ARTICLE IN PRESS

South African Journal of Botany xxx (2018) xxx-xxx

Contents lists available at ScienceDirect

South African Journal of Botany

journal homepage: www.elsevier.com/locate/sajb

Selected South African plants with tyrosinase enzyme inhibition and their effect on gene expression

Stapelberg J., Nqephe M., Lambrechts I., Crampton B., Lall N.*

Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Lynwood, Hatfield, Pretoria 0002, South Africa

ARTICLE INFO

Article history: Received 21 May 2018 Received in revised form 28 June 2018 Accepted 17 August 2018 Available online xxxx

Keywords: Tyrosinase Gene expression Medicinal plants Hyperpigmentation Melanogenesis pathway

ABSTRACT

Hyperpigmentation causes patches of skin to blemish and may lead to serious skin disorders. Prevention of hyperpigmentation would require suppressing the melanogenesis pathway which uses the rate limiting enzyme tyrosinase. South African plant extracts, *Myrsine pillansii, Rapanea melanophloeos, Vachellia karroo, Kalanchoe thyrsiflora, Ormocarpum trichocarpum* and *Myrsine africana* were tested for their tyrosinase inhibiting potential at both the tyrosinase activity and tyrosinase gene expression levels. The plant extracts, *O. trichocarpum* and *V. karroo*, have the most effective inhibition of 50% of the tyrosinase enzyme at concentrations of 2.95 and 6.84 µg/ml, respectively. The cytotoxicity of the plant extracts were investigated using B16-F10 mouse melanocyte cells. The tyrosinase gene expression levels were examined on the B16-F10 mouse melanocyte cells treated with the South African plant extracts, through real-time reverse transcription polymerase chain reaction (RT-qPCR). Three of the mouse melanocyte samples treated with *K.thyrsiflora, M. pillansii* and *V.karroo* showed significant down regulation of tyrosinase gene expression (*p*-value < 0.05) at 1.2, 3.7 and 12.7 fold, respectively. These plant extracts indicate depigmenting potential through inhibition of tyrosinase directly and at the transcriptional level and therefore, should be investigated further.

© 2018 SAAB. Published by Elsevier B.V. All rights reserved.

1. Introduction

Hyperpigmentation is a common condition which can cause patches of skin to blemish and become darker. This problem may affect the skin colour of all ethnicities and although it is aesthetically displeasing, the problem may persist to more serious skin disorders. Ailments such as melasma, ephelide, solar lentigines or melanoma skin cancer are just a few of the negative consequences of hyperpigmentation (Ortiz-Ruiz etal. 2016). Hyperpigmentation overproduces melanin, the complex polymer responsible for pigmentation of hair, eyes and skin, within melanocyte cells (Ana Sofia Ribeiro etal., 2015). Melanocyte cells are distributed in the basal layer of the dermis and they produce and secrete melanin through a physiological process known as melanogenesis. Melanogenesis is a combination of chemical and enzymatic reactions which requires the rate limiting enzyme tyrosinase for the first few steps in the melanin biosynthesis pathway (Slominski etal., 2004). Tyrosinase is a copper containing mono-oxygenase which catalyses both the hydroxylation of monophenols to o-diphenols and the oxidation of

* Corresponding author.

o-diphenols to o-quinones. It is these unstable o-quinones which eventually form melanin (Ortiz-Ruiz etal., 2016).

Prevention of hyperpigmentation would require suppressing the melanogenesis pathway and although many synthetic compounds exist in the cosmeceutical industry, they all have adverse damaging effects. One such example is hydroquinone, a synthetically formulated compound that has been used as the skin-depigmenting agent worldwide. It has a cytotoxic effect on melanocyte cells with harmful concentrations as low as 1%. These side-effects can include erythema, dermatitis and impaired wound healing with prolonged use (Solano etal., 2006). Arbutin, a derivative of hydroquinone extracted from cranberries, blueberries and wheat is a natural and safer depigmentation alternative (Alexis etal., 2010). Natural ingredients could therefore offer safer alternatives to medical cosmetics.

South Africa is considered one of the world's biodiversity hotspots with over 22,000 indigenous species, many often used for medicinal purposes (Forest etal., 2014). In this study, the Southern African plants, *Myrsine pillansii, Rapanea melanophloeos, Vachellia karroo, Kalanchoe thyrsiflora, Ormocarpum trichocarpum* and *Myrsine africana* were investigated for their tyrosinase inhibiting potential. The selection of plants for this study were based on traditional usages for skin-related diseases, such as, wound healing, allergies, acne and skin cancer. These plants were also shown to contain polyphenols, tannins and derivatives of vitamin C, chemical constituents associated with skin toning and depigmentation.

https://doi.org/10.1016/j.sajb.2018.08.013

0254-6299/© 2018 SAAB. Published by Elsevier B.V. All rights reserved.

Abbreviations: RT-qPCR, real-time reverse transcription polymerase chain reaction; DMSO, dimethyl sulphoxide; XTT, 2,3-Bis-(2-methoxy-4-nitro-5-sulfophenyl)-2Htetrazolium-5-carboxanilide; TYR, tyrosinase gene; CPT2, carnitine palmitoyltransferase 2 gene; ANOVA, analysis of variance; MITF, microphthalmia transcription factor; cAMP, cyclic adenosine monophosphate.

E-mail address: namrita.lall@up.ac.za (N. Lall).

ARTICLE IN PRESS

The aim of the present study was to investigate Southern African plants: *M. pillansii*, *R.melanophloeos*, *V.karroo*, *K.thyrsiflora*, *O. trichocarpum* and *M.africana*'s potential to downregulate melanogenesis, both by inhibiting tyrosinase and downregulating the tyrosinase gene expression.

2. Methods and materials

2.1. Plant extractions

Fresh leaves and stems of *M.pillansii*, *R.melanophloeos*, *V.karroo*, *K. thyrsiflora*, *O.trichocarpum* and *M.africana* were collected in January 2016 from the Manie van der Schiff Botanical Garden. The plant species identity was confirmed and a voucher number was then deposited at the H.G.W.J Scheickerdt Herbarium of the University of Pretoria. The plant materials were shade-dried at room temperature for 2 months, the material was ground and the final fine powder material was weighed. The plant material was then suspended in a 1:10 solvent 99% ethanol (Merck) to dry weight ratio. Ethanol can dissolve both polar and non-polar substances, and was therefore used as a solvent in this study since a large range of secondary metabolites would then be extracted and tested (Eloff, 1998).

2.2. Tyrosinase inhibition assay

The M.pillansii, R.melanophloeos, V.karroo, K.thyrsiflora, O. trichocarpum and M.africana plant extracts were tested for their anti-tyrosinase activity and as a measure of comparison, a known tyrosinase inhibitor, kojic acid, was used as the positive control (Nerya etal. 2003). In triplicate, the plant samples and kojic acid were dissolved in dimethyl sulphoxide (DMSO) to a final concentration of 20 mg/ml. These samples were diluted with potassium phosphate buffer (pH 6.5) (Sigma Aldrich, South Africa), in a 24-well plate to eight concentrations, ranging from 600 to 37.5 µg/ml. For each sample, 70 µl of each dilution was aliquoted in triplicate to the wells of a 96-well plate in eight concentrations ranging from 200 to 1.563 µg/ml. A negative DMSO control (200 mg/ml), diluted with potassium phosphate buffer, was included in six wells. For all the samples, 30 µl of the prepared tyrosinase enzyme (333 units/ml) was then aliquoted into each well. The plate was incubated for 5 min at room temperature. After the incubation, 110 µl of the L-tyrosine substrate was added to the wells and the plate was further incubated at room temperature for 30 min.

The BIOTEK power XSmulti-well plate reader (A.D.P, Weltevreden Park, South Africa) was used to read the optical densities of each well at a wavelength of 492 nm. Using GraphPad prism software (San Diego, California, USA), the IC₅₀ values, coefficients of determination (Adedapo etal., 2008), and statistical significance was calculated for each sample.

2.3. XTT cytotoxicity assay

The plant extracts, *M.pillansii*, *R.melanophloeos*, *V.karroo*, *K. thyrsiflora*, *O.trichocarpum* and *M.africana* were also tested on mouse melanocyte B16-F10 cells with increasing concentration intervals and the resulting cell viability was measured. Mouse melanocyte cells were purchased from Highveld Biological (South Africa) and cultured with minimum essential medium cell culture medium containing 10% Foetal Bovine Serum, 1.5 g/l NaHCO3, 2 mM l-glutamine, 10 g/ml penicillin, 10 g/ml streptomycin and 0.25 g/ml fungizone. The cell viability assay was conducted as described by the 2,3-Bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) cell proliferation kit II (Sigma-Aldrich, South Africa) with few modifications. Actinomycin D was used as the positive control since it induces cytotoxicity at a known concentration (Syme et al., 2004). The crude extract and actinomycin D were tested at 400–6.25 µg/ml in triplicate in a 96-well plate. The samples were incubated for 72 h at 37 °C in 5% CO₂. After this

incubation period, XTT reagent (1 mg/ml XTT with 0.383 mg/ml PMS) was added to all samples. The samples were then left to incubate for 3 h and the BIOTEK power XSmulti-well plate reader (A.D.P, Weltevreden Park, South Africa) was used to read the optical densities of each well at a wavelength of 405 nm. GraphPad prism software (San Diego, California, USA) was then used to calculate the IC_{50} values for each sample.

2.4. Mouse melanocyte cell treatments with plant extracts, RNA extractions and cDNA synthesis

The tyrosinase and cytotoxicity assay results provided a selectivity index and concentrations of plant extracts below the toxicity level and above the anti-tyrosinase activity were selected for each plant species as seen in Table2. Mouse melanocyte cell treatments with the plant extracts were undertaken in a 24-well plate with minimum essential medium, B16-F10 mouse melanocyte cells were cultured to 1×10^{6} cells per well. Controls included a solvent control of DMSO (2%) and a negative control of untreated cells. Each well was then treated with the selectivity index concentration of M.pillansii, R.melanophloeos, V.karroo, K.thyrsiflora, O.trichocarpum or M.africana in triplicate and incubated for 72 h at 37 °C at a 5% CO₂ level. After incubation, total RNA was extracted from B16-F10 mouse melanocyte cells using the Qiagen RNeasy minikit (Oiagen, Hilden, Germany). The additional on-column DNAse digestion using the RNase free DNase purification kit (Qiagen, Hilden, Germany) was included to eliminate genomic DNA contamination. The quality of the RNA samples were assessed on the NanodropTM 2000 spectrophotometer (Thermo Scientific, Minnesosta, USA) by obtaining the OD_{260/280} and OD_{260/230} ratios. Further evaluation of the RNA quality included a Seakem® LE Agarose (Lonza Rockland, USA) gel electrophoresis of all the RNA samples. Extracted RNA (500 ng) was used to prepare cDNA using the cDNA synthesis kit (Thermo Scientific, South Africa). Lipoic acid, a known transcription inhibitor was used as a positive control.

2.5. PCR primers

Specific primers for the two genes *M.musculus* tyrosinase (P11344) and *M.musculus* carnitine palmitoyltransferase 2 (CPT2) (NC_000070) were designed with Primer3 Software (version 0.4.0). Selected primers for each gene were as follows: Tyrosinase Forward Primer: 5' CCAGTGCCTTGTATATGC 3', Tyrosinase Reverse Primer: CCTTGAA CCGCTAGAGAA 3', CPT2 Forward Primer: 5' CCTGCCAAGAAG TGACACAGA 3', CPT2 Reverse Primer: ATCCAGGGGATATGCATTGA 3'.

2.6. Real-time quantitative PCR relative expression analysis of tyrosinase cDNA in mouse melanocyte cells

The real-time quantitative PCR (RT-qPCR) analysis was conducted with the Biorad CFX96 TouchTM Real-TimePCR detection system (Biorad Labratories, Johannesburg, South Africa) and the SYBR® Green Master Mix (Life Technologies, Johannesburg, South Africa). The expression of the tyrosinase gene (TYR) across all samples was quantified by assessing its stability against the housekeeping reference gene, CPT2, with three technical replicates for each sample. Concisely, each 10 µl reaction comprised of $1 \times$ SYBR® Green Master Mix, 0.2 μ M forward, 0.2 μ M reverse primer, 1.25 ng/ μ l cDNA template and millipore water. The samples were run for 10 min/95 °C, then 40 cycles of amplification were carried out with the following thermal profile: 10 s/95 °C, 30 s/ 59 °C, 10 s/72 °C. To verify the primer specificity, a melting point analysis was included where the samples were heated from 65 to 95 °C with 5 s increments. The Biorad CFX ManagerTM software was used to generate crossing point values as well as the melting curves, standard curves and amplification plots for the TYR and CPT2 genes. The TYR gene relative expression values were normalised by the reference gene CPT2 cDNA (Vandesompele et al., 2002). Statistical analysis of the relative

<u>ARTICLE IN PRESS</u>

J. Stapelberg et al. / South African Journal of Botany xxx (2018) xxx-xxx

expression data was done with GraphPad Prism 5.04 software using logtransformed normal distributed relative quantification data. Aone-way Analysis of variance (ANOVA), measured at a $p \le 0.05$ level of statistical significance, was used to detect significant differences between the DMSO and plant extract mouse melanocyte treated samples.

3. Results

Table1 summarises the botanical name, authority name, family, voucher specimen and plant parts utilised of the six Southern African plants used in this study.

3.1. Tyrosinase inhibition assay

The substrate, L-tyrosine was used to determine the monophelase and diphenolase activity of the mushroom enzyme tyrosinase. The tyrosinase activity was measured by the IC_{50} value, which is the concentration of the plant extract required to inhibit 50% of the tyrosinase activity. Table2 below presents the tyrosinase inhibition potential of the selected plant extracts. Some selected plants showed good anti-tyrosinase activities with low IC_{50} values. The plant extract *V.karroo* (6.84 µg/ml) inhibited the tyrosinase enzyme activity at a concentration close to that of the control, kojic acid (6.45 µg/ml) and *O.trichocarpum*'s (2.95 µg/ml) activity was even better than that of kojic acid. Certain plant constituents are known to be common only in specific plant families. Both *V.karroo* and *O.trichocarpum* belong to the Fabaceae, a plant family well-known for containing high levels of polyphenolic compounds, such as flavanoids (Musabayane, 2012).

The plants *K.thyrsiflora* (14.3 μ g/ml) and *M.africana* (27.4 μ g/ml) showed slightly higher IC₅₀ values than Kojic acid but still had tyrosinase inhibiting activity potential. The plants *M.pillansii* (231.10 μ g/ml) and *R.melanophloeos* (102.8 μ g/ml) had high IC₅₀ values, but through this assay only tyrosinase inhibitors which directly affect the activity of the tyrosinase enzyme, are quantified. However, the inhibition of melanogenesis may include other mechanisms of action. It is crucial therefore to study the plant extracts at other inhibiting levels. For this study, the *invitro* effect of the plant extracts on the genetic expression of tyrosinase within mouse melanocyte cells, was examined further.

3.2. XTT cytotoxicity assay

Potential tyrosinase inhibiting compounds could be restricted according to their cytotoxicity levels. If the compound is too cytotoxic, then it would not be regarded as safe and would be an unlikely candidate for future cosmetic applications. To ensure the plant extracts were not toxic or damaging to the melanocyte cells, a cytotoxicity assay was completed on B16-F10 mouse melanocyte cells. Based on the metabolic activity of the cells, the cell number and viability of the cells were calculated. The IC_{50} values obtained from this assay

Table2

The tyrosinase inhibition potential and cytotoxicity of the selected Southern African plant extracts.

Plant sample	Extract yield (%)	Tyrosinase IC ₅₀ (µg/ml)	± SD ^a	Cytotoxicity (µg/ml)	± SD ^a
M.pillansii	15.79	231.10	1.67	169.79	1.93
R.melanophloeos	13.25	102.80	1.32	79.23	2.64
V.karroo	11.36	6.84	2.11	153.4	1.74
K.thyrisflora	9.08	14.3	1.21	131.4	2.34
O.trichocarpum	5.69	2.95	1.76	254.9	1.10
M.africana	7.69	27.4	2.05	155.4	1.83
Kojic acid*	-	6.45	0.99	-	-
Lipoic acid**	-	452.50	1.01	-	-
Actinomycin	-	-	-	0.00915	-
D***					

* Positive control for anti-tyrosinase assay.

** Positive control for tyrosinase gene expression.

*** Positive control for cytotoxicity assay.

^a SD indicates standard deviation.

represented the concentrations at which 50% of the cells were inhibited for each plant extract. As seen in Table2, all the plant extracts, except *R. melanophloeos* had an IC₅₀ value greater than 100 μ g/ml, and were therefore regarded as safe. The toxicity of *R.melanophloeos* is moderate, with the correct concentrations and careful consideration its usage can be easily regulated in cosmetic applications.

3.3. Real-time quantitative PCR relative expression analysis of tyrosinase cDNA in mouse melanocyte cells

Relative quantification provides a means to compare the potential changes in gene expression with the fold difference indicating whether the change in treatment is significant or not (Fraga etal., 2008). RT-qPCR analysis of the treated and untreated mouse melanocyte samples for both the TYR and CPT2 genes were performed with three technical replicates each. The CPT2 gene is expressed in mouse melanocyte cells at levels similar to the expression of tyrosinase (Fraga etal. 2008). Therefore, we could obtain an indication of whether the tyrosinase expression was increased or decreased for each sample when compared to CPT2 levels. Besides normalising the tyrosinase gene expression levels by relative quantification, the reference gene CPT2, also ensured that the comparison made was between equivalent amounts of starting sample.

The relative expression of tyrosinase, normalised against the CPT2 reference gene, can be seen in Fig.1. The untreated mouse melanocyte cells were used as a control and indicated the second highest expression of the tyrosinase gene. Surprisingly the extract, *R.melanophloeos*, upregulated the expression of the tyrosinase gene whilst all the other treatments downregulated the tyrosinase mRNA compared to the untreated control. Since the plant extracts were dissolved in DMSO

Table1

Botanical name, authority name, family, voucher specimen and plant parts utilised of selected South African medicinal plants.

		1 1	1		Å	
Plant extract	Common name	Family	Voucher specimen number	Plant parts utilised	Medicinal uses	References
Myrsine pillansii (L.) Adamson	African boxwood	Myrsinaceae	Q.R.17	Leaves and stems	Blood purifier, wound healing, skin treatment	Watt & Breyer-Brandwijk (1962)
Rapanea melanophloeos (L.) Mez	Cape beech	Myrsinaceae	Q.R.18	Leaves and stems	Treat stomach, respiratory and nervous system disorders, wound healing	Gwala (2011)
Myrsine africana (L.)	Large cape myrtle	Myrsinaceae	S.M.95503	Leaves	Anthelmintic and anti-acne.	Chopra etal. (1956)
Vachellia karroo Hayne	Sweet thorn tree	Fabaceae	BC77	Roots	Treatment of colds and acne.	Madureira etal. (2012)
Ormocarpum trichocarpum (Taub.) Engl.	Hairy caterpillar-pod	Fabaceae	BC19	Leaves	Treatment of stomach and skin ailments.	Chukwujekwu etal. (2012)
Kalanchoe thyrsiflora Harv.	Paddle plant	Crassulaceae	BC16	Leaves	Treatment of earaches, acne and colds.	Pooley (1998)

4

ARTICLE IN PRESS

J. Stapelberg et al. / South African Journal of Botany xxx (2018) xxx-xxx

Fig.1. Normalised RT-qPCR expression profiles of the tyrosinase mRNA in B16-F10 mouse melanocyte cells. The melanocyte cells were treated with *M.pillansii*, *R. melanophloeos*, *V. karroo*, *K. thyrsiflora* and *M.africana* as well as lipoic acid, DMSO and untreated controls. The treatments were performed in triplicate and the average tyrosinase gene relative expression values were normalised by dividing the amount of input tyrosinase cDNA (extrapolated from the respective standard curves) by the input cDNA of the reference gene CPT2. Standard error of the average relative expression is indicated by the error bars in the figure. Statistical analysis of the relative expression data was done by one-way ANOVA analysis. * Indicates a statistical significant change in mean expression value when compared to the DMSO control. The extracts *M.pillasnii* and *V.karroo* significantly inhibited tyrosinase gene expression (*p*-value < 0.05).

prior to treatment, and DMSO clearly had an effect on tyrosinase expression, it was used as a measure of comparison. The relative expression of the plant treated samples were compared against the DMSO control and a fold-change was calculated.

The one way ANOVA test indicated that all the samples were significantly different to the DMSO control at a calculated probability equal or smaller than 0.05. The plant extract, *M.africana* upregulated the tyrosinase mRNA expression at the tested concentrations by 2.7-fold, respectively, when compared to the untreated control. Whilst the plant extract *R.melanoploeos*up-egulated tyrosinase expression by 3.5-fold, respectively, when compared to the DMSO control. These plant extracts are therefore possibly decreasing melanin production through other mechanisms besides down-regulating the expression of tyrosinase gene.

Levels of tyrosinase mRNA were downregulated by *K.thyrsiflora*, *M. pillansii* and *V.karroo* by 1.2-, 3.7- and 12.7-fold when compared to the DMSO control. The positive control, lipoic acid is known to inhibit tyrosinase gene expression with the lowest 0.004 relative expression to the tyrosinase gene expression. Lipoic acid downregulated the expression of the tyrosinase gene by 81.3-fold compared to the DMSO control.

4. Discussion

The greatest anti-tyrosinase activity was observed by the plant extracts, *V.karroo* and *O.trichocarpum*, equal or better than that of kojic acid. The positive control, kojic acid chelates the copper ion in the tyrosinase enzyme to induce inhibition on catecholase and monophenolase activities of tyrosinase (Nerya etal., 2003). Kojic acid binding to the tyrosinase active centre is a form of competitive inhibition preventing the catalysed oxidation of L-Dopa. Kojic acid has been used in skin depigmenting products at concentrations of 1–4% (Nerya etal. 2003), but its instability and potential side effects such as erythema, sensitization and irritant contact dermatitis reduces its choice for use in cosmetics (Monteiro etal., 2013).

When observing our plant extracts, *V.karroo* and *O.trichocarpum*, used in the present study, their inhibition of tyrosinase could have been due to competitive inhibitors present. Competitive inhibitors compete against melanin substrates, such as L-Dopa, for the same active centres of the enzyme. Therefore, the inhibitor and substrate are mutually exclusive and may be copper chelators, non-metabolizable

analogues or substrate derivatives of the true substrate (Chang, 2009). Since copper is an essential part of the enzymatic activity, tyrosinase can be inhibited by compounds which bind to the copper (Chang, 2009). The *V.karroo* and *O.trichocarpum* extracts most likely act through competitive inhibition since the Fabaceae family are known to contain many phenolic flavonoid components (Musabayane, 2012). In a previous study, the Asian plant, *Sophora japonica* (Fabaceae), has been proven to be a potent tyrosinase inhibitory agent which contains the anti-tyrosinase activity of several important flavonoids, such as rutin and quercetin (Lai etal., 2014). Flavonoids contain a phenol structural group which may be a structural analogue to the L-tyrosine substrate (Chang, 2009). This phenolic structure would compete with the substrate for the active site of tyrosinase, inhibiting its activity.

The anti-tyrosinase assay only quantifies tyrosinase inhibitors, which directly affect the activity of the tyrosinase enzyme. However, the inhibition of melanogenesis may include downregulating the genetic expression of tyrosinase within mouse melanocyte cells. The positive control for tyrosinase gene expression studies was lipoic acid, an antioxidant dithiol-containing cofactor for many mitochondrial enzymes (Goraca etal., 2011). Lipoic acid contains both antioxidant and dopaquinone activity and has been proven to block the expression of the microphthalmia transcription factor (MITF), which subsequently inhibits the expression of tyrosinase (Lu etal., 2011). Although lipoic acid is very effective in depigmentation, it is unfeasible as a cosmetic since it is toxic to cells and might interrupt the expression of off-target genes, such as ribosomes or CPT2 (Kim etal., 2008).

The natural plant extracts *K.thyrsiflora*, *M.pillansii* and *V.karroo*, exhibited downregulation of the tyrosinase gene expression. Similar to lipoic acid, these plant extracts most likely downregulated tyrosinase expression through the suppression of MITF expression, which is the most influential in modulating transcriptions of melanogenic enzymes (Park etal., 2009). MITF influences tyrosinase gene expression through the cyclic adenosine monophosphate (cAMP) dependant signal pathway (Ebanks etal., 2009).

Anti-inflammatory agents are known as good cAMP inhibitors (Gallardo and Johnson, 2004; Nanda etal., 2006). Aromatic-turmerone, a major bioactive compound of the curcumin herb, *Curcuma longa*, has been well-known for its anti-inflammatory properties (Hucklenbroich etal., 2014). In 2011, this compound was also discovered to downregulate tyrosinase gene expression through suppression of the cAMP

ARTICLE IN PRESS

J. Stapelberg et al. / South African Journal of Botany xxx (2018) xxx-xxx

pathway (Park etal., 2011). Resveratrol, an aromatic hydroxstillbene, with antioxidant and anti-inflammatory activity, exhibited downregulation of tyrosinase gene expression by reduction of MITF and tyrosinase promoter activities (Ebanks etal. 2009). This mechanism of action is most likely present in *V.karroo* which has been reported to possess anti-inflammatory activities (Adedapo etal., 2008).

Other reports have shown MITF activity inhibition by phenolic compounds, especially flavonoids (Chan etal., 2014), which are also capable of modulating the activity of enzymes (Abbhi etal., 2011). One such example is the compound, luteolin a flavone flavonoid, which inhibited both tyrosinase activity and melanin production in MSH stimulated B16-F10 melanoma cells. The flavonoid inhibited the intracellular cAMP levels thereby reducing the production of melanin in the melanoma cells (Choi etal., 2008). From phytochemical analysis flavonoids were abundantly present in *M.africana*, and we can assume their presence in *M.pillansii* (Abbhi etal., 2011).The *M.pillansii* plant might therefore have downregulated the tyrosinase gene through reduction of the intracellular cAMP levels.

Another known set of inhibitors of the cAMP/MITF pathway includes terpenoids (Muhammad etal., 2016). From a previous study, a terpenoid momilactione B, isolated from rice bran, showed tyrosinase inhibitory mechanisms by affecting the MITF activity (Lee and Choi, 1999). Momilactione B also suppressed the activity of MITF in B16-F10 mouse melanocytes through the cAMP pathway and as a result, decreased the expression of the tyrosinase gene (Lee and Choi, 1999). The plant extract, *K.thyrsiflora*, most likely functions in a similar manner to downregulate tyrosinase since the *Kalanchoe* genus has been reported to contain many terpenoid compounds (Dasgupta etal., 2013).

The South African plants tested in this study contain various secondary metabolites which could convey different bioactivities. Transcriptional inhibition of tyrosinase expression is probably mostly due to terpenoid and flavonoid groups of compounds and compounds containing anti-inflammatory activities. Although regulation of tyrosinase by the plants is seen at transcription level, further analyses on other regulation mechanisms remain essential to confirm the mode of activity of the studied plant extracts.

5. Conclusion

The plant extracts, *M.pillansii*, *R.melanophloeos*, *V.karroo*, *K. thyrsiflora*, *O.trichocarpum* and *M.africana* were studied for their melanogenesis inhibiting potential before and during melanin synthesis. This study demonstrated direct inhibition of tyrosinase by *V.karroo* and *O.trichocarpum* and downregulation of tyrosinase gene expression by *K.thyrsiflora*, *M.pillansii* and *V.karroo*. In both cases, the melanogenesis pathway was suppressed and less melanin was formed. These indigenous South African plants have great potential to be developed into a safe pharmaceutical or cosmeceutical products which would promote even skin tone whilst preventing undesirable hyperpigmentation and its associated ailments. These plants should therefore warrant further investigation in the field of skin-depigmentation.

Conflict of interest

The authors declare that there are no conflicts of interest.

Acknowledgements

The authors wish to acknowledge the National Research Foundation for the financial support.

References

Abbhi, V., Joseph, L., George, M., 2011. Phytochemical analysis of fruit extract of Myrsine africana. International Journal of Pharmacy and Pharmaceutical Sciences 3, 427–430.

- Adedapo, A.A., Sofidiya, M.O., Maphosa, V., Moyo, B., Masika, P.J., Afolayan, A.J., 2008. Antiinflammatory and analgesic activities of the aqueous extract of *Cussonia paniculata* stem Bark. Records of Natural Products 2, 46.
- Alexis, A.F., Roberts, W.E., Shah, S.K., 2010. Cosmeceuticals for hyperpigmentation. Cosmeceutical Science in Clinical Practice. Informa Healthcare, New York, NY, pp. 75–81.
- Ana Šofia Ribeiro, M.E., Beatriz Oliveira, M., Manuel Sousa Lobo, José, 2015. Main benefits and applicability of plant extracts in skin care products. Cosmetics 2, 48–65.
- Chan, C.-F., Huang, C.-C., Lee, M.-Y., Lin, Y.-S., 2014. Fermented broth in tyrosinase and melanogenesis inhibition. Molecules 19, 13122–13135.
- Chang, T.-S., 2009. An updated review of tyrosinase inhibitors. International Journal of Molecular Sciences 10, 2440–2475.
- Choi, M.Y., Song, H.S., Hur, H.S., Sim, S.S., 2008. Whitening activity of luteolin related to the inhibition of cAMP pathway in α-MSH-stimulated B16 melanoma cells. Archives of Pharmacal Research 31, 1166–1171.
- Chopra, R.N., Nayar, S.L., Chopra, I.C., 1956. Glossary of Indian Medicinal Plants. CSIR, New Delhi.
- Chukwujekwu, J.C., De Kock, C.A., Smith, P.J., Van Heerden, F.R., Van Staden, J., 2012. Antiplasmodial and antibacterial activity of compounds isolated from *Ormocarpum* trichocarpum. Planta Medica 78, 1857–1860.
- Dasgupta, S., Parmar, A., Patel, H., 2013. Preliminary phytochemical studies of Kalanchoe Gastonis-bonnieri. International Journal of Pharma and Bio Sciences 4, 550–557.
- Ebanks, J.P., Wickett, R.R., Boissy, R.E., 2009. Mechanisms regulating skin pigmentation: the rise and fall of complexion coloration. International Journal of Molecular Sciences 10, 4066–4087.
- Eloff, J., 1998. Which extractant should be used for the screening and isolation of antimicrobial components from plants? Journal of Ethnopharmacology 60, 1–8.
- Forest, F.G.P., Manning, J.C., Baker, D., Colville, J.F., Devey, D.S., Jose, S., Kaye, M., Buerki, S., 2014. Pollinator shifts as triggers of speciation in painted petal irises (Lapeirousia: Iridaceae). Annual of Botany 2, 357–371.
- Fraga, D., Meulia, T., Fenster, S., 2008. Real-time PCR. Current Protocols Essential Laboratory Techniques 10, 11–40.
- Gallardo, M.J., Johnson, D.A., 2004. Cutaneous hypopigmentation following a posterior sub-tenon triamcinolone injection. American Journal of Ophthalmology 137, 779–780.
- Gorąca, A., Huk-Kolega, H., Piechota, A., Kleniewska, P., Ciejka, E., Skibska, B., 2011. Lipoic acid-biological activity and therapeutic potential. Pharmacological Reports 63, 849–858.
- Gwala, P.E., 2011. The anti-platelet aggregation activity of Rapanea melanophloeos: a Zulu medical plant. University of Zululand, p. 323 (MSc thesis).
- Hucklenbroich, J., Klein, R., Neumaier, B., Graf, R., Fink, G.R., Schroeter, M., Rueger, M.A., 2014. Aromatic-turmerone induces neural stem cell proliferation invitro and invivo. Stem Cell Research & Therapy 5, 1.
- Kim, J.-H., Sim, G.-S., Bae, J.-T., Oh, J.-Y., Lee, G.-S., Lee, D.-H., Lee, B.-C., Pyo, H.-B., 2008. Synthesis and anti-melanogenic effects of lipoic acid-polyethylene glycol ester. Journal of Pharmacy and Pharmacology 60, 863–870.
- Lai, J.-S., Lin, C., Chiang, T.-M., 2014. Tyrosinase inhibitory activity and thermostability of the flavonoid complex from *Sophora japonicaL* (Fabaceae). Tropical Journal of Pharmaceutical Research 13, 243–247.
- Lee, K.K., Choi, J.D., 1999. The effects of *Areca catechu*L extract on anti-inflammation and anti-melanogenesis. International Journal of Cosmetic Science 21, 275–284.
- Lu, C., Kim, B.-M., Chai, K.Y., 2011. Design, synthesis and evaluation of PEGylated lipoic acid derivatives with functionality as potent anti-melanogenic agents. European Journal of Medicinal Chemistry 46, 5184–5188.
- Madureira, A.M., Ramalhete, C., Mulhovo, S., Duarte, A., Ferreira, M.-J.U., 2012. Antibacterial activity of some African medicinal plants used traditionally against infectious diseases. Pharmaceutical Biology 50, 481–489.
- Monteiro, R.C., Kishore, B.N., Bhat, R.M., Sukumar, D., Martis, J., Ganesh, H.K., 2013. A comparative study of the efficacy of 4% hydroquinone vs 0.75% kojic acid cream in the treatment of facial melasma. Indian Journal of Dermatology 58, 157.
- Muhammad, D., Lalun, N., Bobichon, H., Debar, E.L.M., Gangloff, S.C., Nour, M., Voutquenne-Nazabadioko, L., 2016. Triterpenoids from the leaves of *Alphitonia xerocarpus* Baill and their biological activity. Phytochemistry 129, 45–57.
- Musabayane, C., 2012. The effects of medicinal plants on renal function and blood pressure in diabetes mellitus. Cardiovascular Journal of Africa 23, 462–468.
- Nanda, V., Parwaz, M.A., Handa, S., 2006. Linear hypopigmentation after triamcinolone injection: a rare complication of a common procedure. Aesthetic Plastic Surgery 30, 118–119.
- Nerya, O., Vaya, J., Musa, R., Izrael, S., Ben-Arie, R., Tamir, S., 2003. Glabrene and isoliquiritigenin as tyrosinase inhibitors from licorice roots. Journal of Agricultural and Food Chemistry 51, 1201–1207.
- Ortiz-Ruiz, C.V., Berna, J., Tudela, J., Varon, R., Garcia-Canovas, F., 2016. Action of ellagic acid on the melanin biosynthesis pathway. Journal of Dermatological Science. 82 (2), 115–122 (May).
- Park, H., Kosmadaki, M., Yaar, M., Gilchrest, B., 2009. Cellular mechanisms regulating human melanogenesis. Cellular and Molecular Life Sciences 66, 1493–1506.
- Park, S.Y., Jin, M.L., Kim, Y.H., Kim, Y., Lee, S.-J., 2011. Aromatic-turmerone inhibits α-MSH and IBMX-induced melanogenesis by inactivating CREB and MITF signaling pathways. Archives of Dermatological Research 303, 737–744.
- Pooley, B., 1998. A Field Guide to Wild Flowers of KwaZulu-Natal and the Eastern Region. Natal Flora Publications Trust, Durban, p. 630 p.-Col. Illus. ISBN 062021502X En Icones, Maps. Geog 5.
- Slominski, A., Tobin, D.J., Shibahara, S., Wortsman, J., 2004. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiological Reviews 84, 1155–1228.

6

ARTICLE IN PRESS

J. Stapelberg et al. / South African Journal of Botany xxx (2018) xxx-xxx

- Solano, F., Briganti, S., Picardo, M., Ghanem, G., 2006. Hypopigmenting agents: an updated review on biological, chemical and clinical aspects. Pigment Cell Research 19, 550–571.
- Syme, R., Bewick, M., Stewart, D., Porter, K., Chadderton, T., Glück, S., 2004. The role of depletion of dimethyl sulfoxide before autografting: on hematologic recovery, side effects, and toxicity. Biology of Blood and Marrow Transplantation 10, 135–141.
- Vandesompele, J., Preter, K., Pattyn, F., Poppe, B., Roy, N., Paepe, A., Speleman, F., 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 3, 1.
- Watt, J.M., Breyer-Brandwijk, M.G., 1981. The Medicinal and Poisonous Plants of Southern and Eastern Africa. Ed. 2. pp. 14–17.