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ABSTRACT
Background. The RIPper (http://theripper.hawk.rocks) is a set of web-based tools
designed for analyses of Repeat-Induced Point (RIP) mutations in the genome
sequences of Ascomycota. The RIP pathway is a fungal genome defensemechanism that
is aimed at identifying repeated and duplicated motifs, into which it then introduces
cytosine to thymine transition mutations. RIP thus serves to deactivate and counteract
the deleterious consequences of selfish or mobile DNA elements in fungal genomes.
The occurrence, genetic context and frequency of RIP mutations are widely used to
assess the activity of this pathway in genomic regions of interest. Here, we present
a bioinformatics tool that is specifically fashioned to automate the investigation of
changes in RIP product and substrate nucleotide frequencies in fungal genomes.
Results. We demonstrated the ability of The RIPper to detect the occurrence and extent
of RIP mutations in known RIP affected sequences. Specifically, a sliding window
approach was used to perform genome-wide RIP analysis on the genome assembly of
Neurospora crassa. Additionally, fine-scale analysis with The RIPper showed that gene
regions and transposable element sequences, previously determined to be affected by
RIP, were indeed characterized by high frequencies of RIP mutations. Data generated
using this software further showed that large proportions of the N. crassa genome
constitutes RIP mutations with extensively affected regions displaying reduced GC
content. The RIPper was further useful for investigating and visualizing changes in RIP
mutations across the length of sequences of interest, allowing for fine-scale analyses.
Conclusion. This software identified RIP targeted genomic regions and provided RIP
statistics for an entire genome assembly, including the genomic proportion affected by
RIP. Here, we present The RIPper as an efficient tool for genome-wide RIP analyses.

Subjects Bioinformatics, Genetics, Genomics, Mycology
Keywords Repeat-Induced Point mutations, RIP, RIP profile, Large RIP affected regions, Fine-
scale RIP analyses, Genome-wide quantification, Web-based tool, The RIPper

INTRODUCTION
The Repeat-Induced Point (RIP) mutation pathway is a genome defense mechanism that
has evolved exclusively in fungi (Gladyshev, 2017). This pathway is thought to operate only
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during sexual reproduction and serves to preserve and protect fungal genome integrity
from mobile genetic elements such as transposable elements (TEs) that typically contain
repeated sequences (Selker et al., 1987; Selker, 1990; Hane et al., 2015). RIP distinguishes
genetic targets based on shared homology between the repeats and permanently mutates
them by inducing cytosine to thymine transition mutations (Selker et al., 1987). This
mutational process is coupled with epigenetic silencing of the RIP affected regions (via
methylation of the remaining cytosine residues) to further attenuate the deleterious effects
of TEs (Selker et al., 2003). Unlike other eukaryotic defense mechanisms, RIP has no other
known biological functions and is solely directed to counteract the actions of TEs and other
duplicated regions (Hane et al., 2015).

RIP introduces cytosine to thymine transition mutations in duplicated and repeated
sequences (Selker et al., 1987). Transition mutations caused by RIP are typically considered
in relation to their dinucleotide context (Selker et al., 2003; Lewis et al., 2009; Margolin et
al., 1998). For instance, pre-RIP affected sequences, or sequences that are not targeted by
RIP, are typically more GC-rich (e.g., the dinucleotides CpA, TpG, ApC, GpT) whereas
RIP affected sequences are rich in AT dinucleotide sequences (ApT, TpA). The genomic
regions altered by RIP therefore display an increase in AT composition (Selker et al., 2003).
Accordingly, in silico assessment of RIP is based on measuring changes in the frequency of
RIP targeted dinucleotides in relation to the resulting RIP product dinucleotides (Selker
et al., 2003; Lewis et al., 2009; Margolin et al., 1998; Hane & Oliver, 2008). A depletion of
appropriate RIP dinucleotide substrates, coupled with an increase in RIP dinucleotide
products, in close proximity to one another, is the hallmark of RIP.

In silico investigation of RIP have greatly aided the current understanding of the nature
of RIP mutations in genes, TEs and other repeated sequences (Hane & Oliver, 2008). For
example, alignment-based RIP analyses of repeated motifs enabled the identification of a
dominant RIP mutation form for a particular class of a repeated sequences (Hane & Oliver,
2008), and facilitated ancestral reconstruction of RIP affected regions to their original,
pre-RIP forms (Hane & Oliver, 2010). These analyses of specific duplicated sequences
and TEs have also improved our understanding of the RIP pathway’s taxonomic range
within the phylum Ascomycota (Clutterbuck, 2011). However, few previous studies have
explored the effects of RIP on a genome-wide scale. Some have measured changes in the
standard RIP indices for genomic regions of interest using, for example, RIPCAL (Selker,
1990; Selker et al., 2003; Lewis et al., 2009; Margolin et al., 1998; Li et al., 2017; Rouxel et al.,
2011). However, many studies depend on estimations of RIP inferred using indirect or
surrogate methods that measure the consequences of RIP (e.g., GC content depletion)
across a genome using software such as OcculterCut (Testa, Oliver & Hane, 2016; Li et al.,
2017; Rouxel et al., 2011).

Although the impact of RIP’s activity on genome evolution remains poorly understood,
RIP mutations are known to ‘‘leak’’ into neighboring regions where they affect single
copy regions (Rouxel et al., 2011). Various authors have suggested that such mutation
of unintended genetic targets may have served as a source of genetic variation and have
contributed to the evolution of various aspects of the fungal lifestyle, including host range
and pathogenicity (Fudal et al., 2009; Meerupati et al., 2013). However, this ‘‘off-target’’
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effect of RIP has not been investigated in many fungi, because RIP is usually studied
within the bounds of duplicated and/or TE genomic sequences. Moreover, RIP allows the
formation of long stretches of AT-rich regions that have a reduced coding capacity, are
lineage-specific, andmay constitute large proportions of fungal genomes (Fudal et al., 2009;
Hamann, Feller & Osiewacz, 2000). In this way, RIP likely also plays an important role in
the evolution of genome architecture of many fungi. There is thus a need to investigate RIP
on a genome-wide scale in order to identify regions that are extensively affected by RIP and
to understand in what manner RIP contributes to both genome evolution and pathogen
development. Automation of genome-wide RIP mutation analysis will undoubtedly aid
such investigations.

Here, we present a web-based tool, The RIPper, which allows for genome-wide
quantification and identification of RIP mutations and also generates detailed RIP profiles.
Data generated by The RIPper further allows for fine-scale RIP analyses of genomic regions
of interest and visualization of changes in RIP index values relative to GC content changes,
while it also provides summary statistics on RIP. This tool further identifies Large RIP
Affected Regions (LRARs) across genome sequences by using an innovative approach to
detect genomic regions significantly impacted by RIP.We demonstrate The RIPper’s ability
to detect RIP in fungal sequences by performing RIP analyses on the genome assembly of
Neurospora crassa, as well as on gene regions, TEs, and large genomic regions previously
shown to be affected by RIP.

METHODS
The RIPper
The RIPper includes an open source set of tools that allows for genome-wide
quantification of RIP mutations in the genomes of Ascomycota. The RIPper accepts
whole genome sequence data in FASTA format. This program can be used as an online
tool (http://theripper.hawk.rocks) or it can function as a stand-alone executable file
using Windows, Mac or Linux operating systems. The RIPper is also available on github
(https://github.com/TheRIPper-Fungi/TheRIPper).

The RIPper is a web-based bioinformatics tool that was built using Asp.Net Core 2.1. It
uses Entity Framework as its database together with Object Relational Mapping (ORM).
Furthermore, the .Net bio library is used for loading and handling FASTA files. The
server used for the online version of The RIPper uses a PostgreSQL database to handle
multiple concurrent users. The standalone version uses SQLite. Additionally, The RIPper
is compatible with all commonly used web browsers including Google Chrome, Mozilla
Firefox and Microsoft Edge.

The design of The RIPper is based on the principles of measuring changes in RIP product
and substrate dinucleotide frequencies using RIP indices (Selker et al., 2003; Lewis et al.,
2009; Margolin et al., 1998). The frequency of dinucleotides that are recognized as suitable
genetic targets of the RIP pathway are calculated using the RIP substrate index (Selker,
1990; Lewis et al., 2009), while the products produced are calculated using the RIP product
index (Lewis et al., 2009; Margolin et al., 1998). The RIP composite index reflects changes
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Figure 1 The RIPper identifies putative Large RIP Affected Regions (LRARs) in genomic sequences.
The default definition of an LRAR is a region of at least 4,000 base pairs (bp) affected by RIP (as indicated
by the RIP product, substrate and composite indices). Such a 4000 bp region is made up of seven consecu-
tive 1,000 bp sliding windows (500 bp step size). The blue lines represent the sliding windows investigated
across the length of a genomic sequence (green dotted line).

Full-size DOI: 10.7717/peerj.7447/fig-1

in both RIP product and RIP substrate dinucleotide frequencies (Lewis et al., 2009). The
RIPper calculates changes in the RIP index values and the average GC content using a
sliding window approach (e.g., Table S1). The three indices are determined as indicated
below, and windows with index values of x suggest that the region is affected by RIP.
These RIP index values for x were previously published (Selker, 1990; Selker et al., 2003;
Lewis et al., 2009; Margolin et al., 1998), but are additionally adjustable according to user
preferences.
Product index value: TpA

ApT : 0.8 < x ≥ 1.1

Substrate index value: CpA+TpG
ApC+GpT : 0.9 ≥ x

Composite index value: [ TpAApT ]-[
CpA+TpG
ApC+GpT ]: x > 0

The GC content of each window is calculated as follows:
GC content: G+C

G+C+A+T

Analyses and outputs of The RIPper
In a standard analysis, the genome-wide impact of RIP is quantified by comparing the
total number of windows indicating RIP-positive index values against the total number
of windows investigated for the entire genome sequence. For a window to be considered
RIP-positive, all three RIP indices should indicate RIP activity. The window size for the
RIP index analyses is user defined, but default parameters for genome-wide quantification
is pre-set at 1,000 bp with a 500 bp step size (e.g., Table S1).

The RIPper can identify large genomic regions that are putatively extensively affected
by RIP. The criteria for LRARs is adjustable according to user preferences, but default
parameters constitute seven consecutive RIP-positive windows, spanning at least 4000 bp
(Fig. 1). An index chain describes the total number of consecutive RIP-positive windows
needed to define a LRAR. For more stringent analysis, the RIP index values considered for
each window can be adjusted. The data generated using the ‘Calculate LRAR’ tool provides
information on the genomic location, the total number of consecutive RIP-positive
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Figure 2 Example of fine-scale changes in RIP index values. Fine-scale changes in RIP index values for
the first Large RIP Affected Region (LRAR) identified on the first chromosome/linkage group of Neu-
rospora crassa strain OR74a (NCBI accession number GCF_000182925.2/). (A) Changes in RIP index val-
ues are represented on the y-axis and the nucleotide position on the sequence is indicated on the x-axis.
RIP index values depicted: RIP product (green), RIP substrate (yellow) and RIP composite (red) (B) RIP
product index values above 1.1 are indicative of RIP activity. (C) RIP substrate index values below 0.75 are
indicative of RIP activity, and (D) RIP composite index values exceeding 0 are indicative of RIP activity.
RIP analyses were performed using a 1,000 bp window size and 500 bp step size.

Full-size DOI: 10.7717/peerj.7447/fig-2

windows, average RIP index values across the length of the LRAR and the average GC
content of each LRAR identified.

Another important feature of The RIPper is its ability to visualize changes in RIP index
values across the length of a genomic sequence. Changes in RIP composite, product and
substrate indices are provided for each window (Fig. 2). This tool further allows the user to
browse through the query sequence based on a user defined range. Furthermore, changes
in RIP index values, the total number of LRARs and LRAR statistics for each scaffold or
chromosome within a genome assembly, can be considered individually.

The RIPper summarizes the statistics for a defined set of genomic sequences in a RIP
profile. The RIP profile includes statistics on the average RIP product, substrate, and
composite index values, as well as the average GC content for all LRARs identified. The
RIP profile further provides information on the total size of the genome affected by RIP,
its average GC content, and the total number of windows investigated.

All information generated using The RIPper is downloadable in Excel, CSV and PDF
format. The parameters for determining RIP index values and GC content (calculated for
each window and each step window) are all user-defined. The summary of RIP statistics is
also downloadable as a RIP profile in Excel format. Fine-scale RIP analyses figures produced
by The RIPper are downloadable in Portable Graphics format (PNG).
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Potential for erroneously identifying RIP affected regions
GC content is one of the major factors that might cause incorrect identification of a
sequence as being affected by RIP (i.e., false positives results). To investigate this issue,
simulated nucleic acid sequences were generated and subjected to RIP analyses. Each
simulated sequence was one million base pairs (Mbp) in size and was generated using the
RandomDNAGenerator (http://www.faculty.ucr.edu/~mmaduro/random.htm) software.
Nine sets (each containing 100 sequences) were generated, where each set contained
sequences with an average GC content of respectively 10%, 20%, 30% through to 90%. All
simulated sequences were subjected to full RIP analysis with The RIPper using a 1,000 base
pair (bp) sliding window with a 500 bp step size. The RIP substrate index values evaluated
were 0.75, 0.8, 0.85 and 0.9, while the RIP product index values evaluated were 1.1, 1.15,
1.2 and 1.25.

These ranges of RIP index values were also evaluated using the genome sequences
of organisms known to be either RIP capable or incapable. These included Neurospora
crassa strain OR74a, Trichoderma reesei strain QM6a and Leptosphaeria maculans strain
JN3, which have all been experimentally verified to be RIP capable (Selker et al., 2003;
Li et al., 2017; Fudal et al., 2009). To represent genomes in which RIP is not possible, we
utilized those of the ascomycete yeast Candida albicans strain SC5314, the microsporidian
fungus Encephalitozoon cuniculi strain GB-M1 and the bacterium Escherichia coli strain
K-12. Experimental studies showed that C. albicans is not RIP capable (Clutterbuck, 2011),
while Microsporidia diverged prior to the evolution of the RIP pathway (Horns et al.,
2012) and bacteria cannot acquire cytosine and thymine transition mutations via RIP.
All six genome sequences were obtained from the database of the National Centre for
Biotechnology Information (NCBI; https://www.ncbi.nlm.nih.gov) using the accession
numbers GCA_000182965.3, GCF_000091225.1, GCF_000005845.2, GCA_000230375.1,
GCA_000182925.2 and GCA_002006585.1. As before, analyses were done using the range
of values for the RIP substrate and product indices.

Validation of RIP analyses using The RIPper
The RIPper was used to determine the occurrence and frequency of RIP mutations
in sequences that were experimentally and computationally shown to be affected by
RIP.These included particular regions (ranging from 478 to 61,000 bp in size) in
the genomes of L. maculans (Plissonneau et al., 2016), N. crassa (Margolin et al., 1998),
Podospora anserina (Hamann, Feller & Osiewacz, 2000), Colletotrichum cereale (Crouch
et al., 2008), Aspergillus fumigatus (Paris & Latgé, 2001), Aspergillus oryzae (Montiel,
Lee & Archer, 2006), Magnaporthe grisea (Nakayashiki et al., 1999) and Chrysoporthe
deuterocubensis (Kanzi et al., 2019). We also used the genomes of N. crassa strain OR74a
and T. reesei strain QM6a, which are known to be RIP competent (Selker et al., 2003; Li
et al., 2017). All these sequences were obtained from the NCBI database using accession
numbers GCF_000182925.2/, GCA_002006585.1, KT804641.1, AF181821.1, AJ270953.1,
DQ663509.1, AF202956.1, DQ327733.1, AB024423.1 and GCF_001513825.1.

The RIPper was used to determine whether this software was capable of identifying large
regions affected by RIP in the sequences analyzed. Additionally, for the N. crassa (OR74a)
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genome assembly, we also generated genome-wide RIP statistics using the ‘‘RIP profile’’
tool. The genomic locations and RIP statistics of putative LRARs were determined using the
‘‘calculate LRAR’’ tool, while the proportion of individual N. crassa chromosomes affected
by RIP were calculated using the ‘‘RIP sequence’’ tool. Also, for the T. reesei (QM6a)
genome, chromosome-wide changes in RIP index values were compared to changes in
GC content, as it was previously shown that centromeric regions are AT-rich due to RIP
mutations (Li et al., 2017).

All chromosome- and genome-wide analyses used sliding windows of 1,000 bp and 500
bp steps. For particular genomic regions, fine-scale analyses were performed using 100 bp
sliding windows with a step size of 50 bp. The genomic sequence containing the mating
type region of C. deuterocubensis was analyzed using a 1,000 bp window and a 500 bp step
size. The RIPper was used to generate graphs for visualizing changes in RIP index values
and GC content across the length of the query sequences. This software was also used to
generate RIP summary statistics.

RESULTS
Potential for erroneously identifying RIP affected regions
To investigate the influence of GC content composition on RIP statistics, simulated
sequences consisting of different GC content ranges were subjected to RIP analysis using
varying degrees of stringency of the RIP parameters. The overall results showed that less
stringent RIP parameters (i.e., lower RIP product index values and higher RIP substrate
values) more frequently led to the identification of false positives in the simulated datasets
(Table S2 and Fig. S1). RIP analyses performed under the least stringent conditions (RIP
product index value of 1.1 and RIP substrate index value of 0.9), identified RIP affected
regions in 656 data sets, while those done with themost stringent parameters (RIP substrate
index value of 0.75) allowed detection of RIP mutations in only two of the 900 simulated
sequences (Fig. S1). Both of these sequences had an average GC content of 80%, where 6%
of the sequences apparently consisted of RIP affected regions. However, no LRARs were
identified in any of the simulated data sets (900 simulations).

Notably, at less stringent RIP substrate index values (0.8 to 0.9), more than 1% of the
simulated data sets were suggested to be affected by RIP (Table S2). The occurrence and
frequency of RIP mutations were more often recorded in data sets composed of high
GC contents (Table S2; 50–90%) under less stringent RIP substrate parameters. Also, the
frequency of erroneous identification of RIP mutations was much higher in data sets with
>70% GC. This was particularly true when less stringent RIP substrate values (0.8 to 0.9)
were used.

Analysis of the simulated data sets showed that stringent RIP substrate index parameters
are needed to minimize the possibility of erroneous identification of RIP mutations. Our
results showed that the most optimal parameter for limiting or excluding the occurrence of
false positives is to use a RIP substrate index value of 0.75 (Fig. S1). Changes in RIP product
value cut-offs generally had little effect on the RIP statistics, but fewer false positives were
obtained using a RIP product cut-off value of 1.1.
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Table 1 Genome-wide RIP statistics forNeurospora crassa strain OR74a, which was generated using
The RIPper.

Genome size (bp) 41,102,378

Total number of windows investigated 82,204
GC content of entire genome assembly (%) 43.34
Total number of RIP positive windows 12,545
Total estimated genome-wide RIP (%)a 15.26
Number of LRARsb 439
Average size of LRARs (bp) 13,279.08
Average GC content of LRARs (%) 16.04
Sum of all LRARs (bp) 5,829 515
RIP product indexc average for LRARs 1.59
RIP substrate indexd average for LRARs 0.44
RIP composite indexe average for LRARs 1.14

Notes.
aProportion of the genome affected by RIP. Calculated using the total number of windows with RIP-positive index values
against the total number of windows investigated for the entire genome sequence.

bLRAR= Putative Large RIP affected genomic regions. More than 4,000 bp that are consecutively affected by RIP.
cProduct Index Value [TpA/ApT]: x > 1.1.
dSubstrate Index Value [CpA+ TpG/ ApC+ GpT]: 0.75≥ x .
eComposite Index Value [(TpA/ApT)–(CpA+ TpG/ApC+ GpT)]: x > 0.

We also investigated whether the stringency of RIP index parameters could potentially
influence the outcome of analyses performed on the genome sequences of organisms known
to be either RIP capable or incapable (Table S3). Bymaking use of these two sets of genomes,
it was thus possible to contrast the effects of parameter stringency in genomes where RIP
is possible (positive controls; i.e., N. crassa, L. maculans and T. reesei) and genomes where
RIP is impossible (negative controls; i.e., E. coli, C. albicans and E. cuniculi). Accordingly,
under the most stringent RIP substrate parameter applied (0.75), no RIP positive windows
were recorded in any of the negative controls (except for a single window in the genome
of E. cuniculi). At this stringency level, numerous RIP positive windows and LRARs were
detected in the genomes of the three positive controls. Considerable proportions of their
genome sequences also constituted RIP mutations. For both the positive and negative
controls, analysis at lower stringencies allowed for the identification of many more LRARs
and windows suggestive of RIP. Also, as with the simulated data, RIP product parameters
did not affect the RIP statistics much, but fewer windows suggestive of RIP were detected
in the genomes of the negative controls. Therefore, based on these findings, windows
indicating RIP mutations with product index values above 1.1 and substrate index values
below 0.75 were implemented on all further analyses performed in this study.

Validation of RIP analyses using The RIPper
RIP activity has been experimentally and computationally verified in the N. crassa genome
(Clutterbuck, 2011; Cambareri et al., 1989). Therefore, The RIPper was applied to the
genome assembly ofN. crassa for calculating genome-wideRIP statistics, to identify putative
LRARs, and to determine the extent of RIPmutations in each linkage group (chromosome)
of this fungus. Genome-wide RIP analyses showed that a considerable proportion of the
N. crassa genome assembly (15.26%) constitutes RIP mutations (Table 1). A large number
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Table 2 Statistics determined with The RIPper for the first 10 Large RIP Affected Regions (LRARs) identified on chromosome 1 ofNeurospora
crassa strain OR74a.a

LRAR Start
(bp)

End
(bp)

Size
(bp)

Number of consecutive
RIP-affected windows

RIP indices % GC

Productb Substratec Composited

1 21,500 34,000 12,500 24 1.67 0.4 1.26 18.37
2 63,000 77,000 14,000 27 1.5 0.47 1.04 14.83
3 77,000 87,000 10,000 19 1.56 0.4 1.16 15.07
4 199,500 208,500 9,000 17 1.78 0.41 1.37 15.5
5 267,000 277,500 10,500 20 1.52 0.55 0.97 18.16
6 278,500 284,000 5,500 10 1.36 0.58 0.77 15.67
7 284,000 288,500 4,500 8 1.52 0.58 0.94 17.56
8 670,500 696,500 26,000 51 1.52 0.44 1.08 14.42
9 872,500 877,500 5,000 9 1.35 0.5 0.85 11.96
10 878,000 905,500 27,500 54 1.46 0.44 1.03 15.05

Notes.
aSee Table S3 for the full list of putative LRARs on the whole genome of this fungus.
bProduct Index Value [TpA/ApT]: x > 1.1.
cSubstrate Index Value [CpA+ TpG/ApC+ GpT]: 0.75≥ x .
dComposite Index Value [(TpA/ApT)–(CpA+ TpG/ApC+ GpT)]: x > 0.
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Figure 3 The total percentage ofNeurospora crassa chromosomes affected by RIP. The total percent-
age of each chromosome/linkage group of Neurospora crassa strain OR74a affected by RIP. These esti-
mates represent the proportion of RIP-positive windows identified in each chromosome sequence.

Full-size DOI: 10.7717/peerj.7447/fig-3

of RIP affected windows (12,545), and numerous LRARs (435) (Table 2 and Table S3)
were recorded throughout this genome. Extensive RIP affected windows further showed a
reduced GC content compared to that of the remainder of the genome (Table 1). The total
percentage of each linkage group of N. crassa affected by RIP varied from 12.66% (linkage
group I) to 17.65% (linkage group VII) (Fig. 3).
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Figure 4 Summary of changes in RIP index values and GC content, of the centromeric regions of the
chromosomes of Trichoderma reesei. The figure depicts changes of the RIP index values and GC con-
tent across the centromeric regions of chromosomes of T. reesei strain QM6a. The position of the cen-
tromeric regions are indicated with an arrow. The bar charts illustrate changes in GC content (%) and the
line charts illustrate changes in RIP index values for chromosome 1 (A and B), chromosome 2 (C and D),
chromosome 3 (E and F), chromosome 4 (G and H), chromosome 5 (I and J), chromosome 6 (K and L),
and chromosome 7 (M and N), respectively. RIP analyses were performed using a 1,000 bp window size
and 500 bp step size.

Full-size DOI: 10.7717/peerj.7447/fig-4
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Table 3 Statistics determined with The RIPper for the centromeric regions of Trichoderma reesei (QM6a).

Replicon Location Length (bp) RIP indices % GC

Producta Substrateb Compositec

Chromosome 1 3,104,000–3 303,000 199,000 2.44 0.20 2.24 4.57
Chromosome 2 1,940,500–2,103,000 162,500 2.32 0.11 2.21 4.76
Chromosome 3 1,744,500–1,906,000 161,500 2.25 0.12 2.13 4.49
Chromosome 4 1,482,500–1,659,000 176,500 2.25 0.09 2.1 4.79
Chromosome 5 1,164,500–1,329,000 164,500 2.25 0.27 1.98 4.72
Chromosome 6 1,825,500–2,034,000 208,500 2.48 0.09 2.39 4.16
Chromosome 7 1,741,000–1,914,000 173,000 2.33 0.13 2.19 4.80

Notes.
aProduct Index Value [TpA/ApT]: x ≥ 1.1.
bSubstrate Index Value [CpA+ TpG/ApC+ GpT]: 0.75 ≥ x .
cComposite Index Value [(TpA/ApT)–(CpA+ TpG/ApC+ GpT)]: x > 0.

Analysis of the T. reesei genome with The RIPper showed a distinctive pattern of
GC content and RIP mutations across each of the seven chromosomes of this fungus
(Fig. 4, Table 3). The genomic regions corresponding to the centromeres of the T. reesei
chromosomes were previously suggested to be prone to RIP mutations (Li et al., 2017).
In agreement with these previous findings, reduced GC content, together with RIP index
values indicating RIP activity, were observed across the length of the seven centromeric
genomic regions of this fungus.

Query sequences for RIP analyses were retrieved based on previously published data
(Margolin et al., 1998; Plissonneau et al., 2016; Hamann, Feller & Osiewacz, 2000; Crouch et
al., 2008; Paris & Latgé, 2001; Montiel, Lee & Archer, 2006; Nakayashiki et al., 1999; Kanzi
et al., 2019). Our results for these gene regions and TE sequences showed an increase
in RIP product dinucleotide frequencies (RIP product index), coupled with reduced
frequency in dinucleotides targeted by RIP (RIP substrate index) (Fig. 5). RIP was recorded
in the AvrLm4-7 pseudogene of L. maculans, the 5S rRNA pseudogene of N. crassa,
the DNA transposon of P. anserina, retrotransposon sequences of C. cereale, M. grisea,
C. deuterocubensis, and within long terminal repeat sequences of A. fumigatus. Moreover,
regional variation in the extent of RIP was observed in theM. grisea and C. deuterocubensis
sequences. Some windows were RIP affected, while others remained unchanged by RIP. In
comparison, the particular nucleic acid sequences of L. maculans, N. crassa, P. anserina, C.
cereale, A. fumigatus, and A. oryzae were more extensively RIP affected across the length
of the sequences investigated. The occurrence overall of less RIP in the M. grisea and C.
deuterocubensis sequences were further reflected in the summary of RIP statistics (Table 4).
Overall, extensively RIP affected sequences had RIP index values indicating strong RIP
responses that are coupled with reduced GC content (Table 4). Conversely, the sequences
with a reduced RIP response had higher GC content averages. These results were all in
agreement with previous findings (Margolin et al., 1998; Plissonneau et al., 2016; Hamann,
Feller & Osiewacz, 2000; Crouch et al., 2008; Paris & Latgé, 2001; Montiel, Lee & Archer,
2006; Nakayashiki et al., 1999; Kanzi et al., 2019), which suggests that the fine-scale RIP
analyses implemented in The RIPper is valuable for identifying specific RIP affected regions.
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Figure 5 Fine-scale RIP analyses of known fungal sequences affected by RIP. Changes in RIP index val-
ues were calculated and graphs generated using The RIPper for fungal sequences known to be affected by
RIP (see Table 4). RIP index values illustrated for sequences: (A) Leptosphaeria maculans AvrLm4-7 pseu-
dogene; (B) Neurospora crassa (continued on next page. . . )

Full-size DOI: 10.7717/peerj.7447/fig-5

van Wyk et al. (2019), PeerJ, DOI 10.7717/peerj.7447 12/18

https://peerj.com
https://doi.org/10.7717/peerj.7447/fig-5
http://dx.doi.org/10.7717/peerj.7447


Figure 5 (. . .continued)
Punt transposon and 5S ribosomal RNA pseudogene; (C) Podospora anserina Fot1-like DNA transposon
Pat; (D) Colletotrichum cereal retrotransposon Collect1; (E) Aspergillus fumigatus long terminal repeat,
pol gene; (F) A. oryzae transposase (Tan1) gene; (G)Magnaporthe grisea retrotransposon, reverse tran-
scriptase and integrase region; and (H) Chrysoporthe deuterocubensis retrotransposon and mating type lo-
cus. Changes in RIP index values are represented on the y-axis and nucleotide position on the sequence is
indicated on the x-axis (indicating the start position of the window). RIP analyses were performed using a
100 bp window size and 50 bp step size for figures A to G, and 1,000 bp window size and 500 bp step size
for figure H.

Table 4 Statistics determined with The RIPper for genomic regions that were previously reported to be affected by RIP.

Species Description of the genomic region Length (bp) RIP indices % GC References

Producta Substrateb Compositec

Leptosphaeria
maculans

AvrLm4-7 pseudogene 478 1.67 0.74 0.93 35.23 Plissonneau
et al. (2016)

Neurospora
crassa

Transposon Punt (complete
sequence) and 5S ribosomal RNA
pseudogene (partial sequence)

1,994 1.35 0.59 0.76 35.12 Margolin et al.
(1998)

Podospora
anserina

Degenerate Fot1-like DNA
transposon Pat

1,860 1.4 0.31 1.09 28.47 Hamann, Feller
& Osiewacz
(2000)

Colletotrichum
cereale

Isolate PA-50005 clone I29
retrotransposon Collect1 (partial
sequence)

549 2.87 0.15 2.72 28.52 Crouch et al.
(2008)

Aspergillus
fumigatus

Long terminal repeat (complete
sequence) and pol gene (partial
sequence)

5,820 1.94 0.38 1.56 30.91 Paris & Latgé
(2001)

Aspergillus
oryzae

Clone 2 putative transposase (Tan1)
gene (partial sequence)

601 1.16 0.78 0.38 32.87 Montiel, Lee &
Archer (2006)

Magnaporthe
grisea

Retrotransposon DNA, reverse
transcriptase and integrase region

3,895 0.97 0.72 0.25 41.99 Nakayashiki
et al. (1999)

Chrysoporthe
deuterocubensis

Retrotransposon and mating type
locus

61,000 1.1 1.13 0.12 40.94 Kanzi et al.
(2019)

Notes.
aProduct Index Value [TpA/ApT]: x > 1.1.
bSubstrate Index Value [CpA+ TpG/ApC+ GpT]: 0.75≥ x .
cComposite Index Value [(TpA/ApT)–(CpA+ TpG/ApC+ GpT)]: x > 0.

DISCUSSION
Here we present The RIPper as a web-based set of tools for genome-wide investigation of
RIP in fungi in the phylum Ascomycota. This tool is user friendly, open access and allows
for detailed investigation of RIP mutations on a genome-wide scale. Automation of RIP
index calculations provides information on the extent of putative RIP mutations acquired
for a given fungal genome sequence, in a time-efficient and reproducible manner. A RIP
profile provides a summary of RIP statistics, while fine-scale analysis of RIP index values
enables detailed investigations of RIP activity in genomic regions of interest. These profiles
also provide an innovative avenue toward assessing RIP capability among fungi. The user
defined criteria and availability of all the RIP data generated by The RIPper afford the
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user flexibility to fine-tune the stringency at which analyses are performed. The RIPper
significantly complements current in silico approaches to measure RIP and to identify
genomic regions affected by RIP.

RIP analyses performed with The RIPper allowed validation of this tool’s ability to
identify RIP affected regions in fungal sequences. Comparable to previous findings (Testa,
Oliver & Hane, 2016), a large proportion of the genome assembly and of each individual
linkage group of N. crassa were indicated to be affected by RIP. Similarly, the centromeres
of T. reesei displayed reduced GC content and, as previously suggested (Li et al., 2017),
these regions were characterized by a strong RIP signal (Li et al., 2017). Moreover, our
results showed that RIP likely drives the formation of long stretches of genomic regions
affected by RIP with reduced GC content. Fine-scale RIP analyses conducted with The
RIPper further allowed identification of the consequences of RIP in gene regions and gene
sequences known to be targeted by this pathway (Margolin et al., 1998; Plissonneau et al.,
2016; Hamann, Feller & Osiewacz, 2000; Crouch et al., 2008; Paris & Latgé, 2001; Montiel,
Lee & Archer, 2006; Nakayashiki et al., 1999; Kanzi et al., 2019). Overall, extensively RIP
affected sequences had RIP index values indicative of strong RIP signal that were coupled
with reduced GC content.

The findings of this study suggest that use of more stringent RIP parameters can reduce
the occurrence of false positive results (i.e., regions erroneously suggested to contain
RIP mutations). The use of simulated sequences allowed optimization of RIP analysis
parameters, the use of which reduced the influence of GC content composition on RIP
statistics. Furthermore, the use of these more stringent parameters allowed the detection
of RIP mutations in organisms known to be RIP capable, while these mutations were
absent from the sequences of species incapable of acquiring transition mutations due to
RIP. Therefore, although the parameters applied for RIP analyses using The RIPper may
be adjusted according to the specifications of the user, our results show RIP substrate
index values of ≤ 0.75 and RIP product index values of ≥ 1.1 are most likely to provide an
accurate reflection of the occurrence and extent of RIP mutations in fungal sequences.

Data generated using The RIPper provides valuable insights on the potential occurrence
of RIP as well as how this pathway may influence gene and genome evolution. For example,
RIP is known to be an important driver of effector and avirulence gene evolution in fungi
(Rouxel et al., 2011; Fudal et al., 2009; Meerupati et al., 2013). RIP driven mutation of the
effector gene of L. maculans, AvrLm4-7, for example, was credited as contributing to
overcoming host plant resistance (Plissonneau et al., 2016). Additionally, retrotransposon
integration followed by RIP activity probably contributed to the evolution of the mating
type locus of C. deuterocubensis (Kanzi et al., 2019), where RIP mutations likely affect
reproductive strategies of this fungus (Kanzi et al., 2019). Therefore, RIP not only serves
to counteract the deleterious consequences of TEs, but also contributes to the evolution of
gene regions underlying important aspects of biology and host range (Rouxel et al., 2011;
Meerupati et al., 2013; Kanzi et al., 2019).

Genome-wide RIP analyses provides information on the occurrence and the potential
extent of RIP mutations in fungal sequences. Moreover, in silico RIP assessment using The
RIPper can be done without any prior knowledge of TE content of a genome. Additionally,
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accurate alignment of degraded repeated regions is not always possible, thus limiting the
effectiveness of alignment-based RIP analyses. The RIPper allows for adjustable parameters
in order to identify potentially RIP affected regions, while other in silico approaches
employing a sliding window approach (Hane & Oliver, 2008) are limited to the parameters
associated with a single species (N. crassa) (Hane & Oliver, 2008). The application of such
parameters to other fungi may lead to false positive identification of RIP affected regions
(see Table S2).

Despite the advantages of using The RIPper, the in silico assessment of RIP in fungal
sequences using this tool and other tools is associated with a number of limitations. These
include the uncertainty of the exact boundary of a RIP affected genomic region when a
sliding-window approach is implemented (Testa, Oliver & Hane, 2016). Moreover, low-
quality genome assemblies with low coverage often exclude much of the repetitive AT-rich
genomic regions in the genome. These regions in RIP capable ascomycetes typically reflect
a large proportion RIP affected content of these genomes. Therefore, the use of low-quality
genome assemblies my lead to an underestimation of the true occurrence and extent of
RIP mutations.

Data generated usingTheRIPper should serve to complement existing in silico techniques
for measuring RIP mutations. For example, OcculterCut (Testa, Oliver & Hane, 2016) can
provide evidence on genome segmentation based on altered GC content due to RIP.
RIPCAL alignment-based analyses (Hane & Oliver, 2008) provides information on the
dominant RIP mutation form in classes of repeated sequences. RIPCAL and OcculterCut
analyses provide information on the nucleotide composition of RIP affected regions.
Therefore, The RIPper serves to provide a further line of evidence to study the occurrence
and the extent of RIP mutations in fungi. Application of The RIPper and other in silico
techniques will undoubtedly aid our current understanding of not only RIP capability, but
also the impact of this pathway on the evolutionary dynamics of Ascomycota.

CONCLUSION
Here we present The RIPper as a web-based set of tools for genome-wide investigation of
RIP in fungi in the phylum Ascomycota. This tool is user friendly, open access and allows
for detailed investigation of RIP mutations on a genome-wide scale. Automation of RIP
index calculations provides information on the extent of putative RIP mutations acquired
for a given fungal genome sequence, in a time-efficient and reproducible manner. A RIP
profile provides a summary of RIP statistics, while fine-scale analysis of RIP index values
enables detailed investigations of RIP activity in genomic regions of interest. These profiles
also provide an innovative avenue toward assessing RIP capability among fungi. The user
defined criteria and availability of all the RIP data generated by The RIPper afford the
user flexibility to fine-tune the stringency at which analyses are performed. The RIPper
significantly complements current in silico approaches to measure RIP and to identify
genomic regions affected by RIP.
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