A new genus of Cryphonectriaceae isolated from Lagerstroemia speciosa in southern China

S. F. Chen ${ }^{\text {ab* }}$, Q. L. Liu ${ }^{\text {a }}$, G. Q. Lia ${ }^{\text {a }}$ M. J. Wingfield ${ }^{\text {b }}$ and J. Roux ${ }^{\text {c }}$
${ }^{\text {a }}$ China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), ZhanJiang 524022, GuangDong Province, China;
${ }^{\text {b }}$ Department of Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028; and ${ }^{\text {c Department of Plant and Soil Sciences, FABI, University of Pretoria, Private Bag X20, Hatfield, Pretoria, O028, South }}$ Africa

Abstract

Numerous species in the Cryphonectriaceae have been recorded on the Myrtales and many of these are economically important pathogens of Eucalyptus. Some species have also recently been shown to be endophytes of native Myrtaceae and to have undergone host jumps to infect Eucalyptus species established as exotics in plantations. Recent surveys in the GuangDong and HaiNan Provinces of South China reveal the presence of a species of Cryphonectriaceae associated with cankers on trees of Lagerstroemia speciosa (Lythraceae, Myrtales). Fungal structures were observed on the surface of dead bark covering cankers and on branch stubs. Multigene phylogenetic analyses were conducted based on DNA sequence comparisons of the partial $L S U$ gene, ITS region of the nuclear ribosomal RNA gene and two regions of the β-tubulin $(B T)$ gene. The results revealed the presence of a previously undescribed genus and species in the Cryphonectriaceae. The fungus is described here as Chrysomorbus lagerstroemiae gen. et sp. nov. Inoculation tests showed that it is an aggressive pathogen on L. speciosa and that it can also infect Eucalyptus.

Keywords: Lythraceae, Myrtaceae, Myrtales, pathogenicity, tree pathogens

Introduction

The Cryphonectriaceae (Diaporthales) was described by Gryzenhout et al. (2006a) and includes numerous important tree pathogens of global significance. The best known of these is Cryphonectria parasitica, the causal agent of the notorious chestnut blight that has devastated Castanea spp. (Fagaceae, Fagales) in Europe and North America (Anagnostakis, 1987). Several species of Chrysoporthe (previously Cryphonectria) are economically important pathogens of Eucalyptus (Myrtaceae, Myrtales) species where these trees are grown as non-natives in plantations in Africa (Wingfield et al., 1989), South America (Hodges et al., 1976) and southeastern Asia (Old et al., 2003).
Host plants of the Cryphonectriaceae include more than 100 tree species in over 14 families (Gryzenhout et al., 2009). In recent years, species infecting Eucalyptus trees and other hosts in the Myrtales have received attention because of the economic importance of these trees globally (Gryzenhout et al., 2009). It has been shown that species of Chrysoporthe have undergone host shifts (Slippers et al., 2005; Wingfield et al., 2015) to infect multiple tree/plant species within the Myrtales (Rodas et al., 2005; Heath et al., 2006; van der Merwe et al., 2013). Chrysoporthe austroafricana has been shown to be a native African fungus (Heath et al., 2006;

[^0]Vermeulen et al., 2013a), occurring in the absence of disease on native African Myrtaceae (Mausse-Sitoe et al., 2016). However, it has expanded its host range to infect non-native Eucalyptus species (Myrtaceae) and Tibouchina species (Melastomataceae) in southern African countries, causing disease and death of these trees (Myburg et al., 2002a; Heath et al., 2006). Chrysoporthe cubensis is native on plants in the Melastomataceae in South American countries but has spread to cause diseases on Eucalyptus trees (Rodas et al., 2005; van der Merwe et al., 2013).
Twenty-two genera have been identified and described in the Cryphonectriaceae (Cheewangkoon et al., 2009; Gryzenhout et al., 2009, 2010; Begoude et al., 2010; Vermeulen et al., 2011, 2013b; Crous et al., 2012a,b, 2015; Chen et al., 2013a,b, 2016; Crane \& Burgess, 2013; Beier et al., 2015). Four of these have been reported from China including Celoporthe, Chrysoporthe, Corticimorbus and Cryphonectria, which occur on cankers of trees such as Castanea mollissima, Quercus sp. (Fagales, Fagaceae), as well as Eucalyptus species, Rhodomyrtus tomentosa and Syzygium cumini (Myrtales, Myrtaceae) in China (Fairchild, 1913; Myburg et al., 2004b; Chen et al., 2010, 2011, 2013a,b, 2016). Inoculation tests have also shown that species isolated from Myrtaceae are pathogenic to Eucalyptus (Chen et al., 2010, 2011, 2016) and they threaten industries based on these trees (Burgess \& Wingfield, 2017).

At least two species in the Cryphonectriaceae have been reported from the Lythraceae (Myrtales). These are
C. cubensis from Lagerstroemia indica in Cuba (Gryzenhout et al., 2006b) and Latruncellus aurorae from Galpinia transvaalica in Swaziland (Vermeulen et al., 2011). Lagerstroemia is a genus of approximately 80 species of deciduous and evergreen trees and shrubs native to the Indian subcontinent, southeastern Asia, northern Australia, and parts of Oceania (Cabrera, 2004). These trees have beautifully coloured flowers and are planted as ornamentals. The two most popular ornamental species are Lagerstroemia speciosa and L. indica, which are grown as non-natives globally (Pounders et al., 2007). In southern China, L. speciosa is commonly grown as an ornamental in parks and gardens, or as a shade tree along the roadsides in FuJian, GuangDong, GuangXi, HaiNan and YunNan Provinces (Zhong et al., 2005).

During the course of tree disease surveys in South China, cankers were observed on the stems of L. speciosa. The aims of this study were to identify the fungus isolated from the cankers and to test its pathogenicity on L. speciosa. Its potential to impact other trees in the Myrtales was investigated by conducting inoculation studies on a commercially planted Eucalyptus clone that forms the backbone of forestry plantations in the region.

Materials and methods

Sample collection and isolations

Lagerstroemia speciosa trees planted as ornamentals in gardens and parks in the GuangDong and HaiNan Provinces of South China were observed with cankers, dead trunks and branches (Fig. 1a,b,d,e). Orange to black fruiting structures characteristic of the Cryphonectriaceae were common on the surface of the dead and dying tissues (Fig. 1c,f). Surveys were conducted in November 2015 and March to April 2016. Dead bark and branch sections were collected in brown paper bags and transported to the laboratory for fungal isolations and further study.

Fruiting structures were cut open horizontally using a sterile scalpel blade under a dissecting microscope and the spore masses were transferred onto 2% malt extract agar (MEA) (20 g malt extract, 20 g agar per litre water) and incubated at $25^{\circ} \mathrm{C}$. Single germ tubes developing from the spores were transferred to 2% MEA to obtain pure cultures. Cultures were deposited in the culture collection of the China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), ZhanJiang, China, and representative cultures are maintained in the Culture Collection (CMW) of the Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, South Africa (Table 1). Isolates linked to type specimens have been deposited in the Centraalbureau voor Schimmelcultures (CBS), Utrecht, Netherlands (Table 1). Original bark and branch specimens bearing fruiting structures connected to representative isolates were deposited in the Collection of Central South Forestry Fungi of China (CSFF), GuangDong Province, China.

DNA extraction, PCR and sequence reactions

Isolates collected from L. speciosa trees were identified based on DNA sequence comparisons (Table 1). Isolates were grown on 2% MEA at $25^{\circ} \mathrm{C}$ for 1 week and actively growing mycelium for each isolate was scraped from the surface of the medium
using sterile scalpel blades and transferred to 1.5 mL Eppendorf tubes for DNA extraction. DNA was extracted using 'method 5' described by van Burik et al. (1988). The concentration of resulting DNA was checked using a NanoDrop 2000 spectrometer (Thermo Fisher Scientific Inc.).

Three gene regions including the conserved nuclear large subunit (LSU) ribosomal RNA gene, the internal transcribed spacer (ITS) regions including the 5.8 S gene of the ribosomal RNA operon, and the β-tubulin gene 1 (BT1) and β-tubulin gene 2 (BT2) were amplified as described by Chen et al. (2011, 2016). Nucleotide sequences were edited using MEGA v. 4 software (Tamura et al., 2007). All sequences obtained in this study were deposited in GenBank (Table 1).

Phylogenetic analysis

To identify the isolates, sequences of the $L S U$ gene as well as a combination of the sequences of 5.8 S rRNA and the exon regions of the BT1 and BT2 genes (including partial exon 4, exon 5, partial exon 6 and partial exon 7) of all the described genera in the Cryphonectriaceae were compared to sequences generated in the current study (Table 1). The datasets of $L S U$, 5.8 S rRNA and exons of $B T 1$ and $B T 2$ gene sequences were not combined for analysis, because sequences of some Cryphonectriaceae isolates were not available for these datasets.

Prior to conducting the phylogenetic analysis for the combined 5.8 S rRNA and the exon regions of the $B T$ gene, a partition homogeneity test was performed in Paup v. 4.0 b 10 (Swofford, 2003) to determine whether conflict existed between the two datasets (Huelsenbeck et al., 1996). For phylogenetic analyses of the LSU sequences, Phaeoacremonium aleophilum, Togninia fraxinopennsylvanica and Togninia minima were used as outgroup taxa. For analyses of the 5.8 S rRNA and the exon regions of the BT gene, Diaporthe ambigua was used as the outgroup taxon. Sequences for the datasets were aligned using the iterative refinement method (FFT-NS-i settings) of the online platform of MafFt v. 5.667 (Katoh et al., 2002). The alignments were further edited manually in MEGA v. 4.

Two different phylogenetic analyses were conducted for each of the $L S U$, the combined 5.8 S rRNA and $B T$ exons datasets. Maximum parsimony (MP) analyses were performed with PaUP v. 4.0 b 10 and maximum likelihood (ML) tests were conducted with PhyML v. 3.0 (Guindon \& Gascuel, 2003). The phylogenetic analyses were conducted as described in Chen et al. (2016). The phylogenetic trees were viewed using MEGA v. 4.

Morphology

Only asexual fruiting structures were observed on the bark of L. speciosa stems and branches. The structures were excised from the bark under a dissecting microscope and heated in water for 2 min to rehydrate the cells. The structures were embedded in tissue freezing medium (Leica Biosystems Nussloch GmbH) and sectioned ($10 \mu \mathrm{~m}$ thick) using a cryostat HM550 microtome (Microm International GmbH) at $-20^{\circ} \mathrm{C}$ to observe stromata and stromatic tissue. Additionally, conidiophores, conidiogenous cells and conidia were measured after crushing fruiting structures on microscope slides in sterile water. Fifty measurements were made for each morphological feature for the holotype specimen, 25 measurements per character were made for the remaining specimens used in the descriptions. The structures were examined and recorded using an Axio Imager A1 microscope and an AxioCam MRc digital camera with AxioVision v. 4.8 software (Carl Zeiss Ltd). Characteristics of

Figure 1 Symptoms of infection by Chrysomorbus lagerstroemiae on Lagerstroemia speciosa trees. (a, b) Dead trunk, (d, e) dead branch; (c, f) orange fruiting structures of C. lagerstroemiae. (a)-(c) from a park in HaiNan Province, and (d)-(f) from a park in GuangDong Province.
specimens were compared with those published for genera and species in the Cryphonectriaceae (Table 1). Results are presented as (minimum-) (mean - standard deviation) - (mean + standard deviation) (-maximum).

To study culture characteristics, four representative isolates (CERC8780/CMW49281, CERC8805/CMW49286, CERC8807/ CMW49287 and CERC8810/CMW49289) from four different L. speciosa trees were used. Growth in culture, at seven different temperatures, was determined as described by Chen et al. (2016). The entire experiment was repeated once. Averages of measurements were calculated for each temperature using excel 2003 (Microsoft). For the descriptions of fruiting bodies and cultures, colour designations were obtained using the colour charts of Rayner (1970).

Pathogenicity tests

Six isolates (CERC8780/CMW49281, CERC8782/CMW49282, CERC8784/CMW49283, CERC8805/CMW49286, CERC8807/ CMW49287 and CERC8810/CMW49289) were selected for
inoculation studies. Inoculations were conducted on L. speciosa trees growing in a park in the ZhanJiang region, GuangDong Province. Isolates were inoculated into the branches (1-2-yearold, approximately 0.8 cm diameter) of healthy L. speciosa trees. The inoculations were conducted using the methods described in Chen et al. (2013a). Fourteen branches on each of five L. speciosa trees (70 branches in total) were selected for inoculations. Two branches on each of five trees were inoculated with each of the six selected isolates or sterile MEA that served as controls. The five inoculated trees were randomly distributed at one site in the park.

To test whether the fungus from L. speciosa is pathogenic to Eucalyptus, the six isolates were inoculated onto the stems of saplings of a Eucalyptus urophylla \times Eucalyptus grandis clone (CEPT-10). Clone CEPT-10 was chosen because it is widely used in commercial plantations in South China. The saplings were approximately 2 m tall and their main stems were approximately 10 mm in diameter. The Eucalyptus saplings were inoculated using the method described in Chen et al. (2010). Ten saplings were inoculated for each of the six isolates, and 10
Table 1 Isolates used for phylogenetic studies and pathogenicity tests in this study

Identity	Isolate no. ${ }^{\text {a }}$	Host	Location	Collector	GenBank accession no. ${ }^{\text {b }}$				Reference
					LSU	ITS	BT1	BT2	
Amphilogia gyrosa	CMW10469	Elaeocarpus dentatus	New Zealand	G. J. Samuels	AY194107	AF452111	AF525707	AF525714	Gryzenhout et al. (2005a, 2006a)
	CMW10470	E. dentatus	New Zealand	G. J. Samuels	AY194108	AF452112	AF525708	AF525715	Gryzenhout et al. (2005a, 2006a)
Aurantioporthe corni	ATCC66834	Cornus alternifolia	USA	$N / A^{\text {c }}$	AF277133	N/A	N/A	N/A	Zhang \& Blackwell (2001)
	CMW10526	C. alternifolia	USA	S. Redlin	AF408343	DQ120762	DQ120769	DQ120770	Gryzenhout et al. (2006a)
	MES1001	N/A	USA	W. Cullina	N/A	KF495039	KF495069	N/A	Beier et al. (2015)
	CTS1001	N/A	USA	K. Kitka	N/A	KF495033	KF495063	N/A	Beier et al. (2015)
Aurantiosacculus acutatus	CBS132181	Eucalyptus viminalis	Australia	B. A. Summerell \& P. Summerell	Q685520	JQ685514	N/A	N/A	Crous et al. (2012a)
Aurantiosacculus eucalyptorum	CBS130826	Eucalyptus globulus	Australia	C. Mohammed \& M. Glen	JQ685521	JQ685515	N/A	N/A	Crous et al. (2012a)
Aurapex penicillata	CMW10030	Miconia theaezans	Colombia	C. A. Rodas	AY194103	AY214311	AY214239	AY214275	Gryzenhout et al. (2006c, 2009)
	CMW11295	M. theaezans	Colombia	C. A. Rodas	AY194089	N/A	N/A	N/A	Gryzenhout et al. (2009)
	CMW10035	M. theaezans	Colombia	C. A. Rodas	N/A	AY214313	AY214241	AY214277	Gryzenhout et al. (2006c, 2009)
Aurifilum marmelostoma	CMW28285	Terminalia mantaly	Cameroon	D. Begoude \& J. Roux	HQ171215	FJ882855	FJ900585	FJ900590	Begoude et al. (2010); Vermeulen et al. (2011)
	CMW28288	Terminalia ivorensis	Cameroon	D. Begoude \& J. Roux	HQ171216	FJ882856	FJ900586	FJ900591	Begoude et al. (2010); Vermeulen et al. (2011)
Celoporthe dispersa	CMW9976	Syzygium cordatum	South Africa	M. Gryzenhout	HQ730853	DQ267130	DQ267136	DQ267142	Nakabonge et al. (2006); Chen et al. (2011)
	CMW9978	S. cordatum	South Africa	M. Gryzenhout	HQ730854	AY214316	DQ267135	DQ267141	Nakabonge et al. (2006); Chen et al. (2011)
Celoporthe eucalypti	CMW26900	Eucalyptus clone EC48	China	X. D. Zhou \& S. F. Chen	HQ730862	HQ730836	HQ730816	HQ730826	Chen et al. (2011)
	CMW26908	Eucalyptus clone EC48	China	X. D. Zhou \& S. F. Chen	HQ730863	HQ730837	HQ730817	HQ730827	Chen et al. (2011)
Celoporthe fontana	CMW29375	Syzygium guineense	Zambia	M. Vermeulen \& J . Roux	N/A	GU726940	GU726952	GU726952	Vermeulen et al. (2013b)
	CMW29376	S. guineense	Zambia	M. Vermeulen \& J Roux	N/A	GU726941	GU726953	GU726953	Vermeulen et al. (2013b)

Table 1 (continued)

Identity	Isolate no. ${ }^{\text {a }}$	Host	Location	Collector	GenBank accession no. ${ }^{\text {b }}$				Reference
					LSU	ITS	BT1	BT2	
Celoporthe guangdongensis	CMW12750	Eucalyptus sp.	China	T. I. Burgess	HQ730856	HQ730830	HQ730810	HQ730820	Chen et al. (2011)
Celoporthe indonesiensis	CMW10781	Syzygium aromaticum	Indonesia	M.. Wingfield	HQ730855	AY084009	AY084033	AY084021	Myburg et al. (2003); Chen et al. (2011)
Celoporthe syzygii	CMW34023	Syzygium cumini	China	S. F. Chen	HQ730857	HQ730831	HQ730811	HQ730821	Chen et al. (2011)
	CMW24912	S. cumini	China	M. J. Wingfield \& X. D. Zhou	HQ730859	HQ730833	HQ730813	HQ730823	Chen et al. (2011)
Celoporthe woodiana	CMW13936	Tibouchina granulosa	South Africa	M. Gryzenhout	N/A	DQ267131	DQ267137	DQ267143	Vermeulen et al. (2013b)
	CMW13937	T. granulosa	South Africa	M. Gryzenhout	N/A	DQ267132	DQ267138	DQ267144	Vermeulen et al. (2013b)
Chrysocrypta corymbiae	CBS132528	Corymbia sp.	Australia	P. W. Crous \& B. A. Summerell	JX069851	JX069867	N/A	N/A	Crous et al. (2012b)
Chrysofolia colombiana	CBS139909	Eucalyptus urophylla \times Eucalyptus grandis	Colombia	M. J. Wingfield	KR476771	KR476738	N/A	N/A	Crous et al. (2015)
Chrysomorbus lagerstroemiae	$\begin{gathered} \text { CERC8780d }= \\ \text { CMW49281 } \end{gathered}$	Lagerstroemia speciosa	China	J. Roux \& S. F. Chen	KY929320	KY929330	KY929350	KY929340	This study
	$\begin{gathered} \text { CERC8782 } \\ \text { CMW49282 }= \end{gathered}$	L. speciosa	China	J. Roux \& S. F. Chen	KY929321	KY929331	KY929351	KY929341	This study
	$\begin{gathered} \text { CERC8784 }= \\ \text { CMW49283 } \end{gathered}$	L. speciosa	China	J. Roux \& S. F. Chen	KY929322	KY929332	KY929352	KY929342	This study
	CERC8786 = CMW49284	L. speciosa	China	J. Roux \& S. F. Chen	KY929323	KY929333	KY929353	KY929343	This study
	CERC8804 = CMW49285	L. speciosa	China	S. F. Chen	KY929324	KY929334	KY929354	KY929344	This study
	$\text { CERC8805 }{ }^{d}=$ CMW49286	L. speciosa	China	S. F. Chen	KY929325	KY929335	KY929355	KY929345	This study
	$\begin{aligned} & \text { CERC8807 } \\ & \text { CMW49287 }= \end{aligned}$	L. speciosa	China	S. F. Chen	KY929326	KY929336	KY929356	KY929346	This study
	CERC8809 = CMW49288	L. speciosa	China	S. F. Chen	KY929327	KY929337	KY929357	KY929347	This study
	$\text { CERC8810 }=$ CMW49289	L. speciosa	China	S. F. Chen	KY929328	KY929338	KY929358	KY929348	This study
	CERC8812 = CMW49290	L. speciosa	China	S. F. Chen	KY929329	KY929339	KY929359	KY929349	This study

Table 1 (continued)

Identity	Isolate no. ${ }^{\text {a }}$	Host	Location	Collector	GenBank accession no. ${ }^{\text {b }}$				Reference
					LSU	ITS	BT1	BT2	
Chrysoporthe austroafricana	CMW62	E. grandis	South Africa	M. J. Wingfield	AY194097	AF292041	AF273063	AF273458	Myburg et al. (2002b); Gryzenhout et al. (2006a)
	CMW9327	T. granulosa	South Africa	J. Roux	N/A	AF273473	AF273060	AF273455	Myburg et al. (2002a)
	CMW2113	E. grandis	South Africa	M. J. Wingfield	N/A	AF046892	AF273067	AF273462	Myburg et al. (1999, 2002b)
Chrysoporthe cubensis	CBS101281	E. urophylla	Cameroon	I. A. S. Gibson	AF408338	N/A	N/A	N/A	Castlebury et al. (2002)
	CMW10453	Eucalyptus saligna	Democratic Republic of the Congo	N/A	AF408339	AY063476	AY063478	AY063480	Castlebury et al. (2002); Gryzenhout et al. (2004)
	CMW10669	Eucalyptus sp.	Republic of the Congo	J. Roux	N/A	AF535122	AF535124	AF535126	Gryzenhout et al. (2004)
	CMW10639	E. grandis	Colombia	C. A. Rodas	N/A	AY263421	AY263419	AY263420	Gryzenhout et al. (2004)
Chrysoporthe deuterocubensis	CMW11290	Eucalyptus sp.	Indonesia	M. J. Wingfield	N/A	AY214304	AY214232	AY214268	Gryzenhout et al. (2004)
	CMW8758	Eucalyptus sp.	Venezuela	M. J. Wingfield	AY194098	AF046898	AF273068	AF273463	Myburg et al. (2002b); Gryzenhout et al. (2006a)
	CMW8651	S. aromaticum	Indonesia	M. J. Wingfield	N/A	AY084002	AY084026	AY084014	Myburg et al. (2003)
Chrysoporthe doradensis	CMW11287	E. grandis	Ecuador	M. J. Wingfield	N/A	AY214289	AY214217	AY214253	Gryzenhout et al. (2005b)
	CMW11286	E. grandis	Ecuador	M. J. Wingfield	N/A	AY214290	AY214218	AY214254	Gryzenhout et al. (2005b)
Chrysoporthe hodgesiana	CMW10625	M. theaezans	Colombia	C. A. Rodas	N/A	AY956970	AY956979	AY956980	Rodas et al. (2005)
Chrysoporthe inopina	CMW12727	Tibouchina lepidota	Colombia	R. Arbelaez	N/A	DQ368777	DQ368806	DQ368807	Gryzenhout et al. (2006b)
	CMW12729	T. lepidota	Colombia	R. Arbelaez	N/A	DQ368778	DQ368808	DQ368809	Gryzenhout et al. (2006b)
Corticimorbus	CERC3629	Rhodomyrtus tomentosa	China	S. F. Chen \& G. Q. Li	KT167179	KT167169	KT167189	KT167189	Chen et al. (2016)
sinomyrti	CERC3631	R. tomentosa	China	S. F. Chen \& G. Q. Li	KT167180	KT167170	KT167190	KT167190	Chen et al. (2016)
Cryphonectria decipiens	CMW10436	Quercus suber	Portugal	B. d'Oliviera	JQ862750	AF452117	AF525703	AF525710	Myburg et al. (2004a); Chen et al. (2013a)
	CMW10484	Castanea sativa	Italy	A. Biraghi	N/A	AF368327	AF368349	AF368349	Venter et al. (2002); Myburg et al. (2004a)

Table 1 (continued)

Identity	Isolate no. ${ }^{\text {a }}$	Host	Location	Collector	GenBank accession no. ${ }^{\text {b }}$				Reference
					LSU	ITS	BT1	BT2	
Cryphonectria japonica	CMW10527	Quercus mongolica	Russia	L. Vasilyeva	AF408341	DQ120761	DQ120767	DQ120768	Castlebury et al. (2002); Gryzenhout et al. (2006a)
	CMW10528	Q. mongolica	Russia	L. Vasilyeva	AF408340	DQ120760	DQ120765	DQ120766	Castlebury et al. (2002); Gryzenhout et al. (2006a)
	CMW13742	Quercus grosseserrata	Japan	T. Kobayashi	N/A	AY697936	AY697961	AY697962	Myburg et al. (2004b)
	CMW13747	Quercus serrata	Japan	T. Kobayashi	N/A	AY697937	AY697963	AY697964	Myburg et al. (2004b)
Cryphonectria macrospora	CMW10463	Castanea cuspidata	Japan	T. Kobayashi	N/A	AF368331	AF368351	AF368350	Gryzenhout et al. (2006a)
	CMW10914	C. cuspidata	Japan	T. Kobayashi	JQ862749	AY697942	AY697973	AY697974	Gryzenhout et al. (2006a); Chen et al. (2013a)
Cryphonectria parasitica	N/A	Castanea sp.	N/A	N/A	AF277132	N/A	N/A	N/A	Zhang \& Blackwell (2001)
	CMW7048	Quercus virginiana	USA	R. Stipes	AY194100	AF368330	AF273076	AF273470	Venter et al. (2002); Gryzenhout et al. (2006a)
	CMW13749	Castanea mollisima	Japan	N/A	N/A	AY697927	AY697943	AY697944	Myburg et al. (2004b)
Cryphonectria radicalis	CMW10455	Q. suber	Italy	A. Biraghi	AY194101	AF452113	AF525705	AF525712	Gryzenhout et al. (2006a)
	CMW10477	Q. suber	Italy	A. Biraghi	AY194102	AF368328	AF368347	AF368347	Venter et al. (2002); Gryzenhout et al. (2006a)
	CMW13754	Fagus japonica	Japan	T. Kobayashi	N/A	AY697932	AY697953	AY697954	Myburg et al. (2004b)
Cryptometrion aestuescens	CMW18790	E. grandis	Indonesia	M. J. Wingfield	HQ171211	GQ369458	GQ369455	GQ369455	Gryzenhout et al. (2010); Vermeulen et al. (2011)
	CMW18793	E. grandis	Indonesia	M. J. Wingfield	HQ171212	GQ369459	GQ369456	GQ369456	Gryzenhout et al. (2010); Vermeulen et al. (2011)
Diversimorbus metrosiderotis Endothia gyrosa	CMW37321	Metrosideros angustifolia	South Africa	J. Roux	JQ862827	JQ862870	JQ862911	JQ862952	Chen et al. (2013b)
	CMW37322	M. angustifolia	South Africa	J. Roux	JQ862828	JQ862871	JQ862912	JQ862953	Chen et al. (2013b)
	N/A	Quercus sp.	USA	N/A	AF362555	N/A	N/A	N/A	Gryzenhout et al. (2009)
	CMW2091	Quercus palustris	USA	R. J. Stipes	AY194114	AF368325	AF368337	AF368336	Venter et al. (2002); Gryzenhout et al. (2006a)
	CMW10442	Q. palustris	USA	R. J. Stipes	AY194115	AF368326	AF368339	AF368338	Venter et al. (2002); Gryzenhout et al. (2006a)

Table 1 (continued)

Identity	Isolate no. ${ }^{\text {a }}$	Host	Location	Collector	GenBank accession no. ${ }^{\text {b }}$				Reference
					LSU	ITS	BT1	BT2	
Foliocryphia eucalypti	CBS124779	Eucalyptus coccifera	Australia	C. Mohammed	GQ303307	GQ303276	N/A	N/A	Cheewangkoon et al. (2009)
Holocryphia capensis	CMW37887	M. angustifolia	South Africa	J. Roux, S. F. Chen \& F. Roets	JQ862811	JQ862854	JQ862895	JQ862936	Chen et al. (2013b)
	CMW37329	M. angustifolia	South Africa	J. Roux \& S. F. Chen	JQ862816	JQ862859	JQ862900	JQ862941	Chen et al. (2013b)
Holocryphia eucalypti	CMW7033	E. grandis	South Africa	M. Venter	JQ862794	JQ862837	JQ862878	JQ862919	Chen et al. (2013b)
	CMW7035	E. saligna	South Africa	M. Venter	JQ862795	JQ862838	JQ862879	JQ862920	Chen et al. (2013b)
Holocryphia gleniana	CMW37334	M. angustifolia	South Africa	J. Roux \& S. F. Chen	JQ862791	JQ862834	JQ862875	JQ862916	Chen et al. (2013b)
	CMW37335	M. angustifolia	South Africa	J. Roux \& S. F. Chen	JQ862792	JQ862835	JQ862876	JQ862917	Chen et al. (2013b)
Holocryphia mzansi	CMW37337	M. angustifolia	South Africa	J. Roux \& S. F. Chen	JQ862798	JQ862841	JQ862882	JQ862923	Chen et al. (2013b)
	CMW37338	M. angustifolia	South Africa	J. Roux \& S. F. Chen	JQ862799	JQ862842	JQ862883	JQ862924	Chen et al. (2013b)
Holocryphia sp.	CMW6246	T. granulosa	Australia	M. J. Wingfield	JQ862802	JQ862845	JQ862886	JQ862927	Chen et al. (2013b)
Holocryphia sp. Immersiporthe knoxdaviesiana	CMW10015	Eucalyptus fastigata	New Zealand	R. J. van Boven	JQ862806	JQ862849	JQ862890	JQ862931	Chen et al. (2013b)
	CMW37314	Rapanea melanophloeos	South Africa	M. J. Wingfield \& J. Roux	JQ862755	JQ862765	JQ862785	JQ862775	Chen et al. (2013a)
	CMW37315	R. melanophloeos	South Africa	M. J. Wingfield \& J. Roux	JQ862756	JQ862766	JQ862786	JQ862776	Chen et al. (2013a)
Latruncellus aurorae	CMW28274	Galpinia transvaalica	Swaziland	J. Roux	HQ171213	GU726946	GU726958	GU726958	Vermeulen et al. (2011)
	CMW28276	G. transvaalica	Swaziland	J. Roux	HQ730872	GU726947	GU726959	GU726959	Chen et al. (2011); Vermeulen et al. (2011)
	CMW28275	G. transvaalica	Swaziland	J. Roux	HQ171214	HQ171209	HQ171207	HQ171207	Vermeulen et al. (2011)
Luteocirrhus shearii	CBS130775	Banksia baxteri	Australia	C. Crane	KC197018	KC197024	KC197015	KC197009	Crane \& Burgess (2013)
	CBS130776	B. baxteri	Australia	C. Crane	KC197019	KC197021	KC197012	KC197006	Crane \& Burgess (2013)
Micrithia havanensis	CMW11299	Myrica faya	Madeira	N/A	AY194087	N/A	N/A	N/A	Gryzenhout et al. (2009)
	CMW11300	M. faya	Madeira	N/A	AY194088	N/A	N/A	N/A	Gryzenhout et al. (2009)
	CMW11301	M. faya	Azores	C. S. Hodges \& D. E. Gardner	N/A	AY214323	AY214251	AY214287	Gryzenhout et al. (2006d)
	CMW14550	E. saligna	Mexico	C. S. Hodges	N/A	DQ368735	DQ368741	DQ368742	Gryzenhout et al. (2006d)

Table 1 (continued)

Identity	Isolate no. ${ }^{\text {a }}$	Host	Location	Collector	GenBank accession no. ${ }^{\text {b }}$				Reference
					LSU	ITS	BT1	BT2	
Rostraureum tropicale	CMW9972	T. ivorensis	Ecuador	M. J. Wingfield	AY194092	AY167436	AY167426	AY167431	Gryzenhout et al. (2005c, 2006a)
	CMW10796	T. ivorensis	Ecuador	M. J. Wingfield	N/A	AY167438	AY167428	AY167433	Gryzenhout et al. (2005c)
	CMW9971	T. ivorensis	Ecuador	M. J. Wingfield	N/A	AY167435	AY167425	AY167430	Gryzenhout et al. (2005c)
Ursicollum fallax	CMW18119	Coccoloba uvifera	USA	C. S. Hodges	EF392860	DQ368755	DQ368758	DQ368759	Gryzenhout et al. (2006d, 2009)
	CMW18115	C. uvifera	USA	C. S. Hodges	N/A	DQ368756	DQ368760	DQ368761	Gryzenhout et al. (2006d)

 Chinese Academy of Forestry (CAF), ZhanJiang, GuangDong, China. ${ }^{\mathrm{b}}$ GenBank numbers in boldface were sequenced in this study.
${ }^{\text {c }} \mathrm{N} / \mathrm{A}$, not available.
${ }^{d}$ Isolates used in pathogenicity tests.
saplings were inoculated with sterile MEA plugs to serve as negative controls. The inoculated plants were arranged in a randomized design in the same shade house.

After 4 weeks, the inoculated plants were evaluated by measuring the lengths of the lesions in the cambium. Reisolations were made from the inoculated branches/saplings by cutting small pieces of discoloured tissue from the lesion edges and transferring them onto 2% MEA at $25^{\circ} \mathrm{C}$. Reisolations were made from four randomly selected branches/saplings per isolate and all branches/saplings that served as negative controls.

Lesion length results were analysed in excel. Single-factor analysis of variance (aNOVA) was used to define the effects of isolates/negative control on lesion length, and to test the significance among means of lesion lengths. F-values with $P<0.05$ were considered significantly different. The standard errors of means of lesion lengths for each isolate and control were calculated.

Results

Sample collection and isolations

Seven L. speciosa trees with fruiting bodies typical of fungi in the Cryphonectriaceae (Fig. 1) were identified. These included a single tree in a park in the HaiNan Province and six trees in a park in the Zhanjiang region of GuangDong Province. Seventeen isolates were obtained from these trees: four from the tree in HaiNan and the remainder from the trees in GuangDong. Only asexual fruiting structures (conidiomata) with orange stromatic tissue were observed on the surfaces of L. speciosa stems and branches (Fig. 1b,c,e,f). The isolates on MEA were white in colour when young and became yellow to orange with age (Fig. 2g-i), with the typical morphological characteristics of fungi in the Cryphonectriaceae. All cultures displayed the same morphology.

Phylogenetic analysis

Ten representative isolates, four from the tree in HaiNan Province and six from the six trees in GuangDong Province, were selected for DNA sequencing and phylogenetic analysis (Table 1). The aligned $L S U$ sequence dataset consisted of 83 taxa and 626 characters (TreeBASE no. 20882; http://www.treebase.org). Statistical values of both ML and MP analyses are provided in Table 2. Other than Cryphonectria, each genus in the Cryphonectriaceae formed a unique phylogenetic clade in both the MP and ML analyses (Fig. 3), although the inferred phylogenetic relationships among genera differed between ML and MP analyses. Isolates collected from L. speciosa grouped together in a distinct clade in the Cryphonectriaceae, separate from all other genera and supported by high bootstrap values ($\mathrm{ML}=98 \%, \mathrm{MP}=100 \%$). This supported the view that they represent a novel genus in the family (Fig. 3).
The partition homogeneity test for the 5.8 S rRNA gene and exons of the BT1 and BT2 gene region datasets indicated that the two datasets were congruent

Figure 2 Asexual fruiting structures of Chrysomorbus lagerstroemiae. (a) Conidiomata on the bark, orange and globose; (b) orange and convex conidiomata; (c) longitudinal section through conidioma showing orange and unilocular stroma; (d) textura globulosa stromatic tissue of the conidioma; (e) non-septate, cylindrical conidiophores and cylindrical conidigenous cells; (f) fusoid to oval, aseptate conidia; cultures grown on malt extract agar at $25^{\circ} \mathrm{C}$ after 7 days (g, h) and 90 days (i), showing the culture colour and development of conidiomata. Scale bars: $\mathrm{a}, \mathrm{b}=100 \mu \mathrm{~m}$; $c, d=50 \mu \mathrm{~m} ; \mathrm{e}, \mathrm{f}=10 \mu \mathrm{~m} ; \mathrm{g}-\mathrm{i}=10 \mathrm{~mm}$.
($P=0.906$) and they were consequently combined for further analyses. The alignment of the combined dataset consisted of 85 taxa and 760 characters (TreeBASE no. 20882; Table 2). With the exception of Cryphonectria, all the genera in the Cryphonectriaceae formed independent phylogenetic clades with high bootstrap values ($>80 \%$) in both MP and ML analyses (Fig. 4). The topology of the MP and ML analyses was similar, although the position of genera relative to each other
were slightly different in the two analyses. Based on the phylogenetic analyses of the combined sequences of the 5.8S rRNA and BT exons, the isolates from L. speciosa in China formed a strongly defined phylogenetic clade, distinct from other Cryphonectriaceae and supported by high bootstrap values ($\mathrm{MP}=100 \%, \quad \mathrm{ML}=100 \%$; Fig. 3). All analyses showed that the isolates from L. speciosa in southern China represented a single novel genus and species of Cryphonectriaceae.

Table 2 Statistics resulting from phylogenetic analyses

	Dataset	
Analysis	LSU	ex rRNA with exons of BT1 \& BT2
No. of taxa	83	85
No. of characters (bp)		760
Maximum parsimony		
Parsimony informative characters	123	126
Tree length	340	317
Consistency index	0.532	0.577
Retention index	0.815	0.881
Homoplasy index	0.468	0.423
Maximum likelihood		
Rate matrix	1.6671	0.3765
	6.5433	1.8248
	3.7482	0.2614

${ }^{\text {a }} 100$ trees.
${ }^{\text {b }}$ Best fit substitution model GTR+I+G, using six substitution rate categories with gamma rates.

Morphology

The characteristics of the asexual structures on L. speciosa were typical of fungi in the Cryphonectriaceae. These included orange stromatic tissue. Stromatic tissue and mycelium stained purple in $3 \% \mathrm{KOH}$ (Castlebury et al., 2002; Gryzenhout et al., 2006a, 2009). The fungus from L. speciosa had superficial to slightly immersed conidiomata, conidiomatal tissues of textura globulosa, orange conidiomata that were convex to globose in shape, non-ostiolate, without necks and no paraphyses. These characters distinguished the fungus from other genera with orange conidiomata, including Amphilogia (Gryzenhout et al., 2005a), Aurantioporthe (Beier et al., 2015), Aurantiosacculus (Crous et al., 2012a), Aurifilum (Begoude et al., 2010), Cryphonectria (Gryzenhout et al., 2009), Cryptometrion (Gryzenhout et al., 2010), Endothia (Gryzenhout et al., 2006a), Filiocryphia (Cheewangkoon et al., 2009), Holocryphia (Gryzenhout et al., 2006d), Immersiporthe (Chen et al., 2013a), Latruncellus (Vermeulen et al., 2011), Microthia (Gryzenhout et al., 2006d), Rostraureum (Gryzenhout et al., 2005c) and Ursicollum (Gryzenhout et al., 2006d) in the Cryphonectriaceae.

Taxonomy

Based on the phylogenetic analyses of $L S U$ and combination of 5.8 S rRNA and BT1 and BT2 exon gene regions, as well as morphological characteristics, the fungus from cankers on L. speciosa clearly represents a species in the Cryphonectriaceae. It is also different to any previously described genus and species in this family. A novel genus and species is consequently described to accommodate the fungus.

Chrysomorbus S. F. Chen gen. nov. MycoBank MB 821021
Etymology: Greek, chrysous, golden, referring to the orange stromatic tissue, and morbus, disease, describing that the fungus occurs on dead and dying bark and stems/branches of living trees, and occurs on cankers.
Type species: Chrysomorbus lagerstroemiae S. F. Chen \& Q. L. Liu
Conidiomata orange, convex to globose, superficial to semi-immersed, without necks, uni- to multilocular structures, with locules often convoluted, non-ostiolate; stromatic tissue textura globulosa. Conidiophores aseptate, cylindrical, occasionally with separating septa and branching, hyaline. Conidiogenous cells cylindrical or flask-shaped with attenuated apices. Paraphyses absent. Conidia hyaline, fusoid to oval, aseptate.

Chrysomorbus lagerstroemiae S. F. Chen \& Q. L. Liu, sp. nov. (Fig. 2)

MycoBank MB 821022
Etymology: Refers to the host genus Lagerstroemia from which the fungus was isolated.

Conidiomata on bark, yellow when young, orange when mature, convex to globose, superficial to semi-immersed, without necks, uni- to multilocular structures, with locules often convoluted, non-ostiolate; stromatic tissue textura globulosa; conidiomatal bases $74-506 \mu \mathrm{~m}$ high above bark surface (av. 50 conidiomata $224 \mu \mathrm{~m}$), 138-652 $\mu \mathrm{m}$ diameter (av. 50 conidiomata $368 \mu \mathrm{~m}$); locules $82-212 \mu \mathrm{~m}$ diameter (av. 50 locules $146 \mu \mathrm{~m})$. Conidiophores non-septate, cylindrical, (4.8-) 5.3-14.7(-16.5) $\quad \mu \mathrm{m}$ long (av. $50 \quad$ conidiophores $10.0 \mu \mathrm{~m})$, occasionally with separating septa and branching, hyaline. Conidiogenous cells (0.6-)1.0-1.4(-1.8) $\mu \mathrm{m}$ wide (av. 50 conidiogenous cells $1.2 \mu \mathrm{~m}$), cylindrical or flask-shaped with attenuated apices. Paraphyses absent. Conidia hyaline, fusoid to oval, aseptate, (2.6-)3.1-$3.7(-4.9) \times(1.0-) 1.3-1.5(-1.8) \mu \mathrm{m}$ (av. 100 conidia $3.4 \times 1.4 \mu \mathrm{~m}$), exuded as orange droplets.

Culture characteristics: On MEA mycelium fluffy with uneven margin, colony white when young, occasionally with orange patches, turning orange after 14 days. Colony reverse white yellow, orange to sienna. Optimal growth temperature $25^{\circ} \mathrm{C}$, no growth at $5^{\circ} \mathrm{C}$. In 7 days, colony diameters at $5^{\circ} \mathrm{C}$ intervals from 10 to $35^{\circ} \mathrm{C}$ reached averages of $8.5 \mathrm{~mm}\left(10^{\circ} \mathrm{C}\right), 18.5 \mathrm{~mm}$ $\left(15^{\circ} \mathrm{C}\right), 47.5 \mathrm{~mm}\left(20^{\circ} \mathrm{C}\right), 75.5 \mathrm{~mm}\left(25^{\circ} \mathrm{C}\right), 29.0 \mathrm{~mm}$ $\left(30^{\circ} \mathrm{C}\right)$ and $6 \mathrm{~mm}\left(35^{\circ} \mathrm{C}\right)$. Conidiomata produced on MEA after 60 days, mature after 90 days producing conidial spore masses.
Substrate: Bark of Lagerstroemia speciosa.
Distribution: GuangDong and HaiNan Provinces, China.
Specimens examined: China, GuangDong Province, ZhanJiang region $\left(21^{\circ} 14^{\prime} 44.5^{\prime \prime} \mathrm{N}, \quad 110^{\circ} 24^{\prime} 23.2^{\prime \prime} \mathrm{E}\right)$, L. speciosa, 14 February 2016, ShuaiFei Chen, HOLOTYPE CSFF2016 (branches with mature conidiomata), ex-type culture CERC8810 $=$ CMW49289 = CBS 142594; China, HaiNan Province, HaiKou region ($20^{\circ} 0^{\prime} 54.8^{\prime \prime} \mathrm{N}, 110^{\circ} 19^{\prime} 2.4^{\prime \prime} \mathrm{E}$), L. speciosa, 2 November

Figure 3 Phylogenetic tree based on maximum likelihood（ML）analysis of LSU DNA sequences for genera in the Diaporthales．Bootstrap values $>70 \%$ for ML／MP（maximum parsimony）analyses are presented at branches．Bootstrap values lower than 70% are marked with＊，and absent values are marked with－．Isolates from Lagerstroemia speciosa are in boldface and highlighted． Celoporthe woodiana CMW13936 Celoporthe fontana CMW29376 Celoporthe fontana CMW29375
80/100 Celoporthe dispersa CMW9976 Celoporthe dispersa CMW9978
92/100 Celoporthe eucalypti CMW26900
84/- Celoporthe eucalypti CMW26908 Celoporthe syzygii CMW24912 Celoporthe syzygiI CMW24912
Celoporthe syzygii CMW34023 - Celoporthe indonesiensis CMW10781

- Celoporthe guangdongensis CMW12750 100/100-Aurifilum marmelostoma CMW28285 Aurifilum marmelostoma CMW28288
100/100Latruncellus aurorae CMW28275 Latruncellus aurorae CMW28274 100/97 Ursicollum fallax CMW18119 Ursicollum fallax CMW18115 100/100 Aurapex penicillata CMW10030 Aurapex penicillata CMW10035 99/100 Microthia havanensis CMW14550 */100 100/100 Microthia havanensis CMW11301

100/100 Immersiporthe knoxdaviesiana CMW37314 Immersiporthe knoxdaviesiana CMW37315
100/100 Corticimorbus sinomyrti 3629
Corticimorbus sinomyrti 3631
100/100 Cryphonectria parasitica CMW13749
Cryphonectria parasitica CMonectria parasitica CMW7048
Luteocirrhus shearii CBS130776
Luteocirrhus shearii CBS130775
100,100 Cryptometrion aestuescens CMW18790
Cryptometrion aestuescens CMW18793
100/100 1 Diversimorbus metrosiderotis CMW37321
Diversimorbus metrosiderotis CMW37322
72/100 Holocryphia mzansi CMW37337
Holocryphia mzansi CMW37338
*100 Holocryphia sp. CMW6246
Holocryphia sp. CMW10015
94<100 Holocryphia gleniana CMW37335
Holocryphia eucalypti CMW7033
Holocryphia eucalypti CMW7035
Holocryphia capensis CMW37887
Holocryphia capensis CMW37329
100/100 Amphilogia gyrosa CMW10470
Amphilogia gyrosa CMW10469
00/100 Rostraureum tropicale CMW10796
Rostraureum tropicale CMW9971
100/100

Figure 4 Phylogenetic tree based on maximum likelihood (ML) analysis of a combined DNA sequence dataset of regions of the 5.8 S rRNA gene, and partial exon 4 , exon 5 , partial exon 6 and partial exon 7 of the $B T 1$ and $B T 2$ genes. Bootstrap values $>70 \%$ for ML/MP (maximum parsimony) analyses are presented at branches. Bootstrap values $<70 \%$ are marked with *, and absent analyses values are marked with - . Isolates from Lagerstroemia speciosa are in boldface and highlighted.

Figure 5 Lesions resulting from inoculation of Chrysomorbus lagerstroemiae onto Lagerstroemia speciosa branches (a, b) and Eucalyptus saplings (c, d), and wound response on the negative controls. ($a, ~ c$) Negative controls showing absence of lesion development; (b) lesion associated with isolate CERC8805; (d) lesion associated with isolate CERC8782. Arrows indicate the terminal ends of wound response. Scale bars: 10 mm .

2015, Jolanda Roux \& ShuaiFei Chen, PARATYPE CSFF2017 (trunk with mature conidiomata), living culture CERC8780 $=$ CMW49281 $=$ CBS142592; China, GuangDong Province, ZhanJiang region ($21^{\circ} 14^{\prime} 44.5^{\prime \prime} \mathrm{N}$, $110^{\circ} 24^{\prime} 23.2^{\prime \prime}$ E), L. speciosa, 14 February 2016, ShuaiFei Chen, CSFF2018 (branches with mature conidiomata), living culture CERC8805 = CMW49286 = CBS142593.

Notes. The morphology of C. lagerstroemiae is most similar to species of Amphilogia, Aurantiosacculus and Aurifilum. Conidiomata of the four genera are orange, not pulvinate, and without necks. The sigmoid conidia distinguish Aurantiosacculus from Amphilogia (having cylindrical to allantoid conidia), Aurifilum (having oblong conidia) and Chrysomorbus (having fusoid to oval conidia). The convex to globose conidiomata and lack of ostioles distinguish Chrysomorbus from Amphilogia (having conical conidiomata, ostiole absent) and Aurifilum (having convex conidiomata, and ostiole present with black opening). Celoporthe eucalypti, Celoporthe guangdongensis, Celoporthe syzygii, Chrysoporthe deuterocubensis and Corticimorbus sinomyrti have previously been isolated on Myrtales in China, but the conidiomata of these species are black, which is different to C. lagerstroemiae in which the conidiomata are orange.

Pathogenicity tests

Four weeks after inoculation, all six C. lagerstroemiae isolates produced lesions on L. speciosa branches, while
none were produced by the negative controls (Fig. 5a,b). The mean comparison tests indicated that average lesion length caused by the six C. lagerstroemiae isolates were all significantly longer $(P<0.05)$ than the wounds caused by the controls (Fig. 6a). Isolates CERC8805, CERC8807 and CERC8810 were more aggressive than the other isolates (Fig. 6a). Chrysomorbus lagerstroemiae was successfully reisolated from the lesions, but not from the controls.

The six isolates also produced lesions on Eucalyptus clone CEPT-10 within 4 weeks; no lesions developed in the control inoculations (Fig. 5c,d). The lesions caused by the six isolates were all significantly longer than the wounds caused by the controls (Fig. 6b). Chrysomorbus lagerstroemiae was successfully reisolated from the lesions on inoculated Eucalyptus seedlings but not from the controls.

Discussion

In this study, a previously unknown genus and species of fungus in the Cryphonectriaceae was discovered on L. speciosa trees in two parks in the GuangDong and HaiNan Provinces of South China. Justification for describing the fungus as a new taxon was based on the results of phylogenetic analyses of sequence data for multiple gene regions as well as morphological characteristics. The newly described fungus typifies the new genus Chrysomorbus and has been provided with the name C. lagerstroemiae. Inoculation tests showed that

Figure 6 Histogram showing the average lesion lengths resulting from inoculation of Lagerstroemia speciosa branches (a) or saplings of Eucalyptus clone CEPT-10 (b) with six isolates of Chrysomorbus lagerstroemiae and a control. Vertical bars represent standard error of means. Different letters above the error bars indicate treatments that were significantly different ($\alpha=0.05$).

C. lagerstroemiae is pathogenic to L. speciosa as well as to a Eucalyptus clone commonly planted in China.

This is the first report of a species of Cryphonectriaceae on Lythraceae in China. Unlike species of Cryphonectriaceae that have been widely reported from Myrtaceae trees (Gryzenhout et al., 2009), only two species of Cryphonectriaceae have previously been recorded on the Lythraceae. These include C. cubensis collected on the non-native tree L. indica in Cuba (Gryzenhout et al., 2006b) and L. aurorae from native G. transvaalica trees in Swaziland (Vermeulen et al., 2011). The results of the present study suggest that the Cryphonectriaceae have wider host and geographical ranges on Lythraceae than those currently known for these trees, both in China and in other regions of the world.

Isolates of C. lagerstroemiae were obtained from stems of dead trees, as well as from cankered stems and cracked bark on living trees. The inoculation tests
undertaken in this study showed that the fungus can produce lesions on branches of L. speciosa, and thus confirm that it was most likely responsible for the cankers of trees in the areas sampled. This might also suggest that C. lagerstroemiae poses a threat to L. speciosa in areas where the tree is planted as a non-native ornamental and possibly also where the tree is native.
The origin of C. lagerstroemiae is unknown. It is possible that it occurs on Lagerstroemia species where these trees are native and that it has been introduced into China. Alternatively, it might be a fungus native to China that has undergone a host shift (Slippers et al., 2005) to infect L. speciosa. This would be similar to situations where other members of the Cryphonectriaceae on native Myrtales have adapted to infect Eucalyptus (Myrtaceae) in various parts of the world (Heath et al., 2006; Vermeulen et al., 2011, 2013a; van der Merwe et al., 2013). In this regard, these fungi appear to be
common as natives on the Myrtales and to have the capacity to easily adapt to infect hosts in this plant order (Burgess \& Wingfield, 2017).

Preliminary inoculation tests showed that C. lagerstroemiae is able to infect the stems of a Eucalyptus clone. This is similar to the situation in Africa and South America where C. austroafricana and C. cubensis, from native Syzygium species or Tibouchina species respectively, have adapted to become a serious pathogen of plantation-grown Eucalyptus (Rodas et al., 2005; Heath et al., 2006; Gryzenhout et al., 2009). Regardless as to whether C. lagerstroemiae is native to China or not, it clearly poses a threat to Eucalyptus propagated as nonnatives in that country or elsewhere in the world. More importantly, it could easily be introduced into new areas such as Australia where Myrtaceae are native and where very serious damage to the natural environment could result. This would be similar to the situation that has arisen with the myrtle rust pathogen Puccinia psidii in Australia (Pegg et al., 2014; Burgess \& Wingfield, 2017) and it should be actively avoided.

Other than Cryphonectria nitschkei and C. parasitica that occur on the Fagaceae, species of Cryphonectriaceae occurring in China have all been isolated from Myrtaceae (Myrtales) trees. These trees include the native R. tomentosa and the non-native S. cumini, Eucalyptus species, and in this study L. speciosa, which are all found in South China. There are large numbers of native Myrtales in China including at least 19 genera (Chen, 1984). Consequently, surveys of these trees in China are likely to reveal additional members of the Cryphonectriaceae in this region of the world. The aggressive nature of many of these fungi as tree pathogens suggest that such surveys would be justified as part of a global strategy (Wingfield et al., 2015) to reduce the impact of tree diseases globally.

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (NSFC; project numbers 31400546 and 31622019) for financial support. The authors have declared that no conflict of interest exists.

References

Anagnostakis SL, 1987. Chestnut blight: the classical problem of an introduced pathogen. Mycologia 79, 23-37.
Begoude ADB, Gryzenhout M, Wingfield MJ, Roux J, 2010. Aurifilum, a new fungal genus in the Cryphonectriaceae from Terminalia species in Cameroon. Antonie van Leeuwenhoek 98, 263-78.
Beier GL, Hokanson SC, Bates ST, Blanchette RA, 2015. Aurantioporthe corni gen. et comb. nov., an endophyte and pathogen of Cornus alternifolia. Mycologia 107, 66-79.
Burgess TI, Wingfield MJ, 2017. Pathogens on the move: a 100-year global experiment with planted eucalypts. BioScience 67, 14-25.
van Burik JAH, Schreckhise RW, White TC, Bowden RA, Myerson D, 1988. Comparison of six extraction techniques for isolation of DNA from filamentous fungi. Medical Mycology 36, 299-303.
Cabrera RI, 2004. Evaluating and promoting the cosmopolitan and multipurpose Lagerstroemia. Acta Horticulturae 630, 177-84.

Castlebury LA, Rossman AY, Jaklitsch WJ, Vasilyeva LN, 2002. A preliminary overview of the Diaporthales based on large subunit nuclear ribosomal DNA sequences. Mycologia 94, 1017-31.
Cheewangkoon R, Groenewald JZ, Summerell BA, Hyde KD, To-anun C, Crous PW, 2009. Myrtaceae, a cache of fungal biodiversity. Persoonia 23, 55-85.
Chen C 1984. Flora Reipublicae Popularis Sinicae. Tomus 53. Beijing, China: Science Press.
Chen SF, Gryzenhout M, Roux J, Xie YJ, Wingfield MJ, Zhou XD, 2010. Identification and pathogenicity of Chrysoporthe cubensis on Eucalyptus and Syzygium spp. in South China. Plant Disease 94, 1143-50.
Chen SF, Gryzenhout M, Roux J, Xie YJ, Wingfield MJ, Zhou XD, 2011. Novel species of Celoporthe from Eucalyptus and Syzygium trees in China and Indonesia. Mycologia 103, 1384-410.
Chen SF, Wingfield MJ, Roets F, Roux J, 2013a. A serious canker caused by Immersiporthe knoxdaviesiana gen. et sp. nov. (Cryphonectriaceae) on native Rapanea melanophloeos in South Africa. Plant Pathology 62, 667-78.
Chen SF, Wingfield MJ, Roux J, 2013b. Diversimorbus metrosiderotis gen. et sp. nov. and three new species of Holocryphia (Cryphonectriaceae) associated with cankers on native Metrosideros angustifolia trees in South Africa. Fungal Biology 117, 289-310.
Chen SF, Wingfield MJ, Li GQ, Liu FF, 2016. Corticimorbus sinomyrti gen. et sp. nov. (Cryphonectriaceae) pathogenic to native Rhodomyrtus tomentosa (Myrtaceae) in South China. Plant Pathology 65, 1254-66.
Crane C, Burgess TI, 2013. Luteocirrhus shearii gen. sp. nov. (Diaporthales, Cryphonectriaceae) pathogenic to Proteaceae in the South Western Australian Floristic Region. IMA Fungus 4, 111-22.
Crous PW, Summerell BA, Alfenas AC et al., 2012a. Genera of diaporthalean coelomycetes associated with leaf spots of tree hosts. Persoonia 28, 66-75.
Crous PW, Summerell BA, Shivas RG et al., 2012b. Fungal Planet description sheets: 107-127. Persoonia 28, 138-82.
Crous PW, Wingfield MJ, Guarro J et al., 2015. Fungal Planet description sheets: 320-370. Persoonia 34, 167-266.
Fairchild D, 1913. The discovery of the chestnut bark disease in China. Science 38, 297-9.
Gryzenhout M, Myburg H, van der Merwe NA, Wingfield BD, Wingfield MJ, 2004. Chrysoporthe, a new genus to accommodate Cryphonectria cubensis. Studies in Mycology 50, 119-42.
Gryzenhout M, Glen HF, Wingfield BD, Wingfield MJ, 2005a. Amphilogia gen. nov. for Cryphonectria-like fungi from Elaeocarpus spp. in New Zealand and Sri Lanka. Taxon 54, 1009-21.
Gryzenhout M, Myburg H, Wingfield BD, Montenegro F, Wingfield MJ, 2005b. Chrysoporthe doradensis sp. nov. pathogenic to Eucalyptus in Ecuador. Fungal Diversity 20, 39-57.
Gryzenhout M, Myburg H, Wingfield BD, Montenegro F, Wingfield MJ, 2005c. Rostraureum tropicale gen. sp. nov. (Diaporthales) associated with dying Terminalia ivorensis in Ecuador. Mycological Research 109, 1029-44.
Gryzenhout M, Myburg H, Wingfield BD, Wingfield MJ, 2006a. Cryphonectriaceae (Diaporthales), a new family including Cryphonectria, Chrysoporthe, Endothia and allied genera. Mycologia 98, 239-49.
Gryzenhout M, Rodas CA, Mena Portales J, Clegg P, Wingfield BD, Wingfield MJ, 2006b. Novel hosts of the Eucalyptus canker pathogen Chrysoporthe cubensis and a new Chrysoporthe species from Colombia. Mycological Research 110, 833-45.
Gryzenhout M, Myburg H, Rodas CA, Wingfield BD, Wingfield MJ, 2006c. Aurapex penicillata gen. sp. nov. from native Miconia theaezans and Tibouchina spp. in Colombia. Mycologia 98, 105-15.
Gryzenhout M, Myburg H, Hodges CS, Wingfield BD, Wingfield MJ, 2006d. Microthia, Holocryphia and Ursicollum, three new genera on Eucalyptus and Coccoloba for fungi previously known as Cryphonectria. Studies in Mycology 55, 35-52.

Gryzenhout M, Wingfield BD, Wingfield MJ, 2009. Taxonomy, Phylogeny, and Ecology of Bark-Inhabiting and Tree Pathogenic Fungi in the Cryphonectriaceae. St Paul, MN, USA: APS Press.
Gryzenhout M, Tarigan M, Clegg PA, Wingfield MJ, 2010. Cryptometrion aestuescens gen. sp. nov. (Cryphonectriaceae) pathogenic to Eucalyptus in Indonesia. Australasian Plant Pathology 39, 161-9.
Guindon S, Gascuel O, 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52, 696-704
Heath RN, Gryzenhout M, Roux J, Wingfield MJ, 2006. Discovery of the canker pathogen Chrysoporthe austroafricana on native Syzygium spp. in South Africa. Plant Disease 90, 433-8.
Hodges CS, Reis MS, Ferreira FA, Heffling JDM, 1976. O cancro do eucalipto causado por Diaporthe cubensis Bruner. Fitopatologia Brasileira 1, 129-69.
Huelsenbeck JP, Bull JJ, Cunningham CW, 1996. Combining data in phylogenetic analysis. Trends in Ecology \& Evolution 11, 152-8.
Katoh K, Misawa K, Kuma K, Miyata T, 2002. mafFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30, 3059-66.
Mausse-Sitoe SND, Rodas CA, Wingfield MJ, Chen SF, Roux J, 2016. Endophytic Cryphonectriaceae on native Myrtales: possible origin of Chrysoporthe canker on plantation-grown Eucalyptus. Fungal Biology 120, 827-35.
van der Merwe NA, Steenkamp ET, Rodas C, Wingfield BD, Wingfield MJ, 2013. Host switching between native and non-native trees in a population of the canker pathogen Chrysoporthe cubensis from Colombia. Plant Pathology 62, 642-8.
Myburg H, Wingfield BD, Wingfield MJ, 1999. Phylogeny of Cryphonectria cubensis and allied species inferred from DNA analysis. Mycologia 91, 243-50.
Myburg H, Gryzenhout M, Heath R, Roux J, Wingfield BD, Wingfield MJ, 2002a. Cryphonectria canker on Tibouchina in South Africa. Mycological Research 106, 1299-306.
Myburg H, Gryzenhout M, Wingfield BD, Wingfield MJ, 2002b. β-tubulin and histone H3 gene sequences distinguish Cryphonectria cubensis from South Africa, Asia and South America. Canadian Journal of Botany 80, 590-6.
Myburg H, Gryzenhout M, Wingfield BD, Wingfield MJ, 2003. Conspecificity of Endothia eugeniae and Cryphonectria cubensis: a re-evaluation based on morphology and DNA sequence data. Mycoscience 44, 187-96.
Myburg H, Gryzenhout M, Wingfield BD, Stipes RJ, Wingfield MJ, 2004a. Phylogenetic relationships of Cryphonectria and Endothia species, based on DNA sequence data and morphology. Mycologia 96, 990-1001.
Myburg H, Gryzenhout M, Wingfield BD, Milgroom MG, Shigeru K, Wingfield MJ, 2004b. DNA sequence data and morphology define Cryphonectria species in Europe, China, and Japan. Canadian Journal of Botany 82, 1730-43.

Nakabonge G, Gryzenhout M, Roux J, Wingfield BD, Wingfield MJ, 2006. Celoporthe dispersa gen. et sp. nov. from native Myrtales in South Africa. Studies in Mycology 55, 255-67.
Old KM, Wingfield MJ, Yuan ZQ, 2003. A Manual of Diseases of Eucalypts in South-East Asia. Jakarta, Indonesia: Centre for International Forestry Research.
Pegg GS, Giblin FR, McTaggart AR et al., 2014. Puccinia psidii in Queensland, Australia: disease symptoms, distribution and impact. Plant Pathology 63, 1005-21.
Pounders C, Rinehart T, Sakhanokho H, 2007. Evaluation of interspecific hybrids between Lagerstroemia indica and L. speciosa. HortScience 42, 1317-22.
Rayner RW, 1970. A Mycological Colours Chart. Kew, UK: Commonwealth Mycological Institute and British Mycological Society.
Rodas CA, Gryzenhout M, Myburg H, Wingfield BD, Wingfield MJ, 2005. Discovery of the Eucalyptus canker pathogen Chrysoporthe cubensis on native Miconia (Melastomataceae) in Colombia. Plant Pathology 54, 460-70.
Slippers B, Stenlid J, Wingfield MJ, 2005. Emerging pathogens: fungal host jumps following anthropogenic introduction. Trends in Ecology © Evolution 20, 420-1.
Swofford DL, 2003. Paup*. Phylogenetic Analysis Using Parsimony ("and Other Methods). Version 4.0b10. Sunderland, MA, USA: Sinauer Associates.
Tamura K, Dudley J, Nei M, Kumar S, 2007. mega 4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biological and Evolution 24, 1596-9.
Venter M, Myburg H, Wingfield BD, Coutinho TA, Wingfield MJ, 2002. A new species of Cryphonectria from South Africa and Australia, pathogenic on Eucalyptus. Sydowia 54, 98-117.
Vermeulen M, Gryzenhout M, Wingfield MJ, Roux J, 2011. New records of Cryphonectriaceae from southern Africa including Latruncellus aurorae gen. sp. nov. Mycologia 103, 554-69.
Vermeulen M, Gryzenhout M, Wingfield MJ, Roux J, 2013a. Population structure of Chrysoporthe austroafricana in southern Africa determined using vegetative compatibility groups (VCGs). Forest Pathology 43, 124-31.
Vermeulen M, Gryzenhout M, Wingfield MJ, Roux J, 2013b. Species delineation in the tree pathogen genus Celoporthe (Cryphonectriaceae) in southern Africa. Mycologia 105, 297-311.
Wingfield MJ, Swart WJ, Abear B, 1989. First record of Cryphonectria canker of Eucalyptus in South Africa. Phytophylactica 21, 311-3.
Wingfield MJ, Brockerhoff EG, Wingfield BD, Slippers B, 2015. Planted forest health: the need for a global strategy. Science 349, 832-6.
Zhang N, Blackwell M, 2001. Molecular phylogeny of dogwood anthracnose fungus (Discula destructiva) and the Diaporthales. Mycologia 93, 355-65.
Zhong WY, Chen JL, Xu HY, 2005. Studies on the characteristics of seed germination of Lagerstroemia speciosa. Journal of Guangxi Agricultural and Biological Science 24, 164-6.

[^0]: *E-mail: shuaifei.chen@gmail.com

