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Abstract Previously, an interspecific cross between

Fusarium circinatum and Fusarium subglutinans was used

to generate a genetic linkage map. A ca. 55 % of genotyped

markers displayed transmission ratio distortion (TRD) that

demonstrated a genome-wide distribution. The working

hypothesis for this study was that TRD would be non-

randomly distributed throughout the genetic linkage map.

This would indicate the presence of distorting loci. Using a

genome-wide threshold of a = 0.01, 79 markers displaying

TRD were distributed on all 12 linkage groups (LGs).

Eleven putative transmission ratio distortion loci (TRDLs),

spanning eight LGs, were identified in regions containing

three or more adjacent markers displaying distortion. No

epistatic interactions were observed between these TRDLs.

Thus, it is uncertain whether the genome-wide TRD was

due to linkage between markers and genomic regions

causing distortion. The parental origins of markers

followed a non-random distribution throughout the linkage

map, with LGs containing stretches of markers originating

from only one parent. Thus, due to the nature of the

interspecific cross, the current hypothesis to explain these

observations is that the observed genome-wide segregation

was caused by the high level of genomic divergence

between the parental isolates. Therefore, homologous

chromosomes do not align properly during meiosis,

resulting in aberrant transmission of markers. This also

explains previous observations of the preferential trans-

mission of F. subglutinans alleles to the F1 progeny.

Keywords Divergence � Fusarium circinatum �
Fusarium subglutinans � Interspecific cross �
Transmission ratio distortion

Introduction

The Gibberella fujikuroi species complex accommodates the

sexual stage of Fusarium spp. collectively treated in the

section Liseola (Leslie and Summerell 2006). This complex

includes some of the most ubiquitous and economically

important fungal pathogens of plants. The biological species

concept had been used to formally classify species in this

complex into ten mating populations or biological species

(Nirenberg and O’Donnell 1998; Samuels et al. 2001; Zeller

et al. 2003; Lepoint et al. 2005). Species delineation, when

applying the biological species concept, implies that indi-

vidual species are reproductively isolated (Mayr 1940;

Dobzhansky 1951). This is somewhat complicated in fungi

where interspecific crosses can occur, such as those found

between some taxa in the G. fujikuroi species complex

(Desjardins et al. 1997, 2000; Leslie et al. 2004b).

Several examples exist for interspecific crosses within

this species complex. Certain isolates of Fusarium fujikuroi

(mating population C) and Fusarium proliferatum (mating

population D) can be interfertile and produce viable

progeny (Desjardins et al. 1997, 2000; Leslie et al. 2004b).

Also, a naturally occurring hybrid has been identified

(Leslie et al. 2004a). The current hypothesis is that genetic

isolation between these two biological species is not
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complete, allowing reproductive barriers to be overcome

(Leslie et al. 2004b). Another example of a laboratory

generated interspecific cross is one between Fusarium

subglutinans and Fusarium circinatum, residing in mating

population E and H, respectively (Desjardins et al. 2000;

De Vos et al. 2007; Friel et al. 2007).

De Vos et al. (2007) constructed a genetic map for the

interspecific cross between F. circinatum and F. subglu-

tinans. These authors found that ca. 55 % of the markers

exhibited significant TRD (transmission ratio distortion)

from the expected ratio of 1:1 of a haploid cross

(P \ 0.05). Ninety-six percent of the TRD markers were

skewed towards the F. subglutinans parent. There was also

preferential transmission of alleles, as well as complete

chromosomes, from the genome of F. subglutinans. The

clear bias towards the transmission of F. subglutinans

alleles led to the conclusion that the F1 progeny that

inherited F. subglutinans alleles exhibited a general fitness

benefit (De Vos et al. 2007).

Mendel’s postulate of segregation dictates that during

the formation of gametes, the paired unit factors segregate

randomly such that each gamete receives one or the other

with equal likelihood (Klug and Cummings 1994). Devia-

tions from the expected Mendelian ratio of segregation

(TRD) do occur, and are more frequently observed in

interspecific crosses (Zamir and Tadmor 1986). It has been

demonstrated that the larger the genetic divergence

between the parental lines, the higher the levels of TRD

(Grandillo and Tanksley 1996; Lee et al. 2009). Interspe-

cific crosses in Fusarium display the same tendency. Thus,

interspecific crosses display higher levels of segregation

(Jurgenson et al. 2002; Leslie et al. 2004b), than intra-

specific crosses (Gale et al. 2005).

TRD has been attributed to linkage between markers and

genetic factor(s) that affect the fitness of gametes leading to

unbalanced transmission of parental alleles to the next

generation (Zamir and Tadmor 1986). This functions dur-

ing the pre- and post-zygotic stages of reproduction and

can also affect the zygotic viability. The presence of non-

random marker loci exhibiting TRD throughout the linkage

groups (LGs), would suggest the presence of a distorting

genetic factor in that region of the genome (TRD loci

[TRDLs]) (Jiang et al. 2000; Myburg et al. 2004). These

loci form barriers that prevent recombination from occur-

ring in these parts of the genome, leading to unbalanced

transmission of parental alleles to the zygotes.

The advent of high-throughput molecular markers such

as AFLPs (Vos et al. 1995) has made it possible to con-

struct genetic linkage maps with high levels of map cov-

erage. This has allowed for detailed examination of the

transmission of these markers to the next generation,

including markers displaying TRD. The working hypoth-

esis for this study was that TRD in an interspecific cross

between F. circinatum and F. subglutinans would be non-

randomly distributed throughout the genetic linkage map.

The aim was, therefore, to determine the positions and

effects of possible TRDLs, using a previously compiled

genetic linkage map derived from an interspecific cross

between F. circinatum and F. subglutinans.

Materials and methods

Identification of TRD and putative TRDL

The direction and percentage of distortion of each marker

from the genetic linkage map (De Vos et al. 2007), was

determined by employing the formula ((allele frequency

- 0.5) 9 100 %) as explained by Myburg et al. (2004).

Markers displaying TRD could have occurred by chance or

by displaying linkage to genetic factor(s) that affect the

fitness of gametes (Zamir and Tadmor 1986). To distin-

guish between a ‘‘chance’’ TRDL or a ‘‘true’’ TRDL, a

genome-wide significance threshold is needed (Myburg

et al. 2004). Using this method together with the results of

De Vos et al. (2007), it was presumed that the 12 LGs

identified correspond to the 12 chromosomes (n = 12 for

F. subglutinans, Xu et al. 1995). If each chromosome

contains at least two independent segregating regions, there

was an expectation of a minimum of 24 independently

segregating regions. To acquire a genome-wide signifi-

cance level of P = 0.05, a significance threshold of 0.05/

24 & 0.002 would be necessary. However, in order to

include weak TRDLs in this study, a significance threshold

of a = 0.01 (v2 = 6.64) was used. All regions that dis-

played three or more distorted markers were noted. The

most skewed marker in this region was considered the most

likely position of the distorting factor (Lu et al. 2002).

Epistatic interactions between the TRDLs

To determine whether epistatic interactions occur between

pairs of TRDLs, the most distorted marker in each TRDL

was used (i.e. the most likely position of the distorting

factor). Marker scores were evaluated for each pair of

markers using Fisher’s exact test in Statistica (v. 10, Stat-

Soft, Inc., 2011, www.statsoft.com).

Results

Identification of TRD and putative TRDL

Of the 252 markers that were placed on the genetic linkage

map, 138 (55 %) showed distortion at the 5 % level of

significance, 79 (31 %) at the 1 % level of significance and
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37 (15 %) at the 0.1 % level of significance. Markers

displaying TRD were distributed throughout the genetic

linkage map; all LGs had markers that deviated from the

expected 1:1 ratio (P \ 0.05, Fig. 2). Sampling error was

excluded as a possible reason for distorted frequencies, as

at a 5 % level of significance, only 29 markers would be

expected to show TRD.

When comparing the transmission of markers on the

linkage map, the distribution of the F. subglutinans genetic

composition amongst the F1 progeny showed a mean of

59.8 % (Fig. 1). This was significantly different

(P = 0.049996) to the predicted value of 50 %. Also, the

distribution of the F. subglutinans genome in the progeny

did not follow a normal distribution as expected (Shapiro–

Wilk W test; SW-W = 0.87, P = 0.00). The distribution

showed two ‘tails’, with the second ‘‘tail’’ at the 90–100 %

genomic constitution of F. subglutinans (Fig. 1). This is an

indication that some (13 of 94) F1 progeny closely

resembled the F. subglutinans parental isolate in their

genetic constitution, compared to F. circinatum (De Vos

et al. 2011). In contrast, only one of the F1 progeny showed

a F. circinatum genomic constitution of [90 %.

In determining the direction and percentage of distortion

of each marker placed on the genetic linkage map, only 12

markers from the total of 252 markers included in the

genetic linkage map (4.76 %) were skewed towards the F.

circinatum parent (Fig. 2). This directional distortion

extended over whole LGs, except in LGs 2, 5, 6, 8, 9 and

11, where isolated markers were skewed towards F. cir-

cinatum. The exception was LG 7, where the first four of

six skewed markers at the beginning of the LG were

skewed towards F. circinatum.

Using the genome-wide significance threshold of

P = 0.01, 79 markers were identified displaying TRD

(Fig. 2). Eleven regions were identified that displayed three

or more distorted markers (P \ 0.01), with the marker

displaying the highest distortion as the most probable area

for the TRDL (Fig. 2, indicated with arrows). TRD regions

that displayed three or more distorted markers were all

unidirectionally distorted towards the F. subglutinans

parent. These were located on LG 1 (markers GA/CC-

353be and GA/AC-523bh), on LG 2 (marker CA/TC-

463fh), LG 4 (markers AA/AC-337bh and CA/TC-263be),

LG 5 (between markers CA/TC-149fh and GA/CC-111be),

LG 6 (markers GA/AC-213bh and AA/AA-142fh), LG 8

(marker AG/AC-315bh), LG 10 (marker CA/TC-189be)

and LG 11 (marker AG/AC-751fh) (Table 1). Thus, the

putative TRDLs were not evenly distributed across the

LGs, with LGs 1, 4 and 6 having two TRDLs, LGs 2, 5, 8,

10 and 11 having one TRDL and LGs 3, 7, 9 and 12 not

containing any. These TRDLs covered a total of 396.5 cM

which accounts for 14.29 % of the observed map length.

A haploid population has allelic frequencies that equal

genotypic frequencies, and it was therefore not possible to

determine whether TRD was caused by gametic or zygotic

selection. However, the TRDL effects can also be expres-

sed as the differential viability, t (0 \ t \ 1), of gametes or

zygotes with alternate genotypes relative to that of normal

gametes or zygotes (Cheng et al. 1998). The relative

viability or fertilization ability of gametes or viability of

zygotes affected by the TRDL ranged from 0.34 to 0.53

(Table 1), indicating the unidirectional skewing towards

the F. subglutinans parent.

Epistatic interactions between the TRDLs

None of the 55 possible marker pairs displayed any epi-

static interaction at the 0.05 level. Thus, there was no

interaction amongst the 11 TRDLs found in this study.

Discussion

In order to construct genetic linkage maps with a high level

of confidence, molecular markers should be free of missing

values, have no genotyping errors and display no segre-

gation distortion (Hackett and Broadfoot 2003). This is

infrequently the situation, and is confounded when exam-

ining interspecific crosses (Grandillo and Tanksley 1996;

Lee et al. 2009). In this study, segregation distortion (or

TRD) was analyzed in the progeny of an interspecific cross

between F. circinatum and F. subglutinans.

Eleven putative TRDLs were identified that spanned

eight LGs. This large number illustrates the genome-wide

TRD observed in this interspecific cross. It is uncertain

whether TRD was due to linkage between AFLP markers

and genomic regions (TRDLs) that ensured the preferential

transmission of F. subglutinans alleles. Rather, other
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Fig. 2 The degree and direction of TRD of the F1 hybrid. The

vertical bars represent the percentage of distortion ([allele frequency

- 0.5] 9 100 %) as well as the direction of distortion. The solid lines
represent the v2 statistic for deviation from the expected 1:1

transmission ratio expected in a haploid F1 cross (P \ 0.05). The

horizontal dotted line represents the v2 statistic at the 0.01 level of

significance. Arrows represent the positions of the estimated TRDLs.

The marker names are indicated on the x axis. Marker names consist

of the MseI selective nucleotides followed by the EcoRI selective

nucleotides and the molecular size (bp), followed by a b (bright) or f

(faint) indicating the quality of the fragment, and an ‘e’ and ‘h’

indicating markers originating from either F. subglutinans or

F. circinatum, respectively. Marker data was recoded so that the

direction of distortion represents that of the paternal parent

(F. subglutinans). Intermaker distances are not shown proportionally
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hypotheses are advanced to explain the widespread TRD

observed in this interspecific cross. The process of prefer-

ential transmission of alleles can be explained by either a

pre- or a post-zygotic bias (Giruad et al. 2008). Such bias

can be explained by three factors: (1) chromosome loss or

other local rearrangements (pre-zygotic; Zolan 1995), (2)

greater genomic divergence between the two parental

species (Zamir and Tadmor 1986), such as that found in

interspecific crosses (pre- and post-zygotic), and (3) link-

age to a lethal gene (post-zygotic, Raju 1994).

Chromosome loss would lead to LGs with extreme TRD

at all loci, with one genotypic class absent in that LG. In

the present study, TRD was observed throughout the

genetic linkage map, with no LG displaying the absence of

a genotypic class. Thus, chromosomal loss would not

account for the TRD observed in this study. In fungi,

chromosome rearrangements in the form of chromosome

length polymorphisms, translocations and gain/loss of non-

essential sequences, are widespread (Zolan 1995). Without

fully assembled genomic sequence data, the presence of

such local chromosomal rearrangements could not be

excluded.

Other chromosomal abnormalities, such as inversions,

would affect only segregation distortion in that part of the

genome, and would not be visible throughout the genome

(Jurgenson et al. 2002; Bowden et al. 2008), unless

inversions between F. circinatum and F. subglutinans were

prevalent throughout the genome. Inversions have been

shown to play a role in speciation in Drosophila, where

species grouped according to the similarity of gene order

(Carson and Kaneshiro 1976). At present, three species

representing the three clades within the G. fujikuroi species

complex have genomic sequence data available (Fusarium

verticillioides, Fusarium Comparative Sequencing Project

2011; F. circinatum, Wingfield et al. 2012; F. fujikuroi,

http://www.fgsc.net/Fusarium/2011FusWkshp_Program.htm)

and it would be interesting to determine the degree of

synteny amongst these genomes.

The degree of TRD is hypothesized to equate to the

level of genomic divergence between taxa (Zamir and

Tadmor 1986; Jenczewski et al. 1997; Whitkus 1998;

Jurgenson et al. 2002; Leslie et al. 2004b). Speciation

could thus account for the TRD observed in this study,

which could be linked to the presence of isolation mech-

anisms between these two species, i.e. barriers to gene flow

(Giruad et al. 2008). These barriers may be genic in nature

(see below), or due to structural differences between

homologous chromosomes of the two species. In the

genetic linkage map investigated in this study, parental

origins of markers were non-random, i.e. LGs contained

stretches of markers originating from only one parent. The

implication is that homologous chromosomes from the

interspecific cross did not align along their entirety during

meiosis, while only small parts of chromosomes were

homologous. Chiasmata (crossovers) could only occur in

these homologous regions. Also, preferential inheritance of

Table 1 Summary of putative TRDLs

TRDL LGs Map position

(cM)a
P valueb Deviation from

expected 1:1c (%)

Percent of F1 individuals

with alleled
Relative

viabilitye

GA/CC-353be 1 62.1 0.002 15.96 65.96 0.52

GA/CC-523bh 1 121.4 2.09 9 10-06 24.47 74.47 0.34

CA/TC-463fh 2 132.5 1.48 9 10-05 22.34 72.34 0.38

AA/AC-337bh 4 71.6 0.00045 18.09 68.09 0.47

CA/TC-263bh 4 167 0.002 15.96 65.96 0.52

CA/TC-149fh and

GA/CC-111be

5 77.8 0.0039 14.89 64.89 0.53

GA/AC-213bh 6 104.4 8.88 9 10-05 20.21 70.21 0.42

AA/AA-142fh 6 139.6 5.67 9 10-06 23.40 73.40 0.36

AG/AC-327be 8 140.4 0.00021 19.15 69.15 0.45

CA/TC-189be 10 140.7 3.70 9 10-05 21.28 71.28 0.40

CA/TC-751fh 11 129 8.88 9 10-05 20.21 70.21 0.42

a Distances in centiMorgan (Kosambi) from the top of the LG
b P values of the v2 test statistic was performed on all markers to test for departure from the expected Mendelian segregation ratio expected for a

haploid cross (1:1)
c Percentage and direction of distortion of each marker was determined by employing the formula (allele frequency - 0.5) 9 100 % (Myburg

et al. 2004). All TRDL were skewed towards the F. subglutinans parent
d Percentage of F1 individuals with the TRDL out of a total of 94 F1 individuals
e The differential viability of gametes or zygotes calculated as the ratio of the frequency of the less frequent TRDL allele to the most frequent

TRDL allele (Cheng et al. 1998)
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complete F. subglutinans chromosomes by the F1 progeny

(De Vos et al. 2007), provides further evidence for non-

homology of chromosomes.

In this study, F1 progeny that inherited F. subglutinans

alleles displayed a fitness benefit, evidenced in the bias

towards the transmission of F. subglutinans alleles.

Fusarium subglutinans alleles could have had fewer neg-

ative interactions with the hybrid genetic background, than

those of F. circinatum (Burke and Arnold 2001; Myburg

et al. 2004). This genic incompatibility is characterized by

the proper functioning of alleles in their separate genetic

backgrounds, but these alleles can become incompatible

when brought together in a hybrid (McDaniel et al. 2007).

The observed bias could also be due to increased viability

of ascospores containing F. subglutinans alleles. Hybrids

can produce abnormal meiotic products, which could lead

to inviability of hybrid progeny (Giraud et al. 2008). There

could also be selection against certain recombinant

gametes, due to co-evolved gene complexes that may be

disrupted during recombination, leading to non-viable

progeny (Burke and Arnold 2001; Jurgenson et al. 2002).

These hypotheses should be tested in future.

Linkage to a lethal gene acts as a meiotic drive element

with only those markers linked to this gene displaying

TRD. One such element found in the G. fujikuroi species

complex, is spore killer, identified in F. verticillioides

(Kathariou and Spieth 1982). Spore killer causes the post-

meiotic abortion of ascospores that did not receive the

killer element and can be observed using light microscopy

(Raju 1994). In the current study, viability of ascospores

was high (90 %, Desjardins et al. 2000). Thus, it is unlikely

that the spore killer element is present in F. circinatum and

F. subglutinans.

In this study, putative TRDL regions were identified that

spanned eight LGs. The presence of these TRDLs are most

likely not the reason for the preferential transmission of

F. subglutinans alleles. Rather, the genomic divergence

between F. subglutinans and F. circinatum was more likely

for the genome-wide segregation of markers observed in

the F1 progeny. These regions that displayed significant

distortion, are most probably indicative of extreme dis-

similarity at the genome sequence level between the two

parental species. Thus, these could potentially harbour the

‘niche-specific’ genes, i.e. genes making a particular spe-

cies pathogenic to a specific plant. Subsequent work should

thus focus on understanding the genetic determinants of

TRDL and its potential link to speciation and overall

genome evolution of F. circinatum and F. subglutinans in

the G. fujikuroi species complex.
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