Tree Pathogen Lasiodiplodia theobromae

James Mehl¹, Michael J. Wingfield¹, Jolanda Roux² and Bernard Slippers^{3,*}

- ¹ Department of Microbiology and Plant Pathology, DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa; james.mehl@fabi.up.ac.za (J.M.); mike.wingfield@fabi.up.ac.za (M.J.W.)
- ² Department of Plant and Soil Sciences, DST-NRF CTHB, FABI, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa; jolanda.roux@fabi.up.ac.za
- ³ Department of Genetics, DST-NRF CTHB, FABI, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
- * Correspondence: bernard.slippers@fabi.up.ac.za; Tel.: +27-12-420-3938

Academic Editors: Matteo Garbelotto and Paolo Gonthier Received: 19 March 2017; Accepted: 22 April 2017; Published: 27 April 2017

Abstract: Fungi in the Botryosphaeriaceae are important plant pathogens that persist endophytically in infected plant hosts. *Lasiodiplodia theobromae* is a prominent species in this family that infects numerous plants in tropical and subtropical areas. We characterized a collection of 255 isolates of *L. theobromae* from 52 plants and from many parts of the world to determine the global genetic structure and a possible origin of the fungus using sequence data from four nuclear loci. One to two dominant haplotypes emerged across all loci, none of which could be associated with geography or host; and no other population structure or subdivision was observed. The data also did not reveal a clear region of origin of the fungus. This global collection of *L. theobromae* thus appears to constitute a highly connected population. The most likely explanation for this is the human-mediated movement of plant material infected by this fungus over a long period of time. These data, together with related studies on other Botryosphaeriaceae, highlight the inability of quarantine systems to reduce the spread of pathogens with a prolonged latent phase.

Keywords: Botryosphaeriaceae; latent pathogen; endophyte; fungal ecology; fungal invasion; quarantine

1. Introduction

The health of both native and planted forests is under increasing pressure from rapid changes in the environment (many related to the growing impacts of human society) or the introduction of non-native, invasive pathogens and pests [1,2]. The rise in the number of invasive pathogens and pests is thought to be driven primarily by increasing international movement and trade in plants and plant products [2,3]. This problem might be even more severe than previously realized, because quarantine mechanisms designed to reduce such movement are oblivious of the multitude of cryptic and endophytic microbes that occur asymptomatically within plants [3,4]. A prominent group of fungi that reflect this threat is the Botryosphaeriaceae.

The Botryosphaeriaceae includes many important plant pathogens such as well-known species in *Botryosphaeria*, *Diplodia*, *Dothiorella*, *Lasiodiplodia*, *Macrophomina*, and *Neofusicoccum* [5]. These fungi can persist endophytically within apparently asymptomatic plant material, from where they can cause disease when the host is stressed [4,6]. Many Botryosphaeriaceae species infect multiple plant hosts

and commonly occur on both native and non-native hosts in a region [7–11]. Consequently, they can easily be spread when plants or plant material are moved between regions [3,4].

The majority of the Botryosphaeriaceae have relatively limited distributions [12–15]. This is perhaps not surprising given that their spread is closely linked with rainfall and associated wind dispersal, and is consequently expected to be relatively local [6,16]. While stepwise, long-distance spread would be possible, a continuous distribution of available hosts would be needed, making spread across oceans or other major physical barriers unlikely. A few species, however, have very broad global distributions, including *Botryosphaeria dothidea*, *Diplodia sapinea*, *D. seriata*, *Dothiorella sarmentorum*, *Neofusicoccum parvum*, and *Lasiodiplodia theobromae* [4,11,17–20]. These species are commonly associated with agriculture, forestry, or urban environments, and it is thought that human-assisted dispersal has played a significant role in their distributions [15,18,19].

A number of previous studies have suggested that human-assisted dispersal of the Botryosphaeriaceae might in some cases occur on a large scale. For example, *D. sapinea* has been introduced to all areas where *Pinus* species have been planted in the southern hemisphere [21]. Population genetic studies on this fungus suggest that, in most areas, these introductions have been so extensive that the diversity of the non-native populations exceeds that of some local native populations of the fungus [22,23]. Another example is *N. parvum*, which is also highly genetically diverse, with 12 lineages identified using microsatellite markers, many of which are shared between different countries and on different continents [18]. In the case of *Macrophomina phaseolina*, Sarr et al. [24] identified three lineages using DNA sequence data for six loci, also with shared geographic ranges. Analyses of a global collection of isolates of *B. dothidea* using two DNA sequence markers, showed that isolates grouped into two main haplotypes, with no structure based on either host genus or country of origin [19].

Lasiodiplodia theobromae is one of the most commonly reported species in the Botryosphaeriaceae. This fungus has been associated with at least 500 plant hosts from many tropical and subtropical regions globally [17,25]. However, many of these host associations and disease reports for *L. theobromae* predate the use of DNA sequencing for species identification, and at least some could be attributed to cryptic species related to *L. theobromae* [12,17]. In recent years, many cryptic species have been described for isolates previously treated as *L. theobromae* due to their morphological similarity, but that are distinct based mainly on DNA sequence data from two loci, the internal transcribed spacer ribosomal DNA (ITS) and translation elongation factor 1α (*tef1* α) [26–28]. At present, the genus *Lasiodiplodia* comprises 31 species [20], mostly distinguished using sequence data. Furthermore, Cruywagen et al. [27] recently showed that four species of *Lasiodiplodia* represent hybrid species, based on more complete isolate collections or sequence data of more loci than originally used. In view of all of these studies, there is no overall clarity on the host or geographic distribution of what can be considered *L. theobromae sensu stricto*, based on current DNA-based definitions of this taxon. It is also not clear where the fungus might have originated, where it is invasive, or to what extent humans have facilitated the dispersal of this fungus globally.

The first aim of this study was to screen a global collection of isolates putatively identified as *L. theobromae* and thus to identify a collection that represented *L. theobromae sensu stricto* based on DNA sequence data. Sequence data from four nuclear loci were then used to determine whether there was genetic structure amongst this global collection of *L. theobromae* isolates. Finally, we considered whether the data revealed a possible area of origin for the fungus.

2. Materials and Methods

2.1. Isolate Collections and DNA Extractions

A total of 426 fungal isolates designated as *Botryosphaeria* sp. or *L. theobromae* were obtained from the culture collection (CMW) of the Forestry and Agricultural Biotechnology Institute (FABI) at the University of Pretoria, Pretoria, South Africa. These isolates originated from collections made in Australia, Benin, Brazil, Cameroon, China, Colombia, Ecuador, Indonesia, Madagascar, Mexico,

Oman, Peru, South Africa, Thailand, Uganda, the United States of America (USA), Venezuela, and Zambia (Figure 1). Several isolates identified as *L. theobromae* were also sourced from the culture collection of the Westerdijk Fungal Biodiversity Institute (previously known as the Centraalbureau voor Schimmelcultures), Utrecht, the Netherlands. In addition, sequences were sourced from GenBank for taxa labeled as "*Botryosphaeria rhodina*" or "*Lasiodiplodia theobromae*" and were included in datasets for analyses (Table 1).

Isolates assembled for this study were purified by transferring single hyphal tips to clean culture plates following the method described in Mehl et al. [30]. DNA was extracted from isolates using the method described by Wright et al. [31] with pellets suspended in 50 µL Tris Ethylenediaminetetraacetic acid (TE) buffer. DNA concentrations were determined using a NanoDrop[®] ND-1000 and accompanying software (NanoDrop Technologies, DuPont Agricultural Genomics Laboratories, Wilmington, DE, USA).

Figure 1. Sites (black circles) and biogeographic regions (shaded) where isolates originated from. Map source: [29].

Forests 2017, 8, 145

Region	Country, Locality	Isolate	Host	Plant Family	ITS	tef1a	tub2	rpb2
North America	Hawaii	CBS111530	Leucospermum sp.	Proteaceae	FJ150695	EF622054	KU887531	KU696382
	Mexico	BOM230	Carica papaya	Caricaceae	KR001856	KT075154		
	Mexico	BOS104	Car. papaya	Caricaceae	KR001857	KT075158		
	Mexico	BOT112	Car. papaya	Caricaceae	KT075139	KT075155		
	Mexico	BOT359	Car. papaya	Caricaceae	KR001859	KT075159		
	Mexico	LAM118	Car. papaya	Caricaceae	KT075141	KT075156		
	Puerto Rico	K286	Mangifera indica	Anacardiaceae	KC631660	KC631656	KC631652	
	Puerto Rico	K8	Man. indica	Anacardiaceae	KC631659	KC631655	KC631651	
	Puerto Rico	PHLO10	Dimocarpus longan	Sapindaceae	KC964547	KC964554	KC964550	
	Puerto Rico	PHLO9	Dim. longan	Sapindaceae	KC964546	KC964553	KC964549	
	USA	CBS124.13	Unknown		DQ458890	DQ458875	DQ458858	KY472887
	USA, Florida	CMW34107	Eucalyptus amplifolia	Myrtaceae	KY473070	KY473018		
	USA, Florida	SEFL3	Vaccinium sp.	Ericaceae	JN607091	JN607114	JN607138	
	USA, Florida, Apopka	UF05161	Vacc. corymbosum	Ericaceae	GQ845096	GQ850468		
	USA, Florida, Alaucha Country	WFF92	Vacc. corymbosum	Ericaceae	GQ845095	GQ850467		
Western South America	Colombia, Andes	CMW34303	Unknown		KY473031	KY472979		
	Ecuador	CMW4694	Schizolobium parahyba	Fabaceae	KY473033	KY472981	KY472913	KY472842
	Ecuador	CMW4695	Sch. parahyba	Fabaceae	KF886707	KF886730	KY472914	KY472843
	Ecuador	CMW4696	Sch. parahyba	Fabaceae	KY473034	KY472982	KY472915	
	Ecuador	CMW9273	Sch. parahyba	Fabaceae	KY473035	KY472983	KY472916	KY472844
	Ecuador, Esmeraldas	CMW22924	Sch. parahyba	Fabaceae	KF886709	KF886732	KY472911	KY472840
	Ecuador, Esmeraldas	CMW22926	Sch. parahyba	Fabaceae	KY473032	KY472980	KY472912	KY472841
	Peru	CMW31861	Theobroma cacao	Malvaceae	KY473048	KY472996	KY472935	
	Peru	CMW31867	Th. cacao	Malvaceae	KY473049	KY472997	KY472936	KY472862
	Peru	CMW31899	Th. cacao	Malvaceae	KY473050	KY472998	KY472937	KY472863
	Peru, Cienneguillo Norte, Piura	LA-SJ1	Vitis vinifera	Vitaceae	KM401976	KM401973		
	Peru, Sol-Sol, Piura	LA-SOL1	Vts. vinifera	Vitaceae	KM401974	KM401971		
	Peru, San Vicente, Piura	LA-SV1	Vts. vinifera	Vitaceae	KM401975	KM401972		
	Venezuela, Guayana	A10	Acacia mangium	Fabaceae	JX545093	JX545113	JX545133	
	Venezuela, Guayana	A13	Ac. mangium	Fabaceae	JX545094	JX545114	JX545134	
	Venezuela, Acarigua	CMW13490	Euc. urophylla	Myrtaceae	KY473071	KY473019	KY472962	KY472888
	Venezuela, Cojedes	CMW13501	Ac. mangium	Fabaceae	KY473072	KY473020	KY472963	KY472889
	Venezuela, Falcon State	CMW13519	Pinus caribaea var. hondurensis	Pinaceae	KY473073	KY473021	KY472964	KY472890
	Venezuela, Falcon State	CMW13527	Pin. caribaea var. hondurensis	Pinaceae	KY473074	KY473022	KY472965	KY472891
Eastern South America	Brazil	ARM122	Jatropha curcas	Euphorbiaceae	KF553895	KF553896		
	Brazil, Vicosa, MG	CDA 425	Cocos nucifera	Arecaceae	KP244697	KP308475	KP308531	
	Brazil, Vicosa, MG	CDA 444	Coc. nucifera	Arecaceae	KP244699	KP308477	KP308532	
	Brazil, Vicosa, MG	CDA 450	Coc. nucifera	Arecaceae	KP244688	KP308478	KP308533	
	Brazil, Vicosa, MG	CDA 455	Coc. nucifera	Arecaceae	KP244689	KP308463	KP308534	
	Brazil, Juazeiro, BA	CDA 465	Coc. nucifera	Arecaceae	KP244701	KP308465	KP308535	
	Brazil, Juazeiro, BA	CDA 467	Coc. nucifera	Arecaceae	KP244702	KP308473	KP308536	
	Brazil, Juazeiro, BA	CDA 469	Coc. nucifera	Arecaceae	KP244691	KP308466	KP308537	
	Brazil, Juazeiro, BA	CDA 472	Coc. nucifera	Arecaceae	KP244692	KP308467	KP308538	

Table 1. List of isolates used for genetic analyses. Isolates are ordered geographically, moving from North America eastwards to Australia. Countries in each region are arranged alphabetically. Sequences from GenBank are italicized.

Table 1. Cont.

Region	Country, Locality	Isolate	Host	Plant Family	ITS	tef1a	tub2	rpb2
	Brazil, Sao Francisco Valley	CMM 0307	Vts. vinifera	Vitaceae	KJ450879	KJ417879		
	Brazil, Sao Francisco Valley	CMM 0310	Vts. vinifera	Vitaceae	KJ450880	KJ417880		
	Brazil, Sao Francisco Valley	CMM 0384	Vts. vinifera	Vitaceae	KJ450876	KJ417876		
	Brazil, Sao Francisco Valley	CMM 0455	Vts. vinifera	Vitaceae	KJ450878	KJ417878		
	Brazil, Sao Francisco Valley	CMM 0820	Vts. vinifera	Vitaceae	KJ450877	KJ417877		
	Brazil	CMM1476	Man. indica	Anacardiaceae	JX464083	JX464057		
	Brazil	CMM1481	Man. indica	Anacardiaceae	JX464095	JX464021		
	Brazil	CMM1517	Man. indica	Anacardiaceae	JX464060	JX464054		
	Brazil	CMM2168	Car. papaya	Caricaceae	KC484817	KC481572		
	Brazil	CMM2179	Car. papaya	Caricaceae	KC484787	KC481569		
	Brazil	CMM2183	Car. papaya	Caricaceae	KC484824	KC481573		
	Brazil	CMM2190	Car. papaya	Caricaceae	KC484780	KC481518		
	Brazil	CMM2193	Car. papaya	Caricaceae	KC484826	KC481550		
	Brazil	CMM2208	Car. papaya	Caricaceae	KC484776	KC481575		
	Brazil	CMM2209	Car. papaya	Caricaceae	KC484784	KC481578		
	Brazil	CMM2210	Car. papaya	Caricaceae	KC484783	KC481577		
	Brazil	CMM2231	Car. papaya	Caricaceae	KC484775	KC481515		
	Brazil	CMM2232	Car. papaya	Caricaceae	KC484785	KC481521		
	Brazil	CMM2235	Car. papaya	Caricaceae	KC484779	KC481517		
	Brazil	CMM2237	Car. papaya	Caricaceae	KC484819	KC481547		
	Brazil	CMM2238	Car. papaya	Caricaceae	KC484771	KC481512		
	Brazil	CMM2239	Car. papaya	Caricaceae	KC484786	KC481522		
	Brazil	CMM2241	Car. papaya	Caricaceae	KC484790	KC481571		
	Brazil	CMM2261	Car. papaya	Caricaceae	KC484789	KC481579		
	Brazil	CMM2262	Car. papaya	Caricaceae	KC484822	KC481581		
	Brazil	CMM2265	Car. papaya	Caricaceae	KC484772	KC481574		
	Brazil	CMM2267	Car. papaya	Caricaceae	KC484777	KC481576		
	Brazil	CMM2268	Car. papaya	Caricaceae	KC484818	KC481580		
	Brazil	CMM2269	Car. papaya	Caricaceae	KC484821	KC481585		
	Brazil	CMM2276	Car. papaya	Caricaceae	KC484820	KC481548		
	Brazil	CMM2278	Car. papaya	Caricaceae	KC484781	KC481519		
	Brazil	CMM2280	Car. papaya	Caricaceae	KC484773	KC481513		
	Brazil	CMM2282	Car. papaya	Caricaceae	KC484827	KC481551		
	Brazil	CMM2294	Car. papaya	Caricaceae	KC484828	KC481552		
	Brazil	CMM2295	Car. papaya	Caricaceae	KC484774	KC481514		
	Brazil	CMM2297	Car. papaya	Caricaceae	KC484823	KC481582		
	Brazil	CMM2303	Car. papaya	Caricaceae	KC484816	KC481546		
	Brazil	CMM2306	Car. papaya	Caricaceae	KC484788	KC481570		
	Brazil	CMM2310	Car. papaya	Caricaceae	KC484782	KC481520		
	Brazil	CMM2327	Car. papaya	Caricaceae	KC484778	KC481516		
	Brazil	CMM2328	Car. papaya	Caricaceae	KC484825	KC481549		
	Brazil	CMM3612	Jat. curcas	Euphorbiaceae	KF234546	KF226692	KF254929	
	Brazil	CMM3647	Jat. curcas	Euphorbiaceae	KF234548	KF226704	KF254932	
	Brazil	CMM3654	Jat. curcas	Euphorbiaceae	KF234555	KF226716	KF254939	
	Brazil	CMM3831	Jat. curcas	Euphorbiaceae	KF234556	KF226717	KF254940	

Table 1. Cont.

Region	Country, Locality	Isolate	Host	Plant Family	ITS	tef1a	tub2	rpb2
	Brazil	CMM4019	Mangifera indica	Anacardiaceae	JX464096	JX464026		
	Brazil	CMM4021	Man. indica	Anacardiaceae	JX464064	JX464047		
	Brazil	CMM4033	Man. indica	Anacardiaceae	JX464081	JX464032		
	Brazil	CMM4039	Man. indica	Anacardiaceae	JX464065	JX464041		
	Brazil	CMM4041	Man. indica	Anacardiaceae	KC184891	JX464042		
	Brazil	CMM4042	Man. indica	Anacardiaceae	JX464070	JX464017		
	Brazil	CMM4043	Man. indica	Anacardiaceae	JX464087	JX464056		
	Brazil	CMM4046	Man. indica	Anacardiaceae	JX464091	JX464027		
	Brazil	CMM4047	Man. indica	Anacardiaceae	JX464082	JX464025		
	Brazil	CMM4048	Man. indica	Anacardiaceae	JX464093	JX464048		
	Brazil	CMM4050	Man. indica	Anacardiaceae	JX464062	JX464024		
	Brazil	CMM4499	Anacardium occidentale	Anacardiaceae	KT325578	KT325587		
	Brazil	CMM4508	Ana. occidentale	Anacardiaceae	KT325576	KT325588		
	Brazil	CMM4513	Ana. occidentale	Anacardiaceae	KT325577	KT325589		
	Brazil	CMW32099	Unknown		KY473028	KY472971	KY472897	
	Brazil, Vicosa, MG	COAD 1788	Coc. nucifera	Arecaceae	KP244698	KP308476	KP308528	
	Brazil, Vicosa, MG	COAD 1789	Coc. nucifera	Arecaceae	KP244700	KP308474	KP308529	
	Brazil, Juazeiro, BA	COAD 1790	Coc. nucifera	Arecaceae	KP244703	KP308468	KP308530	
	Brazil, Catuana, Ceará	IBL340	Spondias purpurea	Anacardiaceae	KT247466	KT247472	KT247475	
	Brazil, Itapipoca, Ceara	IBL375	Talisia esculenta	Sapindaceae	KT247467	KT247473	KT247474	
	Brazil, Buique, Piauí	IBL404	Ana. occidentale	Anacardiaceae	KT247468	KT247470	KT247476	
	Brazil, Buique, Piauí	IBL405	Ana. occidentale	Anacardiaceae	KT247469	KT247471	KT247477	
	Uruguay, Paysandú	Fi2359	Malus domestica	Rosaceae	KR071127	KT191041		
Western Africa	Benin	CMW33290	Adansonia digitata	Bombacaceae	KY473027	KY472970	KY472896	KY472828
	Cameroon, Mbalmayo-Bilink	CMW28311	Terminalia ivorensis	Combretaceae	GQ469932	GQ469898	KY472898	KY472829
	Cameroon, Kribi	CMW28317	Ter. catappa	Combretaceae	FJ900602	FJ900648	KY472899	KY472830
	Cameroon, Kribi	CMW28319	Ter. catappa	Combretaceae	FJ900603	FJ900650		
	Cameroon, Kribi	CMW28547	Ter. mentaly	Combretaceae	GQ469919	KY472972	KY472900	KY472831
	Cameroon, Kribi	CMW28548	Ter. mentaly	Combretaceae	GQ469920	KY472973	KY472901	KY472832
	Cameroon, Kribi	CMW28550	Ter. mentaly	Combretaceae	GQ469921	KY472974	KY472902	KY472833
	Cameroon, Mbalmayo-Ebogo	CMW28570	Ter. ivorensis	Combretaceae	GQ469923	GQ469896	KY472903	KY472834
	Cameroon, Mbalmayo-Ebogo	CMW28571	Ter. ivorensis	Combretaceae	GQ469924	GQ469897	KY472904	KY472835
	Cameroon, Mbalmayo-Ebogo	CMW28573	Ter. ivorensis	Combretaceae	GO469925	KY472975	KY472905	KY472836
	Cameroon, Mbalmayo-Ekombitie	CMW28625	Ter. ivorensis	Combretaceae	GO469933	KY472976	KY472906	KY472837
	Cameroon, Lombel	CMW36127	Ad. digitata	Bombacaceae	KY473029	KY472977	KY472907	
Southern and Eastern Africa	Madagascar, Madamo	CMW27810	Ter. catappa	Combretaceae	FJ900605	FJ900651	KY472923	KY472851
	South Africa, Mpumalanga	CMW18422	Pin. patula	Pinaceae	DQ103544	DQ103562		
	South Africa, Mpumalanga	CMW18423	Pin. patula	Pinaceae	DQ103545	DQ103563		
	South Africa, Mpumalanga	CMW18425	Pin. patula	Pinaceae	DQ103546	DQ103561		KY472864
	South Africa, Mpumalanga	CMW22663	Pterocarpus angolensis	Fabaceae	FJ888468	FJ888450		KY472865
	South Africa, Mpumalanga	CMW22664	Pt. angolensis	Fabaceae	FJ888469	FJ888451		
	South Africa, Kwazulu-Natal	CMW24125	Sclerocarya birrea	Anacardiaceae	KU997372	KU997111		KY472866
	South Africa, Mpumalanga	CMW25212	Man. indica	Anacardiaceae	KU997392	KU997128	KU997566	
	South Africa, Limpopo	CMW26616	Euphorbia ingens	Euphorbiaceae	KY473051	KY472999	KY472941	KY472867
	South Africa, Limpopo	CMW26630	Euph. ingens	Euphorbiaceae	KY473052	KY473000	KY472942	KY472868

Table 1. Cont.

Region	Country, Locality	Isolate	Host	Plant Family	ITS	tef1a	tub2	rpb2
	South Africa, Kwazulu-Natal	CMW26715	Ter. catappa	Combretaceae	FJ900604	FJ900649	KY472943	KY472869
	South Africa, Kwazulu-Natal	CMW32018	Pin. elliottii	Pinaceae	KY473053	KY473001	KY472944	KY472870
	South Africa, Mpumalanga	CMW32498	Pin. patula	Pinaceae	KY473054	KY473002	KY472945	KY472871
	South Africa, Mpumalanga	CMW32536	Pin. elliottii	Pinaceae	KY473055	KY473003	KY472946	KY472872
	South Africa, Kwazulu-Natal	CMW32544	Pin. elliottii	Pinaceae	KY473056	KY473004	KY472947	KY472873
	South Africa, Kwazulu-Natal	CMW32549	Pin. elliottii	Pinaceae	KY473057	KY473005	KY472948	KY472874
	South Africa, Kwazulu-Natal	CMW32571	Pin. elliottii	Pinaceae	KY473058	KY473006	KY472949	KY472875
	South Africa, Kwazulu-Natal	CMW32603	Pin. elliottii	Pinaceae	KY473059	KY473007	KY472950	KY472876
	South Africa, Kwazulu-Natal	CMW32604	Pin. elliottii	Pinaceae	KY473060	KY473008	KY472951	KY472877
	South Africa, Kwazulu-Natal	CMW32606	Pin. elliottii	Pinaceae	KY473061	KY473009	KY472952	KY472878
	South Africa, Kwazulu-Natal	CMW32651	Pin. elliottii	Pinaceae	KY473062	KY473010	KY472953	KY472879
	South Africa, Kwazulu-Natal	CMW32666	Pin. elliottii	Pinaceae	KY473063	KY473011	KY472954	
	South Africa, Kwazulu-Natal	CMW32669	Pin. elliottii	Pinaceae	KY473064	KY473012	KY472955	KY472880
	South Africa, Mpumalanga	CMW33658	Man. indica	Anacardiaceae	KY473065	KY473013	KY472956	
	South Africa, Gauteng	CMW38120	Vachellia karroo	Fabaceae	KC769935	KC769843	KC769887	
	South Africa, Gauteng	CMW38121	Vac. karroo	Fabaceae	KC769936	KC769844	KC769888	
	South Africa, Gauteng	CMW38122	Vac. karroo	Fabaceae	KC769937	KC769845	KC769889	
	South Africa, Gauteng	CMW39290	Vac. karroo	Fabaceae	KF270061	KF270021		
	South Africa, Gauteng	CMW39291	Vac. karroo	Fabaceae	KF270062	KF270022		
	South Africa, Kwazulu-Natal	CMW41214	Barringtonia racemosa	Lecythidaceae	KP860842	KU666547	KP860765	KU587889
	South Africa, Kwazulu-Natal	CMW41222	Bar. racemosa	Lecythidaceae	KP860836	KU666549	KP860759	KU587881
	South Africa, Kwazulu-Natal	CMW41223	Bar. racemosa	Lecythidaceae	KP860837	KU666548	KP860760	KU587882
	South Africa, Kwazulu-Natal	CMW41360	Bar. racemosa	Lecythidaceae	KP860841	KP860686	KP860764	KU587888
	South Africa, Kwazulu-Natal	CMW42341	Bar. racemosa	Lecythidaceae	KP860843	KU587945	KU587866	
	South Africa, Kwazulu-Natal	MTU53	Sygygium cordatum	Myrtaceae	KY052943	KY024622	KY000125	
	Uganda	CMW10130	Vitex donniana	Lamiaceae	AY236951	AY236900	AY236929	KY472883
	Uganda, Mbale	CMW18420	Casuarina cunninghamii	Casuarinaceae	DQ103534	DQ103564	KY472959	KY472884
	Uganda, Mbale	CMW32245	Cas. cunninghamii	Casuarinaceae	KY473068	KY473016	KY472960	KY472885
	Uganda, Mbale	CMW32246	Cas. cunninghamii	Casuarinaceae	KY473069	KY473017	KY472961	KY472886
	Zambia, Samfya	CMW30103	Syz. cordatum	Myrtaceae	FJ747640	FJ871114		
	Zambia, Samfya	CMW30104	Syz. cordatum	Myrtaceae	FJ747641	FJ871115		
	Zambia, Samfya	CMW30105	Syz. cordatum	Myrtaceae	FJ747642	FJ871116		
Middle East and Europe	Egypt	BOT23	Man. indica	Anacardiaceae	JN814400	JN814427		
1	Egypt	BOT4	Man. indica	Anacardiaceae	JN814395	JN814422		
	Egypt	BOT5	Man. indica	Anacardiaceae	JN814376	JN814403		
	Egypt	BOT6	Man. indica	Anacardiaceae	JN814399	JN814426		
	Egypt	BOT7	Man. indica	Anacardiaceae	JN814396	JN814423		
	Egypt	BOT9	Man. indica	Anacardiaceae	JN814392	JN814419		
	Iran	CJA198	Unknown		GU973871	GU973863		
	Iran	CJA199	Unknown		GU973872	GU973864		
	Iran	IRAN1233C	Unknown		GU973868	GU973860		
	Iran	IRAN1496C	Man. indica	Anacardiaceae	GU973869	GU973861		
	Iran	IRAN1499C	Man. indica	Anacardiaceae	GU973870	GU973862		
	Italy, Foggia	B159	Vts. vinifera	Vitaceae	KM675760	KM822731		
	Italy, Cerignola	B202	Vts. vinifera	Vitaceae	KM675761	KM822732		
	Italy, Cerignola	B215	Vts. vinifera	Vitaceae	KM675762	KM822733		
	Italy, Cerignola	B342	Vts. vinifera	Vitaceae	KM675763	KM822734		
	Italy, Cerignola	B85	Vts. vinifera	Vitaceae	KM675759	KM822730		

Table 1. Cont.

Region	Country, Locality	Isolate	Host	Plant Family	ITS	tef1a	tub2	rpb2
	Oman, Barka	CMW20506	Man. indica	Anacardiaceae	KY473037	KY472985	KY472924	KY472852
	Oman, Barka	CMW20508	Man. indica	Anacardiaceae	KY473038	KY472986	KY472925	KY472853
	Oman, Barka	CMW20511	Man. indica	Anacardiaceae	KY473039	KY472987	KY472926	KY472854
	Oman, Barka	CMW20512	Man. indica	Anacardiaceae	KY473040	KY472988	KY472927	KY472855
	Oman	CMW20537	Unknown		KY473041	KY472989	KY472928	KY472856
	Oman	CMW20542	Unknown		KY473042	KY472990	KY472929	
	Oman	CMW20543	Unknown		KY473043	KY472991	KY472930	KY472857
	Oman	CMW20546	Unknown		KY473044	KY472992	KY472931	KY472858
	Oman	CMW20560	Unknown		KY473045	KY472993	KY472932	KY472859
	Oman	CMW20573	Unknown		KY473046	KY472994	KY472933	KY472860
	Oman	CMW20579	Unknown		KY473047	KY472995	KY472934	KY472861
Asia	China, Fangshan, Pingtung	B838	Man. indica	Anacardiaceae	GQ502456	GQ980001	GU056852	
	China, Guantian, Tainan	B852	Man. indica	Anacardiaceae	GQ502457	GQ980002	GU056851	
	China, Chiayi	B886	Man. indica	Anacardiaceae	GQ502452	GQ980005	GU056847	
	China, Guantian, Tainan	B902	Man. indica	Anacardiaceae	GQ502459	GQ980004	GU056849	
	China, Guantian, Tainan	B918	Man. indica	Anacardiaceae	GQ502458	GQ980003	GU056850	
	China, Guantian, Tainan	B961	Man. indica	Anacardiaceae	GQ502453	GQ979999	GU056845	
	China, Guantian, Tainan	B965	Man. indica	Anacardiaceae	GQ502454	GQ980000	GU056854	
	China	BL1331	Albizia falcataria	Fabaceae	KU712499	KU712500	KU712501	
	China	CBS122127	Homo sapiens		EF622017	EF622018		
	China, GuangDong Province	CERC1983	Polyscias balfouriana	Araliaceae	KP822979	KP822997	KP823012	
	China, GuangDong Province	CERC1985	Pol. balfouriana	Araliaceae	KP822980	KP822998	KP823013	
	China, GuangDong Province	CERC1988	Pol. balfouriana	Araliaceae	KP822981	KP822999	KP823014	
	China, GuangDong Province	CERC1989	Euc. GU hybrid	Myrtaceae	KP822982	KP823000	KP823015	
	China, GuangDong Province	CERC1991	Euc. GU hybrid	Myrtaceae	KP822983	KP823001	KP823016	
	China, GuangDong Province	CERC1996	Euc. GU hybrid	Myrtaceae	KP822984	KP823002	KP823017	
	China, GuangDong Province	CERC2049	Bougainvillea spectabilis	Nyctaginaceae	KP822985	KP823003	KP823018	
	China, GuangDong Province	CERC3820	Rosa rugosa	Rosaceae	KR816831	KR816837	KR816843	
	China, GuangDong Province	CERC3821	R. rugosa	Rosaceae	KR816832	KR816838	KR816844	
	China, GuangDong Province	CERC3822	R. rugosa	Rosaceae	KR816833	KR816839	KR816845	
	China, GuangDong Province	CERC3823	R. rugosa	Rosaceae	KR816834	KR816840	KR816846	
	China, GuangDong Province	CERC3824	R. rugosa	Rosaceae	KR816835	KR816841	KR816847	
	China, GuangDong Province	CERC3825	R. rugosa	Rosaceae	KR816836	KR816842	KR816848	
	China, Dong Men Forest Farm	CMW24701	Euc. GU hybrid	Myrtaceae	HQ332193	HQ332209	KY472908	KY472838
	China, Dong Men Forest Farm	CMW24702	Euc. GU hybrid	Myrtaceae	HQ332194	HQ332210	KY472909	KY472839
	China	CMW33957	Eucalyptus sp.	Myrtaceae	KY473030	KY472978	KY472910	
	China	FXPZ	Vts. vinifera	Vitaceae	KR232666	KR232660	KR232674	
	China	HD1332	Alb. falcataria	Fabaceae	KU712502	KU712503	KU712504	
	China	HN74	Hevea brasiliensis	Euphorbiaceae	KT947466	KU925617	KU925616	
	China, Guangxi Province	L1	Man. indica	Anacardiaceae	KR260791	KR260808	KR260820	
	China, Guangxi Province	L2	Man. indica	Anacardiaceae	KR260792	KR260809	KR260821	
	China, Guangxi Province	L3	Man. indica	Anacardiaceae	KR260793	KR260810	KR260822	
	China, Guangxi Province	L4	Man. indica	Anacardiaceae	KR260794	KR260811	KR260823	
	China, Guangxi Province	L5	Man. indica	Anacardiaceae	KR260795	KR260812	KR260824	
	China, Guangxi Province	L6	Man. indica	Anacardiaceae	KR260796	KR260813	KR260825	
	China, Guangxi Province	L7	Man. indica	Anacardiaceae	KR260797	KR260814	KR260826	
	China, Guangxi Province	L8	Man. indica	Anacardiaceae	KR260798	KR260815	KR260827	
	China, Guangxi Frovince	LO	iviun. inuicu	Anacarciiaceae	KK200790	KK200013	KK20002/	

Table 1. Cont.

Region	Country, Locality	Country, Locality Isolate Host		Plant Family	ITS	tef1a	tub2	rpb2
	China, Guangxi Province	L9	Man. indica	Anacardiaceae	KR260799	KR260816	KR260828	
	China, Guangxi Province	L10	Man. indica	Anacardiaceae	KR260800	KR260817	KR260829	
	China, Guangxi Province	L11	Man. indica	Anacardiaceae	KR260801	KR260818	KR260830	
	China, Guangxi Province	L15	Man. indica	Anacardiaceae	KR260802	KR260819	KR260831	
	China, Sichuan	Mht-5	Actinidia deliciosa	Actinidiaceae	JQ658976	JQ658977	JQ658978	
	China, Shanghai	SHYAG	Vitis vinifera	Vitaceae	JX275794	JX462302	JX462276	
	China, Zhejiang	ZHn411	Pyrus pyrifolia	Rosaceae	KC960899	KC961038	KC960992	
	Indonesia, Sumatra	CMW22881	Euc. grandis	Myrtaceae	KY473036	KY472984	KY472917	KY472845
	Indonesia, Logas	CMW23003	Ac. mangium	Fabaceae	EU588629	EU588609	KY472918	KY472846
	Indonesia, Logas	CMW23008	Ac. mangium	Fabaceae	EU588630	EU588610	KY472919	KY472847
	Indonesia, Logas	CMW23018	Ac. mangium	Fabaceae	EU588633	EU588613	KY472920	KY472848
	Indonesia, Teso	CMW23031	Ac. mangium	Fabaceae	EU588631	EU588611	KY472921	KY472849
	Indonesia, Logas	CMW23073	Ac. mangium	Fabaceae	EU588632	EU588612	KY472922	KY472850
	Korea	ML1001	Man. indica	Anacardiaceae	JN542561	JN542563		
	Korea	ML1005	Man. indica	Anacardiaceae	JN542562	JN542564		
	Thailand, Prajinburi	CMW15680	Euc. camaldulensis	Myrtaceae	KY473066	KY473014	KY472957	KY472881
	Thailand, Prajinburi	CMW15682	Euc. camaldulensis	Myrtaceae	KY473067	KY473015	KY472958	KY472882
	Thailand, Chiang Mai	CPC 22766	Pin. kesiya	Pinaceae	KM006436	KM006467		
	Thailand, Chiang Mai	CPC 22780	Manilkara zapota	Sapotaceae	KM006442	KM006473		
	Thailand, Chiang Mai	CPC 22798	Syz. samarangense	Myrtaceae	KM006454	KM006485		
	Thailand, Chiang Mai	MFLUCC12 0293	Tectona grandis	Lamiaceae	KM396896	KM409634	KM510354	
Australasia	Australia	CMW40630	Syzygium sp.	Myrtaceae	KY473023	KY472966	KY472892	KY472825
	Australia	CMW40635	Syz. novosum	Myrtaceae	KY473024	KY472967	KY472893	
	Australia	CMW40636	Syz. novosum	Myrtaceae	KY473025	KY472968	KY472894	KY472826
	Australia	CMW40637	Syz. novosum	Myrtaceae	KY473026	KY472969	KY472895	KY472827
	Darwin, Australia	MUCC737	Åd. gregorii	Bombacaceae	GU199387	GU199407		
	Papua New Guinea, Madang	CBS164.96	Fruit along coral reef coast		AY640255	AY640258	KU887532	KU696383

2.2. PCR Amplifications, DNA Sequencing, and Confirmation of Species Identity

Isolate identities were confirmed as *L. theobromae* using data from four loci; the ITS rDNA (including the ITS1, 5.8S nuclear ribosomal RNA (nrRNA) and ITS2), *tef1* α , β -tubulin-2 (*tub2*) and RNA polymerase II (*rpb2*) loci. Preliminary identification was done for all isolates using maximum likelihood phylogenetic analysis of sequence data from the *tef1* α locus, which was then supported by data for the other three loci. The dataset for *tef1* α included all other *Lasiodiplodia* species known at the time of the analyses.

For PCR amplifications, the primer sets ITS1 and ITS4 [32], EF1F and EF2R [33], EF688F and EF1251R [34], Bt-2a and Bt-2b [35], and RPB2-LasF and RPB2-LasR [27] were used to amplify the ITS, *tef1a*, *tub2*, and *rpb2* loci, respectively. PCR mixes were the same as those that included KAPA Taq and MyTaq DNA polymerases as described by Mehl et al. [36] and PCR cycling conditions and product visualization were the same as those used by Mehl et al. [37]. PCR product purification and sequencing were done as described by Mehl et al. [30] and sequences were examined and edited using MEGA 6 [38].

Sequence datasets were aligned using MAFFT 6 [39] with the G-INS-I algorithm selected and alignment errors corrected visually. For the *tef1* α dataset that included isolates of species other than *L. theobromae*, the best nucleotide substitution model was determined using JMODELTEST 2.1.3 [40] with the corrected Akaike Information Criterion selected. The dataset was analyzed with PHYML 3.0.1 [41] using the same model parameters as determined by JMODELTEST and the robustness of the generated tree was evaluated using 1000 bootstrap replicates. Sequences generated in this study were deposited in GenBank (Table 1).

2.3. Haplotype Assignment and Networks

To ascertain the number of haplotypes for each dataset and to identify where haplotypes occurred, sequence datasets were generated for each locus separately, along with one combined dataset for the ITS and *tef1a* regions. The combined dataset was generated because it included the majority of isolates and provided a better representation of the diversity inherent in the populations and regions. For each dataset, isolates were assigned to different haplotypes using the map program in Mobyle SNAP Workbench [42]. Sites that violated the infinite sites model, as well as indels, were removed prior to assigning haplotypes. Median joining haplotype networks were then constructed for each dataset, as well as for the combined dataset using NETWORK 4.6.1.3 [43,44].

2.4. Population and Regional Structure and Diversity

To determine whether there was genetic structure present in the datasets and to test for potential population subdivision, haplotype assignments for all four loci, as determined by Mobyle SNAP Workbench, were analyzed using the program STRUCTURE 2.3.4 [45,46]. STRUCTURE uses a Bayesian clustering algorithm to evaluate the possibility of multiple lineages being present. Two sets of analyses were made, the first of which evaluated whether there was genetic structure in the dataset for all isolates. The second set of analyses involved grouping isolates into five populations based on the continent of origin (North America, South America, Africa, Eurasia, and Australasia) and then running STRUCTURE analyses on pairs of populations to determine whether there was genetic structure between any of the populations (10 pairs including every possible combination).

For all analyses, burnin was set at 300,000 and the number of Markov Chain Monte Carlo (MCMC) repeats was set at 900,000, so that more than 1,000,000 repeats were done to generate robust results. Initially lambda was computed based on five runs at K = 1. The model selected entailed admixture with independent allele frequencies and the lambda value computed. Twenty iterations were done for each value of K = 1 to K = 10. Results were parsed through STRUCTURE HARVESTER [47] and the DeltaK [48] output used to identify possible subpopulations.

Population statistics, including gene and nucleotide diversities, were inferred using ARLEQUIN 3.5.1.2 [49] on the ITS, *tef1* α , combined ITS and *tef1* α , and *tub2* sequence datasets for every geographic country and region assigned. Pairwise population differentiation (Φ_{ST}) comparisons were computed for all populations and regions using ARLEQUIN on the same dataset.

2.5. Putative Geographic Origin of Lasiodiplodia theobromae

To determine the possible centre of origin for *L. theobromae*, scenarios of how populations could have arisen were simulated and the summary statistics of these compared to those of the observed dataset using DIYABC 2.0.4 [50]. For these analyses, the sequence datasets of isolates (with data from all four loci) were grouped according to continent of origin, similar to the arrangements for the second set of analyses using STRUCTURE. To determine whether any of the populations could be ancestral, pairs of populations were evaluated using three possible scenarios (Figure 2): scenario 1—the first population is ancestral to both, scenario 2—the second population is ancestral to both, scenario 3—both populations diverged from an unknown ancestral population. For each scenario, 1,000,000 datasets were simulated.

Figure 2. Scenarios evaluated to determine possible ancestry between any of the pairs of populations tested. In scenario 1, population 1 is ancestral to both. In scenario 2, population 2 is ancestral to both. In scenario 3, both populations diverged from an unknown source population.

Posterior probabilities of scenarios for each analysis step were computed using polychotomous logistic regression on 1% of the simulated datasets closest to the dataset provided. The best scenario was the one having the highest probability and with 95% confidence intervals that did not overlap with those of the other scenarios tested.

3. Results

3.1. Isolate Collections and Confirmation of Species Identity

The *tef1* α sequence dataset that included all isolates, as well as representatives of other *Lasiodiplodia* species, consisted of 340 characters (151 parsimony informative, 22 parsimony uninformative, 167 constant). The model selected by JMODELTEST was HKY (transitions:transversions (ti/tv) = 1.719, $\gamma = 0.407$). The resulting tree contained a clade of 255 isolates, from 26 countries, that was considered to represent *L. theobromae sensu stricto* as it included authentic isolates of this species (Figure S1). Of these, 95 isolates represented a global collection assembled over many years and stored in the CMW culture collection. The other isolates sampled from this collection grouped with *Botryosphaeria dothidea*, *D. pseudoseriata*, *L. brasiliense*, *L. crassispora*, *L. gilanensis*, *L. gonubiensis*, *L. hormozganensis*, *L. iraniensis*, *L. laeliocattleyae*, *L. mahajangana*, *L. margaritacea*, *L. parva*, *L. pseudotheobromae*, *L. viticola*, *Neofusicoccum parvum*, and *N. vitifusiforme* (data not shown) and were thus excluded. Four isolates were from the collection of the Westerdijk Fungal Biodiveristy Institute. The remaining sequences for 156 additional isolates were sourced from GenBank (Table 1, Figure 1). Thus, all subsequent analyses were based on data for this core group of 255 isolates from 52 plant hosts.

Countries considered in the analyses were grouped into eight geographic regions, including north America (Hawaii, Mexico, Puerto Rico, United States of America—USA), western south America (Colombia, Ecuador, Peru, Venezuela), eastern south America (Brazil, Uruguay), western Africa (Benin, Cameroon), southern and eastern Africa (Madagascar, South Africa, Uganda, Zambia), Middle East and Europe (Egypt, Iran, Italy, Oman), Asia (China, Indonesia, Korea, Thailand), and Australasia (Australia, Papua New Guinea) (Tables 1 and 2).

3.2. Haplotype Assignment and Networks

The ITS dataset (252 isolates) consisted of 333 characters (two parsimony informative, 23 parsimony uninformative, 308 constant) and yielded 11 haplotypes with 17 fixed single nucleotide polymorphisms (SNPs) (Table S1, Figure 3a). The *tef1* α dataset (255 isolates) consisted of 216 characters (five parsimony informative, 11 parsimony uninformative, 200 constant) and yielded eight haplotypes with 14 SNPs (Table S1, Figure 3b). The *tub2* dataset (153 isolates) consisted of 309 characters (six parsimony informative, nine parsimony uninformative, 294 constant) and yielded 12 haplotypes with 15 SNPs (Table S1, Figure 3c). The *rpb2* dataset (73 isolates) consisted of 535 characters (zero parsimony informative, zero parsimony uninformative, 535 constant) and yielded a single haplotype. The combined ITS and *tef1* α dataset consisted of 549 characters (seven parsimony informative, 34 parsimony uninformative, 508 constant) and yielded 17 haplotypes (Figure 4).

Figure 3. Haplotype networks generated for the (**a**) internal transcribed spacer rDNA (ITS), (**b**) translation elongation factor 1α (*tef1* α), and (**c**) β -tubulin-2 (*tub2*) loci. Only one haplotype resulted from analysis of the RNA polymerase II (*rpb2*) locus and is not included. Colours represent the different regions isolates were obtained from.

Table 2. Standard genetic and nucleotide diversity measures for isolates collected in each country and region, for the ITS, $tef1\alpha$, combined ITS and $tef1\alpha$, and tub2 sequence datasets. Included are sample size (N), number of haplotypes found (H), gene diversity (H_E) and nucleotide diversity (π). Sample sizes are also recorded for the tub2 dataset as sequence data for this locus was not available for all isolates. Totals for each region are also listed.

				ITS			tef1 a			ITS + tef1	α		t	ub2	
Region	Country	Ν	н	$H_{\rm E}$	π (×10 ⁻³)	н	$H_{\rm E}$	π (×10 ⁻³)	н	$H_{\rm E}$	π (×10 ⁻³)	N	Н	$H_{\rm E}$	π (×10 ⁻³)
North America	Hawaii	1	1	0	0	1	0	0	1	0	0	1	1	0	0
	Mexico	5	1	0	0	1	0	0	1	0	0	0	0	0	0
	Puerto Rico	4	1	0	0	1	0	0	1	0	0	4	1	0	0
	USA	5	3	0.356	4.271	2	0.356	1.646	4	0.385	4.210	2	2	0.667	2.157
	Total	15	3	0.129	1.546	3	0.405	3.746	4	0.193	2.110	7	2	0.264	0.854
Western South America	Colombia	1	1	0	0	1	0	0	1	0	0	0	0	0	0
	Ecuador	6	1	0	0	3	0.384	5.331	3	0.384	2.097	6	1	0	0
	Peru	6	1	0	0	2	0.303	1.403	2	0.303	0.552	3	2	0.533	1.726
	Venezuela	6	2	0.303	0.910	2	0.303	1.403	3	0.303	1.104	6	2	0.303	0.981
	Total	19	2	0.102	0.308	3	0.201	2.792	4	0.176	1.285	15	3	0.129	0.833
Eastern South America	Brazil	76	1	0	0	4	0.097	3.131	4	0.097	1.232	19	2	0.185	0.597
	Uruguay	1	1	0	0	1	0	0	1	0	0	0	0	0	0
	Total	77	1	0	0	4	0.096	3.106	4	0.096	1.222	19	2	0.185	0.597
Western Africa	Benin	1	1	0	0	1	0	0	1	0	0	1	1	0	0
	Cameroon	11	1	0	0	3	0.222	5.131	3	0.222	2.019	10	1	0	0
	Total	12	1	0	0	3	0.220	5.099	3	0.220	2.006	11	1	0	0
Southern and Eastern Africa	Madagascar	1	1	0	0	1	0	0	1	0	0	1	1	0	0
	South Africa	32	3	0.064	0.953	2	0.112	0.520	3	0.062	0.560	29	4	0.119	2.302
	Uganda	4	1	0	0	2	0.429	1.984	2	0.429	0.781	4	2	0.429	1.387
	Zambia	3	1	0	0	1	0	0	1	0	0	0	0	0	0
	Total	40	3	0.051	0.760	2	0.248	1.147	4	0.072	0.782	34	4	0.119	2.301
Middle East and Europe	Egypt	6	1	0	0	1	0	0	1	0	0	0	0	0	0
1	Iran	5	1	0	0	1	0	0	1	0	0	0	0	0	0
	Italv	5	1	0	0	1	0	0	1	0	0	0	0	0	0
	Oman	11	3	0.173	1.040	1	0	0	3	0.173	0.631	11	2	0.173	0.560
	Total	27	3	0.073	0.436	2	0.308	1.424	4	0.151	0.825	11	2	0.173	0.560
Asia	China	43	3	0.606	0.546	3	0.108	1.003	5	0.080	0.726	42	7	0.153	4.939
	Indonesia	6	1	0	0	2	0.485	2.245	2	0.485	0.883	6	1	0	0
	Korea	2	1	0	0	1	0	0	1	0	0	0	0	0	0
	Thailand	6	2	0.303	0.910	2	0.485	2.245	3	0.394	1.435	3	1	0	0
	Total	57	4	0.043	0.518	3	0.139	1.288	6	0.075	0.821	51	7	0.130	4.202
Australasia	Australia	5	2	0.356	2.135	1	0	0	2	0.356	1.295	4	1	0	0
	Papua New Guinea	1	1	0	0	1	0	0	1	0	0	1	1	0	0
	Total	6	2	0.303	1.820	2	0.303	1.403	3	0.303	1.656	5	1	0	0
All		255	11	0.001		8	0.003		17	0.001		153	12	0.002	

Asia Australia

Southern and Eastern Africa Middle East and Europe

Figure 4. Haplotype network generated for the combined ITS and *tef1* α dataset. Colours represent the different regions isolates were obtained from. Haplotypes designated by Roman numerals (I–XVII). Open circles represent inferred haplotypes.

There was no clear grouping of isolates based on region of origin. Analyses of the ITS and *tub2* loci (Figure 3) showed that one haplotype was most common. The *rpb2* dataset was not analyzed further as it constituted only one haplotype. For the *tef1* α dataset and the combined dataset of ITS and *tef1* α , two closely related (separated by a single mutation) haplotypes were most common. These common haplotypes represented isolates sourced from all eight regions sampled (Figures 3 and 4, Table S2).

An analysis of haplotypes (Table S3) showed that Asia and North America had the greatest number of unique haplotypes (10 and four, respectively) across all three loci (ITS, *tef1a*, and *tub2*). For the remaining regions, one to three unique haplotypes were detected. When considering the individual loci, three unique ITS haplotypes and six unique *tub2* haplotypes were observed amongst isolates from Asia. For all other regions, two or fewer unique haplotypes were found. Upon closer examination, these unique haplotypes were confined to specific countries. Two of the five isolates collected from the USA (North America) had unique haplotypes, while 15 isolates collected from three locations in China over a period of four years had unique haplotypes.

3.3. Population and Regional Structure and Diversity

There was no evidence of sub-populations present in either set of the STRUCTURE analyses. In the first set of analyses that considered all isolates, the significantly highest DeltaK value was at K = 8 populations, but the corresponding barplot showed that no structure was present (Figure 5). Similarly, in the second set of analyses that evaluated genetic structure between the pairs of populations, the highest DeltaK values obtained differed for each population pair tested and varied from K = 2 to K = 8. However, the corresponding barplots for these values of K all showed that no structure was present in the data (Figure S2a–j).

Figure 5. Structure output on the combined dataset of all four loci. The output from the DeltaK analysis from STRUCTURE HARVESTER (top) resulted in the highest peak at K = 8 populations, but the corresponding barplot (bottom) showed no structure.

Gene diversity was low for most countries and regions sampled. High gene diversity (>0.4) was detected for individual loci in countries including USA, Peru, Uganda, China, Indonesia, and Thailand, and in North America (Table 2). High nucleotide diversity was detected in the above-mentioned countries, as well as in Ecuador, Venezuela, Brazil, Cameroon, South Africa, Oman and Australia, and in several regions including western and eastern South America, western Africa, and Australasia (Table 2).

When combining the gene and nucleotide diversities across the three individual loci (ITS, *tef1a*, *tub2*) (Table 2), the greatest diversity overall was recorded for North America ($H_E = 0.798$, $\pi \times 10^{-3} = 6.146$). High gene diversity ($H_E > 0.4$) was also detected for Australasia ($H_E = 0.606$, $\pi \times 10^{-3} = 6.146$), Middle East and Europe ($H_E = 0.554$, $\pi \times 10^{-3} = 2.420$), western South America ($H_E = 0.432$, $\pi \times 10^{-3} = 3.933$), and southern and eastern Africa ($H_E = 0.418$, $\pi \times 10^{-3} = 4.208$). Asia and western Africa had low levels of gene diversity, but high levels of nucleotide diversity (Asia: $H_E = 0.312$, $\pi \times 10^{-3} = 6.008$; western Africa: $H_E = 0.220$, $\pi \times 10^{-3} = 5.099$). Eastern South America had the lowest diversity overall ($H_E = 0.281$, $\pi \times 10^{-3} = 3.703$).

Most populations were not highly genetically differentiated, based on Φ_{ST} values. The greatest genetic differentiation was seen in the north American and western African populations, with moderate to very high levels of genetic differentiation [51] compared to the other populations assessed (Table 3).

Region	N	North America	Western South America	Eastern South America	Western Africa	Southern and Eastern Africa	Middle East and Europe	Asia	Australasia
North America	15								
Western South America	19	0.047							
Eastern South America	77	0.026	0.014						
Western Africa	12	0.040	0.165	0.121	-				
Southern and Eastern Africa	40	0.189	0.051	0.105	0.367				
Middle East and Europe	27	0.109	0.008	0.045	0.272	0.01			
Asia	57	0.166	0.032	0.080	0.343	0.006	0.002		
Australasia	6	0.087	0.041	0.087	0.205	0.075	0.056	0.068	

Table 3. Pairwise population differentiation (Φ_{ST}) comparisons between the regions that isolates were obtained from, based on the combined ITS and *tef1a* dataset.

3.4. Putative Geographic Origin of Lasiodiplodia theobromae

Posterior probabilities for all of the scenarios tested for the pairs of populations were low (Table S3) when a posterior probability of 0.7 or more was considered high. Ninety-five percent (95%) confidence intervals for different scenarios for the same pairwise comparison often overlapped (Table S4), indicating a lack of resolution in choosing one specific scenario over the others. These results are likely due to the lack of variation in the markers. However, they support the conclusions of other analyses reported above that did not identify any specific region as an evolutionary origin of the fungus over others.

4. Discussion

Results of this study suggest that isolates associated with *L. theobromae* collected from many different hosts and countries of the world represent a single globally distributed species, with no obvious phylogeographic structure. This was evident from various analyses on sequence datasets for four loci (only three of which were variable) in 255 isolates from 52 hosts from all continents other than Antarctica. We thus contend that the only likely explanation for this result is the large-scale human dispersal of this fungal species.

The lack of population structure in *L. theobromae* on a global scale is in contrast to studies on other broadly distributed fungi that infect commercially cultivated plants or are medically important (e.g., [52–54]). These previous studies have typically revealed phylogeographic structure within species, with multiple cryptic lineages linked to geographic regions, leading to the conclusion that, for fungi, "nothing is generally everywhere" [54,55]. Subsequent studies have shown that lineages in some of these fungi (e.g., *Fusarium graminearum* and *Histoplasma capsulatum*) represent cryptic species [56,57]. An exception to this rule is *Aspergillus fumigatus*, which has very small (2–3 µm), wind-dispersed conidia. This special case is hypothesized to possibly arise from human influence, especially through environmental impact, which has created ideal habitats for the fungus [58,59].

Amongst the Botryosphaeriaceae, the shared genetic diversity across continents is not unique to *L. theobromae. Neofusicoccum parvum* also appears to have a similar global distribution of diversity [18]. Recently, Marsberg et al. [19] reported a similar lack of structure amongst a global collection of *B. dothidea* isolates. All three of these species have exceptionally broad host ranges across many plant families, and this has no doubt facilitated their broad distribution. Furthermore, *N. parvum* was reported to be more common in human-associated and disturbed environments, such as plantations, orchards, and urban environments [15], which could facilitate invasion (similar to *A. fumigatus*).

Lasiodiplodia theobromae, B. dothidea, and *N. parvum* are ideal systems in which to further test these hypotheses regarding the role of host and human association in facilitating invasions.

The absence of phylogeographic structure amongst global collections of Botryosphaeriaceae such as *L. theobromae* is surprising in the light of their spore dispersal mechanism. Spores of the Botryosphaeriaceae, including those of *L. theobromae*, emerge in a sticky matrix and are relatively large (the most common spores, conidia, range between $10-35 \times 8-15 \mu m$; [12]) and are naturally dispersed by wind and rain splash [6,16,60–62]. Consequently spores are not expected to be spread over large distances or across geographic barriers and certainly not between continents. The limited ability of these fungi to disperse over long distances would be expected to result in a vicariant population structure with differences at a regional level between populations. The lack of population structure and dominance of identical multilocus haplotypes on distant continents can only be explained by assisted dispersal. In this case, human-mediated movement of plant material [1,3,63] has most likely facilitated this global dispersal.

A large number of the plant hosts from which isolates of *L. theobromae* were obtained for the present study are commercially important and traded globally as part of the nursery trade, or cultivated either for agriculture (e.g., *Carica papaya, Mangifera indica*, and *Vitis vinifera*) or forestry (e.g., *Acacia mangium, Eucalyptus* species). The Botryosphaeriaceae, including *L. theobromae*, are common endophytes in such plants and plant products, including fruits [4,64]. Endophytic infections by these fungi are typically invisible and are thus not detected by quarantine systems [3,19,65]. The present study highlights how widely species of the Botryosphaeriaceae, specifically *L. theobromae*, can be spread as a consequence of such human-assisted movement.

Results of this study were consistent with those of previous studies that used microsatellite markers to study populations of *L. theobromae* [66–68]. These previous studies considered populations of isolates from Mexico, South Africa, Venezuela, India, and Cameroon, and detected extensive gene flow and shared genotypes from different hosts [66–68] and from different countries [66]. Our analyses provide a broader representation with consistent results, including publicly available data combined with data from our own collection of *L. theobromae* isolates.

No clear centre of origin for *L. theobromae* emerged from this study based on gene diversity. The greatest cumulative diversity obtained by combining the diversities for the individual loci was detected for the North American collections. Population differentiation tests highlighted the North American and west African populations as being moderately to fairly distinct from the rest. The North American and Asian regions had higher numbers of unique haplotypes (four and ten respectively), but these haplotypes were present only in some countries (USA and China, respectively).

The diversity of *L. theobromae* in the USA was especially noticeable given that only a few isolates were available for that country. Further sampling would be needed to confirm whether this reflects a possible native population or is the result of introductions through trade with various other regions [55]. It has been shown for other organisms, for example lizards, that the invasive populations could be more diverse than native populations if introduced multiple times and from various isolated native populations [69]. This has also been observed in fungi such as *D. sapinea* in parts of its invasive range (e.g., in South Africa; [22,23]).

This study provides a valuable foundation for future studies that will investigate the genetic structure, movement, and origins in *L. theobromae* and other important species of the Botryosphaeriaceae. The loci used were chosen to allow for the inclusion of publicly available sequence data so as to obtain a more comprehensive global perspective. We excluded cryptic lineages based on previous studies that have resolved the taxonomy of *Lasiodiplodia* spp. and have defined these lineages as distinct species, including hybrid species [12,27]. As such, the current collection represents a valuable resource to represent a *sensu stricto* definition of the species. This information can now serve as a basis for further collections targeted at more isolated areas that could reveal the potential origin of the fungus. Other markers, such as microsatellite markers, would also provide further insights into

origins and patterns of spread of this fungus. However, this will require greater numbers of isolates and ideally a more structured sampling regime than was possible for this study [18].

5. Conclusions

The results of this study, together with other recent investigations on diversity amongst global populations of Botryosphaeriaceae, have highlighted the fact that human-mediated movement of plant material infected by these fungi can facilitate their movement globally. The extent of movement of this serious pathogen around the world suggests a major shortcoming in the ability of quarantine systems to inhibit or stop its movement. These fungi, and their hosts, are also likely to increasingly be influenced by global climate change. Because the earth is subjected to more extreme weather events, plants are likely to become increasingly stressed and more susceptible to disease by pathogens [70], including opportunistic and generalist pathogens such as the Botryosphaeriaceae. Consequently, the Botryosphaeriaceae, including *L. theobromae*, will become increasingly prominent and important for the management of health in both native and commercially cultivated woody plants. Serious attention should be given to strategies that could reduce the extent of such movement. Such management strategies are likely to also be relevant to the numerous other endophytes and potential latent pathogens that inhabit plants and plant material traded around the world.

Supplementary Materials: The following are available online at www.mdpi.com/1999-4907/8/5/145/s1, Figure S1: Maximum likelihood tree of the *tef1* α sequence dataset for the initial identification of isolates for inclusion in this study. Included were type and paratype strains of other *Lasiodiplodia* species, Figure S2: STRUCTURE output from pairwise comparisons of populations. Each plot includes the DeltaK analysis from STRUCTURE HARVESTER (top) and the corresponding barplot for the highest value of K. Pairwise comparisons as follows: (a) north America and south America, (b) north America and Africa, (c) north America and Eurasia, (d) north America and Australasia, (e) south America and Africa, (f) south America and Eurasia, (g) south America and Australasia, (h) Africa and Eurasia, (i) Africa and Australasia and (j) Eurasia and Australasia, Table S1: Polymorphic sites for the respective haplotypes for the ITS, *tef1* α and *tub2* datasets, Table S2: Haplotype assignments for every isolate used in this study, based on the sequence datasets, Table S3: Summary of haplotypes obtained and unique haplotypes (listed in brackets) found for each locus, Table S4: Posterior probabilities (with 95% confidence intervals in parentheses) of pairwise comparisons for three scenarios to test for possible ancestry between populations done in DIYABC. In scenario 1, population 1 is ancestral to both. In scenario 2, population 2 is ancestral to both. In scenario 3, both populations diverged from an unknown source population.

Acknowledgments: We thank the Department of Science and Technology (DST)-National Research Foundation (NRF) Centre of Excellence in Tree Health Biotechnology (CTHB) and members of the Tree Protection Co-operative Programme (TPCP), South Africa, for financial support. Mr. Victor Kalbskopf and Ms. Elmien Slabbert assisted the lead author with some of the laboratory work required for this study and their assistance is gratefully acknowledged.

Author Contributions: James Mehl conducted the laboratory work, analyzed the data, and drafted the manuscript. Bernard Slippers, Jolanda Roux, and Michael J. Wingfield conceived the study, assembled collections of isolates, assisted with the analyses, contributed to and assisted in writing the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Wingfield, M.J.; Brockerhoff, E.G.; Wingfield, B.D.; Slippers, B. Planted forest health: The need for a global strategy. *Science* **2015**, *349*, 832–836. [CrossRef] [PubMed]
- 2. Ghelardini, L.; Pepori, A.L.; Luchi, N.; Capretti, P.; Santini, A. Drivers of emerging fungal diseases of forest trees. *For. Ecol. Manag.* **2016**, *381*, 235–246. [CrossRef]
- 3. Burgess, T.I.; Crous, C.J.; Slippers, B.; Hantula, J.; Wingfield, M.J. Tree invasions and biosecurity: Eco-evolutionary dynamics of hitchhiking fungi. *AoB Plants* **2016**, *8*, plw076. [CrossRef] [PubMed]
- 4. Slippers, B.; Wingfield, M.J. Botryosphaeriaceae as endophytes and latent pathogens of woody plants: Diversity, ecology and impact. *Fungal Biol. Rev.* **2007**, *21*, 90–106. [CrossRef]
- 5. Slippers, B.; Crous, P.W.; Jami, F.; Groenewald, J.Z.; Wingfield, M.J. Diversity in the Botryosphaeriales: Looking back, looking forward. *Fungal Biol.* **2017**, *121*, 307–321. [CrossRef] [PubMed]

- Mehl, J.W.M.; Slippers, B.; Roux, J.; Wingfield, M.J. Cankers and other diseases caused by the Botryosphaeriaceae. In *Infectious Forest Diseases*; Gonthier, P., Nicolotti, G., Eds.; CAB International: Boston, MN, USA, 2013; pp. 298–317.
- Taylor, K.; Barber, P.A.; Hardy, G.E.S.J.; Burgess, T.I. Botryosphaeriaceae from tuart (*Eucalyptus gomphocephala*) woodland, including descriptions of four new species. *Mycol. Res.* 2009, *113*, 337–353. [CrossRef] [PubMed]
- 8. Perez, C.A.; Wingfield, M.J.; Slippers, B.; Altier, N.A.; Blanchette, R.A. Endophytic and canker-associated Botryosphaeriaceae occurring on non-native *Eucalyptus* and native Myrtaceae trees in Uruguay. *Fungal Divers.* **2010**, *41*, 53–69. [CrossRef]
- Bihon, W.; Burgess, T.I.; Slippers, B.; Wingfield, M.J.; Wingfield, B.D. Distribution of *Diplodia pinea* and its genotypic diversity within asymptomatic *Pinus patula* trees. *Australas. Plant Pathol.* 2011, 40, 540–548. [CrossRef]
- Sakalidis, M.L.; Hardy, G.E.S.J.; Burgess, T.I. Class III endophytes, clandestine movement amongst hosts and habitats and their potential for disease; a focus on *Neofusicoccum australe*. *Australas*. *Plant Pathol*. 2011, 40, 510–521. [CrossRef]
- 11. Jami, F.; Slippers, B.; Wingfield, M.J.; Gryzenhout, M. Botryosphaeriaceae species overlap on four unrelated, native South African hosts. *Fungal Biol.* **2014**, *118*, 168–179. [CrossRef] [PubMed]
- Phillips, A.J.L.; Alves, A.; Abdollahzadeh, J.; Slippers, B.; Wingfield, M.J.; Groenewald, J.Z.; Crous, P.W. The Botryosphaeriaceae: Genera and species known from culture. *Stud. Mycol.* 2013, *76*, 51–167. [CrossRef] [PubMed]
- Slippers, B.; Roux, J.; Wingfield, M.J.; Van der Walt, F.J.J.; Jami, F.; Mehl, J.W.M.; Marais, G.J. Confronting the constraints of morphological taxonomy in the Botryosphaeriales. *Persoonia* 2014, 33, 155–168. [CrossRef] [PubMed]
- 14. Jami, F.; Slippers, B.; Wingfield, M.J.; Loots, M.T.; Gryzenhout, M. Temporal and spatial variation of Botryosphaeriaceae associated with *Acacia karroo* in South Africa. *Fungal Ecol.* **2015**, *15*, 51–62. [CrossRef]
- Pavlic-Zupanc, D.; Wingfield, M.J.; Boissin, E.; Slippers, B. The distribution of genetic diversity in the *Neofusicoccum paroum/N. ribis* complex suggests structure correlated with level of disturbance. *Fungal Ecol.* 2015, 13, 93–102. [CrossRef]
- Úrbez-Torres, J.R.; Battany, M.; Bettiga, L.J.; Gispert, C.; McGourty, G.; Roncoroni, J.; Smith, R.J.; Verdegaal, P.; Gubler, W.D. Botryosphaeriaceae species spore-trapping studies in California vineyards. *Plant Dis.* 2010, 94, 717–724. [CrossRef]
- 17. Punithalingam, E. Botryodiplodia theobromae. C.M.I. Descript. Fungi Bact. 1976, 519, 1–2.
- Sakalidis, M.L.; Slippers, B.; Wingfield, B.D.; Hardy, G.E.S.J.; Burgess, T.I. The challenge of understanding the origin, pathways and extent of fungal invasions: Global populations of the *Neofusicoccum parvum-N. ribis* species complex. *Divers. Distrib.* 2013, *19*, 873–883. [CrossRef]
- 19. Marsberg, A.; Kemler, M.; Jami, F.; Nagel, J.H.; Postma-Smidt, A.; Naidoo, S.; Wingfield, M.J.; Crous, P.W.; Spatafora, J.W.; Hesse, C.N.; et al. *Botryosphaeria dothidea*: A latent pathogen of global importance to woody plant health. *Mol. Plant Pathol.* **2017**, in press.
- 20. Dissanayake, A.J.; Phillips, A.J.L.; Li, X.H.; Hyde, K.D. Botryosphaeriaceae: Current status of genera and species. *Mycosphere* **2016**, *7*, 1001–1073.
- 21. Burgess, T.; Wingfield, M.J. Quarantine is important in restricting the spread of exotic seed-borne tree pathogens in the southern hemisphere. *Int. For. Rev.* **2002**, *4*, 56–65.
- 22. Burgess, T.I.; Wingfield, M.J.; Wingfield, B.D. Global distribution of *Diplodia pinea* genotypes revealed using simple sequence repeat (SSR) markers. *Australas. Plant Pathol.* **2004**, *33*, 513–519. [CrossRef]
- 23. Bihon, W.; Burgess, T.; Slippers, B.; Wingfield, M.J.; Wingfield, B.D. High levels of genetic diversity and cryptic recombination is widespread in introduced *Diplodia pinea* populations. *Australas. Plant Pathol.* **2012**, *41*, 41–46. [CrossRef]
- 24. Sarr, M.P.; Ndiaye, M.; Groenewald, J.Z.; Crous, P.W. Genetic diversity in *Macrophomina phaseolina*, the causal agent of charcoal rot. *Phytopathol. Mediterr.* **2014**, *53*, 250–268.
- 25. Farr, D.F.; Rossman, A.Y. Fungal Databases. Systematic Mycology and Microbiology Laboratory, ARS, USDA. Available online: http://nt.ars-grin.gov/fungaldatabases/ (accessed on 28 February 2017).
- Coutinho, I.B.L.; Freire, F.C.O.; Lima, C.S.; Lima, J.S.; Gonçalves, F.J.T.; Machado, A.R.; Silva, A.M.S.; Cardoso, J.E. Diversity of genus *Lasiodiplodia* associated with perennial tropical fruit plants in northeastern Brazil. *Plant Pathol.* 2017, in press. [CrossRef]

- 27. Cruywagen, E.M.; Slippers, B.; Roux, J.; Wingfield, M.J. Phylogenetic Species Recognition and hybridisation in *Lasiodiplodia*: A case study on species from baobabs. *Fungal Biol.* **2017**, *121*, 420–436. [CrossRef] [PubMed]
- Netto, M.S.B.; Lima, W.G.; Correia, K.C.; da Silva, C.F.B.; Thon, M.; Martins, R.B.; Miller, R.N.G.; Michereff, S.J.; Câmara, M.P.S. Analysis of phylogeny, distribution and pathogenicity of Botryosphaeriaceae species associated with gummosis of *Anacardium* in Brazil, with a new species of *Lasiodiplodia*. *Fungal Biol.* 2017, 121, 437–451. [CrossRef] [PubMed]
- 29. World Europe and Africa Centered. Available online: http://www.d-maps.com/carte.php?num_car= 126805&lang=en (accessed on 28 February 2017).
- 30. Mehl, J.W.M.; Slippers, B.; Roux, J.; Wingfield, M.J. Botryosphaeriaceae associated with *Pterocarpus angolensis* (kiaat) in South Africa. *Mycologia* **2011**, *103*, 534–553. [CrossRef] [PubMed]
- Wright, L.P.; Davis, A.J.; Wingfield, B.D.; Crous, P.W.; Brenneman, T.; Wingfield, M.J. Population structure of *Cylindrocladium parasiticum* infecting peanuts (*Arachis hypogaea*) in Georgia, USA. *Eur. J. Plant Pathol.* 2010, 127, 199–206. [CrossRef]
- 32. White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In *PCR Protocols: A Guide to Methods and Applications*; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: San Diego, CA, USA, 1990; pp. 315–322.
- Jacobs, K.; Bergdahl, D.R.; Wingfield, M.J.; Halik, S.; Seifert, K.A.; Bright, D.E.; Wingfield, B.D. Leptographium wingfieldii introduced into North America and found associated with exotic *Tomicus piniperda* and native bark beetles. *Mycol. Res.* 2004, 108, 411–418. [CrossRef] [PubMed]
- 34. Alves, A.; Crous, P.W.; Correia, A.; Phillips, A.J.L. Morphological and molecular data reveal cryptic speciation in *Lasiodiplodia theobromae*. *Fungal Divers.* **2008**, *28*, 1–13.
- 35. Glass, N.L.; Donaldson, G.C. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. *Appl. Environ. Microb.* **1995**, *61*, 1323–1330.
- 36. Mehl, J.W.M.; Slippers, B.; Roux, J.; Wingfield, M.J. Overlap of latent pathogens in the Botryosphaeriaceae on a native and agricultural host. *Fungal Biol.* **2017**, *121*, 405–419. [CrossRef] [PubMed]
- 37. Mehl, J.W.M.; Slippers, B.; Roux, J.; Wingfield, M.J. Botryosphaeriaceae associated with die-back of *Schizolobium parahyba* trees in South Africa and Ecuador. *For. Pathol.* **2014**, *44*, 396–408.
- 38. Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. *Mol. Biol. Evol.* **2013**, *30*, 2725–2729. [CrossRef] [PubMed]
- Katoh, K.; Toh, H. Recent developments in the MAFFT multiple sequence alignment program. *Brief. Bioinform.* 2008, 9, 286–298. [CrossRef] [PubMed]
- 40. Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. JMODELTEST 2: More models, new heuristics and parallel computing. *Nat. Methods* **2012**, *9*, 772. [CrossRef] [PubMed]
- Guindon, S.; Dufayard, J.-F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PHYML 3.0. *Syst. Biol.* 2010, *59*, 307–321. [CrossRef] [PubMed]
- 42. Monacell, J.T.; Carbone, I. Mobyle SNAP Workbench: A web-based analysis portal for population genetics and evolutionary genomics. *Bioinformatics* **2014**, *30*, 1488–1490. [CrossRef] [PubMed]
- 43. Bandelt, H.-J.; Forster, P.; Röhl, A. Median-joining networks for inferring intraspecific phylogenies. *Mol. Biol. Evol.* **1999**, *16*, 37–48. [CrossRef] [PubMed]
- 44. Fluxus Technology Ltd. NETWORK Version 4.6.1.3. Available online: http://www.fluxus-engineering.com/ sharenet.htm (accessed on 28 February 2017).
- 45. Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. *Genetics* **2000**, *155*, 945–959. [PubMed]
- 46. Hubisz, M.J.; Falush, D.; Stephens, M.; Pritchard, J.K. Inferring weak population structure with the assistance of sample group information. *Mol. Ecol. Resour.* **2009**, *9*, 1322–1332. [CrossRef] [PubMed]
- 47. Earl, D.A.; von Holdt, B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. *Conserv. Genet. Resour.* **2012**, *4*, 359–361. [CrossRef]
- 48. Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. *Mol. Ecol.* **2005**, *14*, 2611–2620. [CrossRef] [PubMed]
- 49. Excoffier, L.; Lischer, H.E. ARLEQUIN suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. *Mol. Ecol. Resour.* **2010**, *10*, 564–567. [CrossRef] [PubMed]

- 50. Cornuet, J.M.; Pudlo, P.; Veyssier, J.; Dehne-Garcia, A.; Gautier, M.; Leblois, R.; Marin, J.M.; Estoup, A. DIYABC v2.0: A software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. *Bioinformatics* 2014, 30, 1187–1189. [CrossRef] [PubMed]
- 51. Wright, S. Evolution and the Genetics of Populations: A Treatise in Four Volumes: Vol. 4: Variability within and among Natural Populations; University of Chicago Press: Chicago, IL, USA, 1978.
- 52. O'Donnell, K.; Kistler, H.; Tacke, B.; Casper, H. Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of *Fusarium graminearum*, the fungus causing wheat scab. *Proc. Natl. Acad. Sci. USA* **2000**, *97*, 7905–7910. [CrossRef] [PubMed]
- 53. Kasuga, T.; White, T.J.; Koenig, G.; Mcewen, J.; Restrepo, A.; Castaneda, E.; Da Silva Lacaz, C.; Heins-Vaccari, E.M.; De Freitas, R.S.; Zancopé-Oliveira, R.M.; et al. Phylogeography of the fungal pathogen *Histoplasma capsulatum. Mol. Ecol.* **2003**, *12*, 3383–3401. [CrossRef] [PubMed]
- 54. Taylor, J.W.; Turner, E.; Townsend, J.P.; Dettman, J.R.; Jacobson, D. Eukaryotic microbes, species recognition and the geographic limits of species: Examples from the kingdom Fungi. *Philos. Trans. R. Soc. B* **2006**, *361*, 1947–1963. [CrossRef] [PubMed]
- 55. Gladieux, P.; Feurtey, A.; Hood, M.E.; Snirc, A.; Clavel, T.J.; Dutech, C.; Roy, M.; Giraud, T. The population biology of fungal invasions. *Mol. Ecol.* **2015**, *24*, 1969–1986. [CrossRef] [PubMed]
- 56. O'Donnell, K.; Ward, T.J.; Geiser, D.M.; Kistler, H.C.; Aoki, T. Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the *Fusarium graminearum* clade. *Fungal Genet. Biol.* 2004, *41*, 600–623. [CrossRef] [PubMed]
- 57. Teixeira, M.D.M.; Patané, J.S.; Taylor, M.L.; Gómez, B.L.; Theodoro, R.C.; de Hoog, S.; Engelthaler, D.M.; Zancopé-Oliveira, R.M.; Felipe, M.S.; Barker, B.M. Worldwide phylogenetic distributions and population dynamics of the genus *Histoplasma*. *PLoS Negl. Trop. Dis.* **2016**, *10*, e0004732. [CrossRef] [PubMed]
- Pringle, A.; Baker, D.M.; Platt, J.L.; Wares, J.P.; Latge, J.P.; Taylor, J.W. Cryptic speciation in the cosmopolitan and clonal human pathogenic fungus *Aspergillus fumigatus*. *Evolution* 2005, *59*, 1886–1899. [CrossRef] [PubMed]
- Ramírez-Camejo, L.A.; Zuluaga-Montero, A.; Lázaro-Escudero, M.; Hernández-Kendall, V.; Bayman, P. Phylogeography of the cosmopolitan fungus *Aspergillus flavus*: Is everything everywhere? *Fungal Biol.* 2012, 116, 452–463. [CrossRef] [PubMed]
- 60. Swart, W.J.; Wingfield, M.J.; Knox-Davies, P.S. Conidial dispersal of *Sphaeropsis sapinea* in three climatic regions of South Africa. *Plant Dis.* **1987**, *71*, 1038–1040. [CrossRef]
- 61. Pusey, P.L. Availability and dispersal of ascospores and conidia of *Botryosphaeria* in peach orchards. *Phytopathology* **1989**, *79*, 635–639. [CrossRef]
- 62. Amponsah, N.T.; Jones, E.E.; Ridgway, H.J.; Jaspers, M.V. Rainwater dispersal of *Botryosphaeria* conidia from infected grapevines. *N. Z. Plant Prot.* **2009**, *62*, 228–233.
- 63. Santini, A.; Ghelardini, L.; Pace, C.D.; Desprez-Loustau, M.L.; Capretti, P.; Chandelier, A.; Cech, T.; Chira, D.; Diamandis, S.; Gaitniekis, T.; et al. Biogeographical patterns and determinants of invasion by forest pathogens in Europe. *New Phytol.* **2013**, *197*, 238–250. [CrossRef] [PubMed]
- 64. Slippers, B.; Smit, W.A.; Crous, P.W.; Coutinho, T.A.; Wingfield, B.D.; Wingfield, M.J. Taxonomy, phylogeny and identification of Botryosphaeriaceae associated with pome and stone fruit trees in South Africa and other regions of the world. *Plant Pathol.* **2007**, *56*, 128–139. [CrossRef]
- 65. Crous, P.W.; Groenewald, J.Z.; Slippers, B.; Wingfield, M.J. Global food and fibre security threatened by current inefficiencies in fungal identification. *Philos. Trans. R. Soc. B* **2016**, *371*. [CrossRef] [PubMed]
- 66. Mohali, S.; Burgess, T.I.; Wingfield, M.J. Diversity and host association of the tropical tree endophyte *Lasiodiplodia theobromae* revealed using simple sequence repeat markers. *For. Pathol.* **2005**, *35*, 385–396. [CrossRef]
- 67. Shah, M.D.; Verma, K.S.; Singh, K.; Kaur, R. Morphological, pathological and molecular variability in *Botryodiplodia theobromae* (Botryosphaeriaceae) isolates associated with die-back and bark canker of pear trees in Punjab, India. *Genet. Mol. Res.* **2010**, *9*, 1217–1228. [CrossRef] [PubMed]
- 68. Begoude, A.D.B.; Slippers, B.; Perez, G.; Wingfield, M.J.; Roux, J. High gene flow and outcrossing within populations of two cryptic fungal pathogens on a native and non-native host in Cameroon. *Fungal Biol.* **2012**, *116*, 343–353. [CrossRef] [PubMed]

- 69. Kolbe, J.J.; Glor, R.E.; Schettino, L.R.; Lara, A.C.; Larson, A.; Losos, J.B. Genetic variation increases during biological invasion by a Cuban lizard. *Nature* **2004**, *431*, 177–181. [CrossRef] [PubMed]
- 70. Sturrock, R.N.; Frankel, S.J.; Brown, A.V.; Hennon, P.E.; Kliejunas, J.T.; Lewis, K.J.; Worrall, J.J.; Woods, A.J. Climate change and forest diseases. *Plant Pathol.* **2011**, *60*, 133–149. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).