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Draft genome of an African isolate 
of the maize fungal pathogen, 
Cercospora zeina
Maize (Zea mays) is one of the most important staple food 
crops, especially in Sub-Saharan Africa. In the last three 
decades, Gray Leaf Spot (GLS) has become a widespread 
foliar disease of maize globally (Latterell & Rossi 1983, Ward 
et al. 1999, Meisel et al. 2009, Berger et al. 2014). Since 
GLS leads to substantial yield losses, it poses a threat to 
food security, especially in Africa (Meisel et al. 2009). Two 

causal agents of GLS have been identified, with Cercospora 
zeae-maydis the predominant pathogen in the USA (Wang et 
al. 1998), and to date, only Cercospora zeina reported from 
Africa (Crous et al. 2006, Meisel et al. 2009). These species 
belong to the class Dothidiomycete, that contains several 
important plant pathogens (Ohm et al. 2012). However, little 
is known about pathogenicity mechanisms of C. zeina.

SEQUENCED STRAIN

Zambia: Central region (Mkushi): isol. ex Zea mays (maize), 
March 2007, F.J. Kloppers & B. Meisel (CMW25467, MUCL 
51677, CBS142763, PREM 61898 – dried culture).
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Abstract: The genomes of Cercospora zeina, Fusarium pininemorale, Hawksworthiomyces lignivorus, 
Huntiella decipiens, and Ophiostoma ips are presented in this genome announcement. Three of these genomes 
are from plant pathogens and otherwise economically important fungal species. Fusarium pininemorale 
and H. decipiens are not known to cause significant disease but are closely related to species of economic 
importance. The genome sizes range from 25.99 Mb in the case of O. ips to 4.82 Mb for H. lignivorus. These 
genomes include the first reports of a genome from the genus Hawksworthiomyces. The availability of these 
genome data will allow the resolution of longstanding questions regarding the taxonomy of these species. In 
addition these genome sequences through comparative studies with closely related organisms will increase 
our understanding of how these species or close relatives cause disease. 
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NUCLEOTIDE SEQUENCE ACCESSION 
NUMBER

The draft genome has been deposited at DDBJ/ENA/
GenBank and is available under the accession number 
MVDW00000000; Biosample SAMN06067857; Bioproject 
PRJNA355276. This paper describes the first version of 
the genome. RNA sequencing data have been deposited 
in the NCBI Gene Expression Omnibus (Accession number 
GSE90705).

MATERIALS AND METHODS

Conidia of Cercospora zeina were grown on V8 agar (20 % 
(v/v) Campbells V8 juice, 2 % (w/v) Bacterial Agar, 0.349 
% (w/v) CaCO3) at ambient room temperature in constant 
darkness to promote conidiation. Conidia were collected and 
1x105 conidia/ml cultured in Potato Dextrose Broth (PDB) 
at 25 °C with gentle shaking. Prior to cultures reaching the 
melanized stage DNA was isolated as described previously 
(Ma et al. 2010). 

For RNA isolations C. zeina was cultured under seven 
different in vitro growth conditions. For solid media, conidia 
were transferred from V8 agar onto sterile cellophane sheets 
overlain onto the particular media by subculturing. For liquid 
media, conidia were washed from the V8 agar using the 
relevant media and a sterile L-spreader, and transferred to 

a flask containing the growth media. Media used included 
Complete media (1 % (w/v) glucose, 0.1 % (w/v) yeast extract, 
0.1 % (w/v) casein hydrolysate, 0.1 % (w/v) Ca(NO3)2.4H2O, 
1 % (v/v) mineral solution [2 % (w/v) KH2PO4, 2.5 % (w/v) 
MgSO4.7H2O, 1.5 % (w/v) NaCl]); 0.2x PDA (0.3 % (w/v) 
Potato Dextrose Agar (PDA), 1.2 % (w/v) Bacterial Agar), 
0.2x PDA supplemented with 10mM NH4H2PO4; Cornmeal 
agar (1.7 % (w/v)); PDA pH8 (3.9 % PDA, pH adjusted with 
0.29 % (w/v) Na2CO3 and 0.76 % NaHCO3); PDB pH3 (2.4 
% (w/v) PDB, pH adjusted with 1.67 % (w/v) citric acid and 
0.58 % (w/v) Na2HPO4); and Yeast Extract Peptone Dextrose 
(YPD, 0.05 % (w/v) peptone, 0.05 % (w/v) yeast extract, 0.5 
% (w/v) glucose, 1.8 % (w/v) NaCl). With the exception of V8 
agar, the cultures were kept in constant light at 25 °C for 7 d.

RNA was isolated using the Qiagen QIAzol Lysis Reagent 
and on-column DNase treatment and RNA purification was 
performed with the Qiagen RNeasy Mini kit, all according to 
the manufacturer’s specifications. Illumina HiSeq2000 100 
bp read-length sequencing was performed on three DNA 
libraries (paired-end (PE), 3 kb and 8 kb mate-pair). Sequence 
reads were quality filtered and trimmed using Trimmomatic v. 
0.30 (Bolger et al. 2014) using the default parameters. Due 
to nucleotide content inconsistencies in the PE and 3 kb 
libraries the 8 kb mate-pair library reads were assembled as 
single-end reads using Velvet (Zerbino & Birney 2008), with 
optimal k-mer size of 57 nt determined with VelvetOptimizer. 
Contigs were scaffolded using SSPACE v. 2.0 (Boetzer et al. 
2011) and scaffold gaps filled with Gapfiller v. 1.11 (Boetzer & 

Table 1. Species and GenBank accessions for the Translation Elongation Factor 1-alpha (TEF 1-alpha) and Internal Transcribed Spacer (ITS) 
sequences used for Maximum Parsimony inference.

Species
GenBank accession

TEF 1-alpha ITS
Cercospora alchemillicola strain CPC 5259 JX143279.1 JX143525.1

Cercospora althaeina strain CBS 126.26 JX143282.1 JX143528.1

Cercospora apii strain CBS 116504 AY840487.1 AY840520.1

Cercospora beticola strain CBS 116502 AY840496.1 AY840529.1

Cercospora chinensis strain CBS 132612 JX143334.1 JX143578.1

Cercospora mercurialis strain CBS 549.71 JX143386.1 JX143627.1

Cercospora olivascens strain CBS 253.67 JX143391.1 JX143632.1

Cercospora ricinella strain CBS 132605 JX143405.1 JX143646.1

Cercospora sp. F JZG-2013 strain CPC 12062 DQ185083.1 DQ185071.1

Cercospora vignigena strain CBS 132611 JX143493.1 JX143734.1

Cercospora violae strain CBS 251.67 JX143496.1 JX143737.1

Cercospora zeae-maydis strain CBS 117755 DQ185084.1 DQ185072.1

Cercospora zeae-maydis strain CBS 117756 DQ185085.1 DQ185073.1

Cercospora zeae-maydis strain CBS 117757 DQ185086.1 DQ185074.1

Cercospora zeae-maydis strain CBS 117758 DQ185087.1 DQ185075.1

Cercospora zeae-maydis strain CBS 117759 DQ185088.1 DQ185076.1

Cercospora zeina strain CMW 25445 EU569217.1 EU569225.1

Cercospora zeina strain CMW 25459 EU569215.1 EU569226.1

Cercospora zeina strain CMW 25462 EU569210.1 EU569224.1

Cercospora zeina strain CMW 25467 EU569218.1 EU569227.1

Cercospora zeina strain CMW 25467 genome MVDW00000000

Mycosphaerella thailandica strain CBS 116367 AY840476.1 KF901776.1

Mycosphaerella thailandica strain CPC 10548 AY840477.2 AY752157.1
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Pirovano 2012) using all the sequenced libraries and allowing 
a 25 % error in library insert sizes. Completeness of the 
assembly was evaluated using BUSCO (Simao et al. 2015). 

Transcriptome sequencing was performed at BGI (HK) 
using HiSeq2000 100bp PE sequencing. RNAseq reads were 
mapped to the C. zeina reference genome using TopHat2 
(Kim et al. 2013). Manual gene finding of 150 C. zeina genes 
using Genomeview (Abeel et al. 2012) was guided by BLAST 
(Altschul et al. 1990) alignments of C. zeae-maydis (JGI) 
genes to the C. zeina reference genome together with C. 
zeina transcriptome mapping information for gene and splice 
site identification. Automated gene prediction was performed 
using the MAKER (Cantarel et al. 2008) pipeline incorporating 
the SNAP (Korf 2004) and AUGUSTUS (Stanke et al. 2006) 
ab initio gene predictors. The SNAP training data were the 
150 manually curated genes, while the AUGUSTUS training 
data comprised of high-confidence predicted genes from 
MAKER using only SNAP predictions (AED score <0.2).

To verify the species identity of the sequenced strain, the 
Translation Elongation Factor 1-alpha and ITS sequences for 
selected Cercospora species (Table 1) were concatenated and 
aligned with ClustalW (Thompson et al. 1994). The relevant 
sequences were extracted from the genome assembly using 
blastn from the C. zeina strain CMW 25467 data, and are 
listed under the genome assembly accession. The analysis 
workflow was similar to Meisel et al. (2009). The species 
relationships were inferred using the Maximum Parsimony 

method in MEGA7 (Kumar et al. 2016), with confidence at 
nodes gained using bootstrap analysis (Felsenstein 1985). 
Branches corresponding to partitions reproduced in less than 
50 % bootstrap replicates were collapsed. The percentage of 
replicate trees in which the associated taxa clustered together 
in the bootstrap test (1000 replicates) are shown next to the 
branches (Felsenstein 1985). The MP tree was obtained using 
the Tree-Bisection-Regrafting algorithm (Nei & Kumar 2000) 
with search level 1 in which the initial trees were obtained 
by the random addition of sequences (10 replicates). All 
positions containing gaps and missing data were eliminated. 
Two strains of Mycosphaerella thailandica (CBS 116367 and 
CPC 10548) were used to root the cladogram (Fig. 1). 

RESULTS AND DISCUSSION

Assembly of the sequenced reads yielded a draft genome 
37 Mb in size in 10 027 scaffolds >200 bp with N50 of 161 
kb. The average scaffold size was 4 059 bp with the largest 
contig of 938 kb. BUSCO evaluation using the Ascomycota 
dataset yielded a completeness report of C: 95.4 %: (95.4 
% Complete and single-copy BUSCOs, D: 0.0 % duplicated 
BUSCOs, 2.1 % fragmented BUSCOs, M: 2.5 % missing 
BUSCOs, total 1315 genes evaluated). 

Following manual gene curation, 10 193 protein-coding 
gene-models were predicted. The genome size and number of 

Figure 1. Cladogram to classify the sequenced C. zeina genome (MVDW00000000) with reference to related
Cercospora species. Maximum parsimony analysis was performed in MEGA7 with the Tree-Bisection-Regrafting
algorithm, based on partial translation elongation factor 1-alpha and ITS sequences. Sequences for C. zeina
MVDW00000000 were extracted from the genome. Bootstrapping confidence values are shown at node-
branch points. The cladogram was rooted using Mycosphaerella thailandica.

Fig.1. Cladogram to classify the sequenced Cercospora zeina genome with reference to related Cercospora species. Maximum parsimony 
analysis based on translation elongation factor 1-alpha and ITS sequences was performed, with percentage bootstrap (1000) values shown. The 
cladogram was rooted using Mycosphaerella thailandica. 
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genes are similar to other genomes in the order Capnodiales 
(Stanke et al. 2006). 

Authors: N. Olivier, Y.-C. Lin, Y. Van de Peer, F. Joubert, 
B.G. Crampton, V. Swart, B. Bluhm, and D.K. Berger*

*Contact: Dave.Berger@fabi.up.ac.za

IMA Genome-F 8B

Draft genome sequence of 
Fusarium pininemorale

INTRODUCTION

The Fusarium fujikuroi species complex (FFSC) represents 
an assemblage of diverse fungal species. The so-called 
“American” clade of the FFSC contains known emerging 
pathogens of many cultivated crops and trees including pine 
(F. circinatum; Hepting & Roth 1946), maize (F. temperatum; 
Desjardins et al. 2000), and mango (F. parvisorum; Liew 
et al. 2016). Fusarium pininemorale, a recently recognized 
member of this clade, was isolated from diseased pine trees 
in plantations of Colombia (Herron et al. 2015). Even though 
this species shares numerous morphological and biological 
traits with other FFSC pine pathogens, F. pininemorale itself 
was not found to cause significant disease symptoms on pine 
as is the case for F. circinatum (Herron et al. 2015).

Overall, little is known regarding the biology and genetics 
of this species, even less so for the genetic and determinants 
of host range in the broader “American” clade. The exact ge-
netic basis and genomic processes underlying pathogenicity 
also remains elusive. The aim of this study was to determine 
the full genome sequence for F. pininemorale, which will al-
low further studies to investigate genomic aspects of not only 
pathogenicity but also of its biology and evolution. 

SEQUENCED STRAIN

Colombia: Angela Maria (Santa Rosa), Risaralda 
75°360.2100’ W 4°490.1800' N, Isolated from Pinus 
tecunumanii, 2012, (CBS 137240 = CMW 25243; FCC 5383 
– cultures; Herron et al. 2015). 

NUCLEOTIDE ACCESSION NUMBER

The Fusarium pininemorale whole genomic sequence data 
has been deposited at DDBJ/EMBL/GenBank under the 
accession NFZR00000000. The version described in this 
paper is version NFZR00000000.

METHODS

The Fusarium pininemorale isolate was grown on ½ PDA for 
7 d and DNA was extracted as described previously (Möller et 

al. 1992). A pair-end library (350 bp average insert size) and 
a mate-pair library (5 kb average insert size) were prepared 
and sequenced using Illumina HiSeq platforms at Macrogen 
(Seoul, Korea). All sequences had an average read length 
of 58 bp. Poor quality reads, terminal nucleotides, as well 
as duplicate reads were removed using CLC Genomics 
Workbench v. 8.0.1 (CLCBio, Aarhus). De novo genome 
assembly was performed using ABySS v. 1.3.7 (Simpson et 
al. 2009), further scaffolding was performed using SSPACE 
v. 2. 0 (Boetzer et al. 2011) and gapped genomic regions were 
closed using GapFiller v. 1.11 (Boetzer & Pirovano 2012). 
Genome completeness was assessed using the software 
BUSCO (Benchmarking Universal Single-Copy Orthologs) 
v2 with the Sordariomycete dataset (Simão et al. 2015). 
Chromosome-sized scaffolds were compared using LASTZ 
alignments (Harris 2007) against genomes of F. circinatum 
(Wingfield et al. 2012) and F. temperatum (Wingfield et 
al. 2015a). Lastly, gene prediction was performed using 
AUGUSTUS 2.5.5 (Hoff & Stanke 2013) based on gene 
models for F. graminearum (http://bioinf.uni-greifswald.de/
augustus), together with mRNA sequence data from the F. 
circinatum genome (Wingfield et al. 2012).

RESULTS AND DISCUSSION

The draft nuclear genome of Fusarium pininemorale had an 
estimated genome size of 47 778 776 bp. The N50 value was 
1 358 616 bp and the GC content was 46.0 %. The assembly 
consisted of 200 contigs which ranged between 200 bp to  
6 144 005 bp in size. The average scaffold size was determined 
to be 310 252 bp in length of which 13 contigs were larger 
than 1 000 000 bp. The assembled genome was predicted 
to encode for 14 640 open reading frames (ORFs) with an 
average gene length of 1472 bp, and an overall gene density 
of 306 ORFs/MB was observed. BUSCO suggested that the 
assembly was 99 % complete (i.e., complete BUSCOs = 99 %; 
complete and single-copy BUSCOs = 98.2 %; complete and 
duplicated BUSCOs = 0.8 %; fragmented BUSCOs = 0.6 %; 
missing BUSCOs = 0.4 %; number of BUSCOs searched = 
3725). The taxonomic identity of the genome was confirmed 
using a phylogenetic analysis using authenticated sequences 
(Fig. 2).

The GC content and number of identified ORFs is 
comparable to that of other FFSC genomes (Ma et al. 2010, 
Wingfield et al. 2012, Wiemann et al. 2013, Wingfield et al. 
2015a, 2015b, Niehaus et al. 2016). However, the genome 
assembly of F. pininemorale is notably larger than those of 
other species in the “American” clade for which genome 
sequences are available. In comparison, the genome 
sizes of F. circinatum and F. temperatum is 4 534 176 bp 
and 2 319 967 bp smaller than that of F. pininemorale, 
respectively. Nevertheless, sequence comparisons 
based on chromosome-sized scaffolds suggests that F. 
pininemorale harbours 12 chromosomes similar to that of 
species in the FFSC. The putative 12th chromosome of F. 
pininemorale is 968 722 bp size and spans two scaffolds 
in the current assembly. Also, the reciprocal chromosome 
translocation (involving parts of chromosomes 8 and 11) 
confirmed previously in F. circinatum and F. temperatum (De 
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Vos et al. 2014, Wingfield et al. 2015a) is also present in F. 
pininemorale. Clearly, the addition of the F. pininemorale 
genome assembly would facilitate detailed studies of 
genome evolution, host adaption and pathogenicity in the 
“American” clade as well as the broader FFSC.

Authors: S. Van Wyk, L. De Vos, T.A. Duong, G. Fourie, 
N.A van der Merwe, B.D. Wingfield, and E.T. Steenkamp*

*Contact: Stephanie.vanwyk@fabi.up.ac.za

IMA Genome-F 8C

Draft genome sequence of 
Hawksworthiomyces lignivorus

INTRODUCTION

Hawksworthiomyces lignivorus (Ascomycota: Ophiostoma-
tales) was first described from decaying Eucalyptus utility 
poles in South Africa (De Meyer et al. 2008). It was initially 
described in the genus Sporothrix which, under the dual 
nomenclature system, accommodated mycelial asexual 
morphs of Ophiostomatales (De Beer & Wingfield 2013, 

	 >F. fracticuadum CBS 137233	
 >F. fracticaudum CBS 137234	

 >F. parvisorum CBS 137236	
 >F. parvisorum CBS 137235	

 >F. marasasianum CBS 137238	
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 >F. pininemorale CBS 137240	
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Fig. 2. Maximum likelihood (ML) tree based on partial gene sequences of β-tubulin and translation elongation factor 1-α. Sequence alignments 
were assembled with MAFFT version 7 (Katoh & Standley 2013). The program jModelTest v 2.1.7 (Guindon & Gascuel 2003, Darribo et al. 2012) 
was used to determine the best-fit substitution model (GTR+I+G substitution model) with gamma correction (Tavaré 1986). The ML phylogenetic 
analysis was performed using PhyML v 3.1 (Guindon & Gascuel 2010). Values at branch nodes are the bootstrapping confidence values with 
those ≥ 85 % shown. Indicated in bold are sequences from the Fusarium genomes of F. pininemorale and those of F. nygamai, F. temperatum 
and F. circinatum strain GL1327 which have been previously published in IMA fungus (Wingfield et al. 2012, 2015a, 2015b).
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De Hoog 1993). However, DNA sequences of multiple 
genes and more inclusive phylogenies showed that that 
this species was distinct from all other species residing in 
Sporothrix as redefined by De Beer et al. (2016a), and from 
other genera in Ophiostomatales (De Beer & Wingfield 
2013). De Beer et al. (2016b) therefore described the new 
genus Hawksworthiomyces, to accommodate H. lignivorus 
together with four other newly described species, H. crousii, 
H. hibbettii, H. sequentia, and H. taylorii.

Species of Hawksworthiomyces differ from all other 
ophiostomatoid fungi in their biology and ecology. Most 
species residing in the numerous genera of Ophiostomatales 
are associates of bark or ambrosia beetles that inhabit the 
cambium and sapwood of trees (De Beer & Wingfield 2013). 
Many species of Sporothrix are exceptions to this norm and 
are found in soil and Protea infructescences (De Beer et al. 
2016a, Roets et al. 2013). All species of Hawksworthiomyces 
have either been isolated from decaying wood or 
environments associated with degrading plant materials 
(De Beer et al. 2016b). An inoculation study conducted by 
De Beer et al. (2006) also suggested that H. lignivorus is 
capable of degrading lignocellulose components of wood. 
This is different to other species in Ophiostomatales that 
specifically degrade resinous compounds in wood (Farrell et 
al. 1993) and that do not display any marked lignocellulose 
degradation (Seifert 1993).

In this study, we generated the draft genome sequence 
for H. lignivorus, which will provide basal data required to 
explore its unique biology and ecology. As the type species of 
Hawksworthiomyces, the genome sequence of H. lignivorus 
will be useful for future phylogenomic studies aimed at a 
better understanding the evolutionary history of this genus 
and other genera in Ophiostomatales.

SEQUENCED STRAIN 

South Africa: Western Cape: Stellenbosch: isolated from 
Eucalyptus pole at soil level, Oct. 2003, E.M. de Meyer (CMW 
18600 = CBS 119148 = MUCL 55926 – living culture, PREM 
59284 – dried culture).

NUCLEOTIDE SEQUENCE ACCESSION 
NUMBER 

The genomic sequence of Hawsworthiomyces lignivorus 
(CMW 18600, CBS 119148) has been deposited at DDBJ/
EMBL/GenBank under accession no. NTMA00000000. The 
version described in this paper is version NTMA01000000.

MATERIALS AND METHODS 

The ex-holotype culture of Hawsworthiomyces lignivorus 
(CMW 18600 = CBS 119148) was obtained from the culture 
collection of the Forestry and Agricultural Biotechnology 
Institute, University of Pretoria (CMW). Genomic DNA was 
extracted using the method described by Duong et al. (2013). 
Two pair-end libraries of approximately 350 bp and 530 bp 

were prepared and sequenced using the Illumina HiSeq 
2000 platform with 100 bp read length. Reads obtained were 
subjected to quality and adapters trimming using Trimmomatic 
v. 0.36 (Bolger et al. 2014). De-novo genome assembly was 
performed using SPAdes v. 3.9.0 (Bankevich et al. 2012). 
The scaffolds obtained from SPAdes were subjected to 
further scaffolding with SSPACE-Standard v. 3.0 (Boetzer et 
al. 2011). Assembly gaps were filled with GapFiller v. 1.10 
(Boetzer & Pirovano 2012). The quality and completeness 
of the assembly was validated with Benchmarking Universal 
Single Copy Orthologs (BUSCO v. 2.0.1) program using the 
Soradiomyceta odb9 dataset (Simão et al. 2015). The number 
of protein coding genes was determined using AUGUSTUS 
v3.2.2 (Stanke et al. 2006).

RESULTS AND DISCUSSION

Sequencing of the Hawksworthiomyces lignivorus DNA 
libraries yielded 14 203733 paired-end reads with average 
read length of around 100 bp. Trimming recovered 12 704 
558 pair-end reads and 1 362 623 single reads. De-novo 
genome assembly with SPAdes resulted in an assembly of 
43.81 Mb in size, distributed in 280 scaffolds larger than 500 
bp. The number of scaffolds was further reduced to 214 after 
scaffolding with SSPACE and filling gaps with GapFiller. The 
current genome assembly of H. lignivorus has a total sequence 
length of 43 822 585 bases, with an N50 value of 383 563 
and an average GC content of 51.27 %. Hawsworthiomyces 
lignivorus had the largest genome size when compared to 
all species of Ophiostomatales for which whole genome 
data are available; the smallest genome reported was 
that of Ceratocystiopsis minuta (21.3 Mb) (Wingfield et al. 
2016a), and the second largest to H. lignivorus was that of of 
Sporothrix pallida (37.8 Mb) (D’Alessandro et al. 2016). 

The assembly had a BUSCO completeness score of 
95.7 %. Out of the 3725 BUSCO groups searched, 3556 
were complete single-copy BUSCOs, nine were complete 
duplicated BUSCOs, 64 were fragmented BUSCOs, and 
96 were missing BUSCOs. AUGUSTUS predicted a total of  
11 216 protein-coding genes encoded by H. lignivorus genome. 
The taxonomic identity of the genome was confirmed using a 
phylogenetic analysis using authenticated sequences (Fig. 3).

Authors: H.-J. Lim, B.D. Wingfield, M.J. Wingfield, Z.W. 
De Beer, and T.A. Duong*

*Contact: Tuan.Duong@fabi.up.ac.za

IMA Genome-F 8D

Draft genome assembly for 
Huntiella decipiens

INTRODUCTION

The family Ceratocystidaceae as defined by De Beer et al. 
(2014) includes economically important plant pathogens, as 
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Figure	2.	Identity	verification	of	Ophiostomataceae	isolates	sequenced	in	this	study	and	in	all	
previous	IMA	Genome	Announcements	(IMA	Genome-F:	3-7;	Van	der	Nest et	al. 2014a;	Wingfield
et	al. 2015a;	Wingfield et	al. 2016a;	Wingfield et	al. 2015b;	Wingfield et	al. 2016b).	Gene	regions	
(LSU,	βT)	used	for	verification	were	extracted	from	assembled	genomes.	Other	reference	isolates	
and	their	corresponding	sequences	were	obtained	from	published	papers	(De	Beer et	al. 2016;	
Linnakoski et	al. 2012;	Yin et	al. 2015;	Zipfel et	al. 2006).	The	phylogeny	were	constructed	using	
RAxML	with	GRTGAMMA	substitution	model.	Bootstrap	values	greater	than	75	were	indicated	at	
nodes.

Fig. 3. Identity verification of Ophiostomataceae isolates sequenced in this study and in all previous IMA Genome Announcements (IMA 
Genome-F: 3–7; Van der Nest et al. 2014a, Wingfield et al. 2015a, 2016a, 2015b, 2016b). Gene regions (LSU, βT) used for verification were 
extracted from assembled genomes. Other reference isolates and their corresponding sequences were obtained from published papers (De 
Beer et al. 2016, Linnakoski et al. 2012, Yin et al. 2015, Zipfel et al. 2006). The phylogeny was constructed using RAxML with the GTRGAMMA 
substitution model. Bootstrap values greater than 75 are indicated at the nodes.

well as agents of blue stain in timber, many of which result 
in substantial economic losses (Roux et al. 2000, Baker et 
al. 2003, Barnes et al. 2003, Van Wyk et al. 2007, Heath et 
al. 2009). De Beer et al. (2014), Fig. 4, revised this fungal 
family based on morphological, phylogenetic and ecological 
evidence and it now includes numerous clearly circumscribed 
genera such as Ceratocystis, Endoconidiophora, and 
Huntiella. 

Huntiella species previously formed part of the 
Ceratocystis moniliformis complex (De Beer et al. 2014). 
Species of Huntiella are generally weak pathogens or 
saprobes, although some cause sapstain which reduces the 

value of timber (Van Wyk et al. 2006, Kirisits et al. 2013). 
These fungi are associated with insects, particularly sap-
feeding beetles (Nitidulidae) that are thought to primarily aid 
in their spread and distribution (Kirisits 2004). An unusual 
example of a Huntiella species is H. bhutanensis that lives 
in association with the bark beetle Ips schmutzenhoferi 
(Scolytidae) (Van Wyk et al. 2004, Kirisitset et al. 2013). In 
general, however, little is known regarding the biology or 
ecology of Huntiella species. For example, H. decipiens, 
that forms the basis of the present study, is known only from 
one region in the Limpopo Province of South Africa, where 
it was isolated from wounds on plantation-grown Eucalyptus 
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species and from a Staphilinid (Staphylinidae) beetle found 
on freshly cut E. saligna stumps (Nkuekam et al. 2012). 

The aim of this study was to produce a good quality draft 
genome assembly for H. decipiens. The genomes of several 
members of Ceratocystidaceae are already available in the 

public domain (Belbahri 2015, Van der Nest et al. 2014a, 
2014b, Wilken et al. 2013, Wingfield et al. 2015a, 2015b, 
2016) and the genome sequence for H. decipiens will provide 
valuable opportunities for comparative genomic studies on 
this important group of fungi.
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Figure	1.	Identity	verification	of	Ceratocystidaceae	isolates	sequenced	in	this	study,	and	in	all	
previous	IMA	Genome	Announcements	(IMA	Genome-F:	1-7;	Van	der	Nest et	al. 2014a;	van	der	
Nest et	al. 2014b;	Wilken et	al. 2013;	Wingfield et	al. 2015a;	Wingfield et	al. 2016a;	Wingfield et	al.
2015b;	Wingfield et	al. 2016b).	Gene	regions	(60S,	LSU,	MCM7)	used	for	verification	were	extracted	
from	assembled	genomes.	Other	reference	isolates	and	their	corresponding	sequences	were	
obtained	from	De	Beer et	al. (2014).	The	phylogeny	were	constructed	using	RAxML	with	
GRTGAMMA	substitution	model.	Bootstrap	values	greater	than	75	were	indicated	at	nodes.

Fig. 4. Identity verification of Ceratocystidaceae isolates sequenced in this study, and in all previous IMA Genome Announcements (IMA 
Genome-F: 1–7; Van der Nest et al. 2014a, 2014b, Wilken et al. 2013, Wingfield et al. 2015a, 2016a, 2015b, 2016b). Gene regions (60S, 
LSU, MCM7) used for verification were extracted from assembled genomes. Other reference isolates and their corresponding sequences were 
obtained from De Beer et al. (2014). The phylogeny was constructed using RAxML with the GTRGAMMA substitution model. Bootstrap values 
greater than 75 are indicated at the nodes.
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SEQUENCED STRAIN

South Africa: Soutpansberg, isol. Staphilinid spp. infesting 
Eucalyptis saligna, Dec. 2008, K. Nkuekam (CMW 30855, 
CBS 129736 – cultures; PREM 60560 – dried culture).

NUCLEOTIDE SEQUENCE ACCESSION 
NUMBER

The Huntiella decipiens isolate CMW 30855 Whole Genome 
Shotgun project has been deposited in GenBank under 
accession no. NETU00000000.

MATERIALS AND METHODS

Genomic DNA was isolated from H. decipiens isolate 
CMW 30855 (Barnes et al. 2001) and sequenced using 
the Genomics Analyzer IIx, Illumina platform from the UC 
Davis Genome Centre (University of California, Davis, A). 
For this purpose, paired-end libraries of 350- p and 600 bp 
insert sizes were prepared and sequenced following the 
Illumina protocol. The CLC Genomics Workbench v. 8.0.1 
(CLCBio, Aarhus) was employed to quality trim reads and de-
novo assemble a draft genome sequence using the default 
parameters. Thereafter, the assemblies were scaffolded 
using SSPACE v. 2.0 (Boetzer et al. 2011). GapFiller v. 
2.2.1 (Boetzer & Pirovano 2012) was used to fill the gaps 
created during the scaffolding. The number of putative open 
reading frames (ORFs) was predicted with the web-based 
de novo gene prediction software AUGUSTUS using the 
Fusarium graminearum gene models (Stanke et al. 2008). 
The “create detailed mapping report” command of the CLC 
Genomics Workbench was used to produce statistics for the 
draft sequence. The Benchmarking Universal Single-Copy 
Orthologs (BUSCO v. 1.22) tool was used to assess the 
genome completeness (Simão et al. 2015) using the fungal 
data set.

RESULTS AND DISCUSSION

The estimated size of the assembled Huntiella decipiens draft 
genome was 26.7 Mb, with 638 scaffolds larger than 500 
bases. AUGUSTUS analysis predicted 7254 ORFs, which 
corresponds to an average gene density of 271.7 ORFs/
Mb. The assembly contained 1 403 Complete Single-Copy 
BUSCOs, 90 Complete Duplicated BUSCOs, 11 Fragmented 
BUSCOs and 24 missing BUSCOs. The taxonomic identity 
of the genome was confirmed using a phylogenetic analysis 
using authenticated sequences (Fig. 4).

Relative to other species in Ceratocystidaceae, H. 
decipiens has a similar size genome than those of H. 
bhutanensis (26.7 Mb, 7261 ORFs) (Wingfield et al. 2016) 
and H. moniliformis (25.4 Mb, 6832 ORFs) (Van der Nest 
et al. 2014b). Compared to other species in the family, 
however, these three Huntiella genomes appeared to 
be smaller, encoding fewer genes. For example, the H. 

decipiens genome is smaller than those of H. omanensis 
(31.5 Mb, 8395 ORFs), Ceratocystis manginecans (31.7 
Mb, 7494 ORFs), C. fimbriata (29.4 Mb, 7 266 ORFs), E. 
laricicola (33.3 Mb, 6 897 ORFs), and D. virescens (33.7 
Mb, 6953 ORFs) (Van der Nest et al. 2014a, 2014b, Wilken 
et al. 2013, Wingfield et al. 2015, 2016). Whether these 
differences in genome size are linked to the different life-
styles of these fungi requires further research, which will be 
the subject of future studies.

Authors: N. Soal, M.A. van der Nest*, P.M. Wilken, E.T. 
Steenkamp, C. Tatham, K. Naidoo, M.J. Wingfield, 

and B.D. Wingfield
*Contact: Magriet.VanderNest@fabi.up.ac.za

IMA Genome-F 8E

Draft genome sequence of 
Ophiostoma ips

INTRODUCTION

Ophiostoma ips is an ascomycete fungus of the O. ips 
species complex (Ophiostomatales, Ascomycota) (De Beer & 
Wingfield 2013). The fungus was first described as the causal 
agent of blue stain on Pinus lumber in the USA (Rumbold 
1931). Ophiostoma ips is commonly associated with conifer-
infesting bark beetles in the genera Ips, Orthotomicus, and 
Hylurgus, which are native to the Northern Hemisphere. 
Outside of its native range, O. ips has been reported in 
various countries of the Southern Hemisphere including 
Australia, Chile, New Zealand, and South Africa, where it 
has been accidentally introduced with its bark beetle vectors 
(Wingfield & Marasas 1980, Zhou et al. 2001, 2004). A 
population genetic study using microsatellite markers (Zhou 
et al. 2007) revealed a high level of admixture between O. ips 
populations, suggesting frequent movement of this species 
between countries and continents. Although there have been 
some studies suggesting weak pathogenicity on conifers 
(Lieutier et al. 1989, Zhou et al. 2002), like most other 
Ophiostoma spp. and their relatives (Six & Wingfield 2011), 
O. ips is generally considered not to be a primary pathogen 
and its relevance is usually as a consequence of the reduced 
value of the wood due to sap stain (Seifert 1993).

We generated the genome sequence for O. ips, which 
adds to a growing number of genomes available from species 
of Ophiostomatales. Together, these genomes will serve as 
a valuable resource, enabling future comparative genomics 
studies seeking to gain insight into the biology, ecology and 
evolution of species in Ophiostomatales.

SEQUENCED STRAIN

USA: Louisiana: isol. Pinus taeda, 2004, X. Zhou (CMW 
19371 = CBS 138721 – culture).
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NUCLEOTIDE SEQUENCE ACCESSION 
NUMBER

The genomic sequence of Ophiostoma ips (CMW 19371 = 
CBS 138721) has been deposited at DDBJ/EMBL/GenBank 
under the accession NTMB00000000. The version described 
in this paper is version NTMB01000000.

METHODS

An isolate of Ophiostoma ips (CMW 19371 = CBS 138721) 
was obtained from the culture collection (CMW) of the 
Forestry and Agricultural Biotechnology Institute, University 
of Pretoria. DNA was extracted from a single conidium culture 
following a method described previously (Duong et al. 2013). 
Two pair-end libraries (350 bp and 550 bp medium insert 
sizes) were prepared and sequenced using the Illumina Hiseq 
2500 platform. The program Trimmomatic v. 0.36 (Bolger 
et al. 2014) was used for quality and adapters trimming of 
pair-end reads. The genome was assembled from trimmed 
reads using Spades v. 3.10 (Bankevich et al. 2012) and 
was further placed into scaffolds using SSPACE Standard 
v. 3.0 (Boetzer et al. 2011). Gaps were filled or reduced 
with GapFiller v. 1.10 (Boetzer & Pirovano 2012). Several 
runs of genome assembly were conducted using different 
parameters. Assemblies obtained from these runs were 
subjected to quality and completeness assessment using the 
program BUSCO v. 2.0 (Simão et al. 2015) using the dataset 
for Sordariomycetes. The best assembly based on the best 
BUSCO statistics in term of completeness, was selected 
and presented in this study. The program AUGUSTUS v. 
3.2.2 (Stanke et al. 2006) was used to estimate the number 
of protein coding genes encoded by the genome using the 
species model for Neurospora crassa.

RESULTS AND DISCUSSION

The genome of Ophiostoma ips was assembled into 351 
scaffolds. The genome is 25.99 Mb and the assembly has 
an N50 of 140.6 Kb. The average coverage across the whole 
genome was 80 times. The assembled O. ips genome has 
an average GC content of 56 %. The genome of O. ips has 
smaller genome size and higher GC genome content when 
compared to that of other Ophiostoma species such as O. 
ulmi (31.5 Mb, GC = 50.02 %; Khoshraftar et al. 2013), O. 
novo-ulmi (31.8 Mb, GC = 50.01 %; Forgetta et al. 2013) 
and O. piceae (32.8 Mb, GC = 52.8 %; Haridas et al. 2013). 
The taxonomic identity of the genome was confirmed using 
a phylogenetic analysis using authenticated sequences 
(Fig. 3). Assessment of the assembly using BUSCO with 
the Sodariomycetes dataset resulted in a completeness of 
96.8 % (C:3606 [S:3603, D:3], F:42, M:77, n:3725), indicating 
that the assembly should cover most of the organism’s gene 
space. AUGUSTUS prediction using species model for 
Neurospora crassa resulted in 7607 protein coding genes, 
which is slightly lower than that of O. ulmi (8639 genes; 
Khoshraftar et al. 2013), O. novo-ulmi (8640 genes; Comeau 
et al. 2015), and O. piceae (8884 genes; Haridas et al. 2013). 

The draft genome sequence from O. ips presented in this 
study will be a valuable addition to a number of genomes 
already available for species in Ophiostomatales. These will 
enable further studies to better understand this interesting 
group of fungi.

Authors: T.A. Duong*, M.J. Wingfield, Z.W. De Beer,
and B.D. Wingfield

*Contact: Tuan.Duong@fabi.up.ac.za
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