
FUNGAL GENOMES Open Access

IMA Genome-F 11
Draft genome sequences of Fusarium xylarioides,
Teratosphaeria gauchensis and T. zuluensis and genome
annotation for Ceratocystis fimbriata
Brenda D. Wingfield1*, Arista Fourie1†, Melissa C. Simpson1†, Vuyiswa S. Bushula-Njah1, Janneke Aylward1,
Irene Barnes1, Martin P. A. Coetzee1, Léanne L. Dreyer2, Tuan A. Duong1, David M. Geiser3, Francois Roets4,
E. T. Steenkamp1, Magriet A. van der Nest1,6, Carel J. van Heerden5 and Michael J. Wingfield1

Abstract

Draft genomes of the fungal species Fusarium xylarioides, Teratosphaeria gauchensis and T. zuluensis are presented.
In addition an annotation of the genome of Ceratocystis fimbriata is presented. Overall these genomes provide a
valuable resource for understanding the molecular processes underlying pathogenicity and potential management
strategies of these economically important fungi.
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IMA GENOME-F 11A
Genome annotation for Ceratocystis fimbriata: an
aggressive fungal pathogen of root crops
Introduction
The genus Ceratocystis includes 41 species of mainly plant
pathogenic fungi (Marin-Felix et al. 2017; Holland et al.
2019 Barnes et al. 2018; Liu et al. 2018). The type species,
Ceratocystis fimbriata, was first described in the USA in
1890 as the causal agent of black rot of Ipomoea batatas
(Halsted 1890). It shows strong host specificity and does
not infect tree hosts, in contrast to many other species in
this genus (Baker et al. 2003; Fourie et al. 2018). The patho-
gen is known in various parts of the USA as well as in
Asian countries including Papua New Guinea, China, Japan,
Hawaii and New Zealand (Halsted and Fairchild 1891;
Lewthwaite et al. 2011; Li et al. 2016). Population genetic
analyses of isolates collected in these countries have re-
vealed a very low genetic diversity in all the populations

and C. fimbriata thus appears to be a near clonal species
(Li et al. 2016; Scruggs et al. 2017).
The sexual fruiting structures in Ceratocystis spp., includ-

ing C. fimbriata, are flask-shaped ascomata with long necks
exuding sticky ascospore masses at their apices (Wingfield
et al. 2017b). Ceratocystis fimbriata, along with all other
species of Ceratocystis, is self-fertile (Halsted 1890; De Beer
et al. 2014). The fungus includes isolates that are self-sterile,
arising from a phenomenon known as unidirectional
mating-type switching, where an isolate of the opposite
mating-type is required for sexual reproduction to occur
(Harrington and McNew 1997; Witthuhn et al. 2000;
Wilken et al. 2014).
Genome sequences represent valuable scientific re-

sources that provide an important source of information
needed to understand the biology of organisms. A draft
genome sequence of C. fimbriata (isolate CBS114723)
was published in 2013 (Wilken et al. 2013) and these
data were specifically used to characterise the mating-
type locus of the isolate (Wilken et al. 2014). Genomes
of other species of Ceratocystis, including C. albifundus
(Van der Nest et al. 2014a), C. eucalypticola (Wingfield
et al. 2015b) and C. manginecans (Van der Nest et al.
2014b), have also been published, and form part of a
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larger genome sequencing project. The aim of this study
was firstly to improve the genome assembly of C. fim-
briata, the type species of this genus, and secondly to
provide a curated annotation of this genome that can
serve as a resource for other species in the genus. Here,
we present an improved assembly of C. fimbriata with
significantly fewer contigs than the previous assembly,
and the first annotation of this genome http://www.ncbi.
nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?lvl=0&id=
5158, with RNA data incorporated to improve gene
prediction. Genomes of Ceratocystidaceae provide an
opportunity to investigate various taxonomic and evo-
lutionary questions of an important group of plant
pathogens.

Sequenced strains
USA: North Carolina, isolated from Ipomoea batatas, Dec,
1998, D. McNew (CMW14799, C1421, CBS114723).

Nucleotide sequence accession number
The genomic sequence of Ceratocystis fimbriata
(CMW14799, CBS114723) has been deposited at DDBJ/
EMBL/GenBank under accession no. APWK00000000. The
version described in this paper is version APWK03000000.
RNA sequencing data has been deposited in the NBCI
Short Read Archive under accession number
PRJNA67151.

Materials and methods
Ceratocystis fimbriata was grown on 2% (w/v) MEA
(Biolab, Merck, South Africa), supplemented with 150
mg/L streptomycin and 100 μg/L thymine (MEA-ST
medium), at room temperature (22–24 °C) for two
weeks. DNA extraction was performed using the proto-
col described by Goodwin et al. (1992) with minor modi-
fications. An RNase treatment step was included after
the first phenol/chloroform step and incubated for 1 h at
37 °C. The RNase was then removed with a subsequent
phenol/chloroform step. DNA purity was determined using
a ND_1000 Spectrophotometer (Nanodrop, Wilmington,
DE). The integrity of the genomic DNA was determined with
agarose gel electrophoresis on a 1% gel. DNA quantity was
determined with a Qubit® 2.0 Fluorometer (ThermoFisher
Scientific, Waltham, USA) following the manufacturer’s
protocol.
To verify the identity of the isolate and the absence of

bacterial contamination, the fungal ITS regions 1 and 2,
including the 5.8S rRNA gene (refered collectively as the
ITS region) of the ribosomal operon and a portion of
the bacterial 16S rRNA were amplified. Amplification
and amplicon purification of the ITS region were per-
formed, as described by Fourie et al. (2015), using
primers ITS1 and ITS4 (White et al. 1990). The se-
quence of the PCR product was determined with Sanger

sequencing using an ABI Big DYE Terminator Cycle Se-
quencing Ready Reaction Kit (Applied BioSystems,
Thermo Fisher, California, USA). The ITS sequence was
then aligned against that of C. fimbriata. The 16S rRNA
region was amplified using primers 27F and 1492R
(DeLong 1992) and PCR cycler conditions from Beukes
et al. (2013), including a positive control bacterial DNA
sample. The absence of a PCR band confirmed the ab-
sence of bacterial DNA in the sample.
The taxonomic placement of C. fimbriata among the

Microascales was investigated by means of a phylogen-
etic analysis of three combined gene regions, the 28S
and 60S ribosomal RNA and the Mcm7 (DNA replica-
tion licensing factor) gene regions. The sequences of
representative isolates of the different genera in this
order were obtained from GenBank, as reported by De
Beer et al. (2014), and aligned using Muscle alignment
in MEGA v.7 (Kumar et al. 2016). A maximum likeli-
hood analysis was performed with the sequence data,
using RaxML v.8.2.11 (Stamatakis 2014), model parame-
ters were estimated by the software and 1000 bootstrap
replicates were performed to obtain branch support
values. The Graphium genus was selected as outgroup.
Genome sequencing was performed by FASTERIS SA,

Switzerland. All libraries were combined in one lane of
an Illumina HiSeq 2500 instrument that produces reads
of 125 bp in length. Three libraries were constructed;
consisting of a 3000 bp insert mate-pair library and both
a 300 bp and 500 bp paired-end library. Illumina adapter
sequences were removed from the reads by FASTERIS.
Initial quality control (QC) of the sequence reads of each
library was performed using FastQC (Andrews 2010).
Low quality reads (leading and trailing Phred score < 20)
and reads shorter than 20 bp (mate-pair) and 100 bp
(paired-end), respectively, were removed from the data
using Trimmomatic (Bolger et al. 2014). Analysis with
FastQC was repeated, after read trimming, to ensure all
reads had a Phred quality score above 20 and that all
adapters were removed.
Genome assemblies were performed using Velvet

Optimiser v.2.2.5 (Zerbino and Birney 2008) optimising
for k-mer values between 61 and 99. Velvet Optimiser
indicated a k-mer value of 99 to be optimal. All contigs
below 500 bp were discarded. The assembled contigs
were subsequently joined into scaffolds by incorporating
the mate-pair library data, using the program SSPACE
v.2 (Boetzer et al. 2011). Parameters were set to extend
contigs, using unmapped reads and five read pairs were
required to support the joining of two contigs for the
creation of scaffolds. Raw reads were mapped back to
the genome to fill in gaps within scaffolds using the soft-
ware GapFiller v.1.10 (Boetzer and Pirovano 2012).
Standard parameters were retained except that a mini-
mum overlap of 100 bp was selected for reads mapped
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back to the scaffolds and read trimming was switched
off. The pipeline BUSCO (Benchmarking Universal Single-
Copy Orthologs; Simão et al. 2015) was used to determine
the percentage of conserved Ascomycete (1315 genes) and
Sordariomycete (3375 genes) single-copy orthologs present
in the genome.
RNA extraction was performed on mycelial and

ascomatal tissue harvested from three agar plates after
ten days of growth. Liquid nitrogen was used to flash
freeze the harvested tissue after which a mortar and
pestle was used to grind it to a fine powder. RNA
extractions were then performed using the RNeasy®
Plant Mini Kit (Qiagen, Limburg, The Netherlands)
following the manufacturer’s instructions but the RLC
buffer was replaced with RLT buffer, and the optional
DNase-1 digestion step was included. Quality of the
extracted total RNA was evaluated using agarose gel
electrophoresis with 2% (w/v) agarose (Seakem). The
concentration was then measured using a ND_1000
Spectrophotometer (Nanodrop, Wilmington, DE). Fur-
ther quality assessment was performed using the Experion™
automated electrophoresis system (Bio-Rad Laboratories,
California, USA). The extracted RNA was enriched for
mRNA using Dynabead® mRNA purification kit (Thermo-
Fisher Scientific, Waltham, USA) and then subjected to
cDNA synthesis, library preparation and sequencing at the
Central Analytical Facilities, Stellenbosch University, South
Africa, using the Ion Proton Platform and PI™ Chip system
(Life Technologies, Carlsbad, CA). Quality of the raw reads
was checked using FastQC as described above. Sequences
were trimmed using Trimmomatic by removing low quality
reads (leading and trailing Phred score < 20), reads below
20 bp in length, the first 20 bp of each read (due to low
quality), and any bases over 300 bp in length.
The MAKER genome annotation pipeline v2.31.8

(Cantarel et al. 2008; Holt and Yandell 2011) was used
for structural annotation of the genome. RNA-Seq data
was incorporated into training of gene predictors and
used as gene evidence during all MAKER iterations. The
RNA-Seq reads were aligned to the genome with STAR
(Dobin et al. 2013) and transcripts were assembled with
Cufflinks (Trapnell et al. 2012). The aligned RNA-Seq
reads in BAM format were incorporated into the
Braker1 pipeline (Hoff et al. 2016) for training of
AUGUSTUS v.3.2.1 (Stanke et al. 2004) and GeneMark-
ET (Lomsadze et al. 2014). SNAP (Korf 2004) was
trained with transcripts assembled from Cufflinks using
the est2genome function in MAKER. A species specific
repeat library was created using RepeatScout (Price et al.
2005) and RepeatMasker (Smit et al. 1996–2010). This
repeat library was used to mask the genome against re-
petitive elements before performing gene prediction in
MAKER. A final MAKER run was conducted using trained
parameters from SNAP, AUGUSTUS and GeneMark.

FgeneSH (Solovyev et al. 2006) was run based on parame-
ters pre-optimised for Neurospora crassa and the gene
models obtained were passed over to MAKER in the final
run. Gene models obtained from MAKER were visualised
using WebApollo (Lee et al. 2013), along with RNA-seq
evidence aligned to the genome, and all gene models were
examined and curated, where necessary, based on the
RNA-Seq evidence.
Functional annotation of the genes was based on com-

parison to various databases. A BLASTp analysis was
performed for all proteins against the Swissprot data-
base. Proteins were also compared to the Protein family
(Pfam) database using InterProScan v.5.24 (Jones et al.
2014). SignalP v.4.0 (Petersen et al. 2011) was used to
predict secretion signals and Phobius v.1 (Käll et al.
2004) was used to predict the presence of transmem-
brane domains. To predict the number of genes present
in internal clusters, the genes involved in secondary me-
tabolite production were determined using the anti-
SMASH v.3 software available online (Weber et al.
2015). The functional annotations predicted for each
protein were added to the gff file using the software
ANNIE (Ooi et al. 2009) and GAG (Hall et al. 2014).

Results and discussion
The paired-end and mate-pair sequencing generated ap-
proximately 42,5 million raw reads with an average
length of 166 bp. Trimmed reads were assembled into
399 scaffolds, ranging in size from 500 bp to 516 595 bp,
with an average read coverage of 630 and N50 value of
173 733 bp. The C. fimbriata genome was 30 159 98 bp
in size with a GC content of 45.6%. There were 7728
predicted genes, of which 7266 (94%) were protein-cod-
ing genes, 105 (1.36%) were rRNA genes and 348 (4.5%)
were tRNA genes. In total, 62% of the genes could be
annotated with a known function. The C. fimbriata gen-
ome contained 98% Ascomycete and 90% Sordariomy-
cete completed BUSCO gene models. The taxonomic
placement of C. fimbriata among the Microascales is il-
lustrated in Fig. 1. The sequence alignments were sub-
mitted to Treebase (24031).
This study showed that C. fimbriata has far fewer genes

than other fungal plant pathogens with similar genome
sizes. For example, the head blight pathogen Fusarium
graminearum (genome size: 36.5Mb) has approximately
14 164 genes (King et al. 2015), the pine needle blight
pathogen Dothistroma septosporum (genome size: 31.2
Mb) has 12 580 genes (De Wit et al. 2012) and the wilt
pathogen Verticillium dahliae (genome size: 33.8Mb) has
10 535 genes (Klosterman et al. 2011). The number of
genes in C. fimbriata does, however, correspond with
those of other Ceratocystis species (Van der Nest et al.
2014a; Van der Nest et al. 2014b; Wingfield et al. 2015b;
Wingfield et al. 2016b). There are currently eight genomes
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publicly available for species of Ceratocystis and 18 in the
Ceratocystidaceae (Wilken et al. 2013; Van der Nest et al.
2014a; Van der Nest et al. 2014b; Van der Nest et al. 2015;
Wingfield et al. 2015a; Wingfield et al. 2015b; Wingfield et
al. 2016a; Wingfield et al. 2017; Molano et al. 2018; Van-
derpool et al. 2018; Wingfield et al. 2018a). The annota-
tion of the C. fimbriata genome sequence presented in
this study is the first manually curated genome including
additional RNA evidence, for any species in the Ceratocys-
tidaceae. This annotation will provide the means to im-
prove annotations for other species of Ceratocystis and
provides an improved assembly that can be used for future
comparative studies.
Authors: A. Fourie*, M.C. Simpson*, T.A. Duong, I.

Barnes, M.P.A. Coetzee, M.A. van der Nest, M.J. Wingfield
and B.D. Wingfield.
*Contact: melissa.simpson@fabi.up.ac.za or arista.four

ie@fabi.up.ac.za (authors contributed equally)

IMA GENOME-F 11B
Draft genome sequence of Fusarium xylarioides
Introduction
Fusarium xylarioides Steyaert (1948) is a soilborne fungal
pathogen that causes coffee wilt disease (CWD) in many
coffee growing regions in Africa (Rutherford 2006). The

sexual stage, previously referred to as Gibberella xylar-
ioides (Heim 1950), is readily observed in CWD infested
trees (Ploetz 2006). This heterothallic fungus is a mem-
ber of the F. fujikuroi species complex (FFSC), a group
of phylogenetic species that infect a number of import-
ant crops (O’Donnell et al. 1998; O’Donnell et al. 2000).
Previous studies have reported the presence of two gen-
etically and biologically distinct forms of this pathogen
(Geiser et al. 2005; Lepoint et al. 2005), but their tax-
onomy has not yet been conclusively resolved. The avail-
ability of a complete genome sequence will, therefore,
serve as the starting point for addressing the taxonomic
confusion about this species in the literature. Also, more
genetic data on this species will enable studies on its
biology and evolution.

Sequenced strain
Uganda: Iganga District: Isolated from Coffea canephora,
Dec. 2000, D.M. Geiser (KSU 18978 = FRC L-0394 =
CMW 53787 – living culture).

Nucleotide sequence accession number
The whole genome shotgun sequencing project of Fusar-
ium xylarioides KSU 18978 (FRC-L0394 = CMW 53787)
has been deposited at DDBJ/ENA/GenBank under the

Fig. 1 Phylogenetic tree depicting the relationship between C. fimbriata (in bold) and related species and genera in the Microascales. The tree
was constructed from 60S, LSU, MCM7 gene regions using RaxML. Bootstrap support (1000 replicates) are indicated at the nodes
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accession no. SRZU00000000. The version described in
this paper is version SRZU01000000.

Materials and methods
Fusarium xylarioides KSU 18978 (CMW 53787) was ob-
tained from the culture collection (CMW) of the For-
estry and Agricultural Biotechnology Institute (FABI),
University of Pretoria. The isolate was grown in 40ml
potato dextrose broth (20% potato dextrose broth w/v)
and incubated on an orbital shaker (135 rpm)for 2 d at
room temperature (22–25 °C). Genomic DNA was ex-
tracted following the method of Duong et al. (2013).
One pair-end library of 250 bp read length and 550 bp
insert size was prepared and sequenced using the Illu-
mina HiSeq 2500 platform. Quality control of pair-end
reads received and adapter trimming was performed in
the program Trimmomatic v. 0.36 (Bolger et al. 2014).
Genome assembly was performed from trimmed reads
using SPAdes v. 3.10 (Bankevich et al. 2012) and further
scaffolding was performed using SSPACE Standard v. 3.0
(Boetzer et al. 2011). The genome quality and complete-
ness were evaluated with BUSCO v. 2.0 (Simão et al.
2015) using the dataset for Sordariomycetes. The number
of protein-coding genes encoded by the genome was
evaluated with the program AUGUSTUS v. 3.2.2 (Stanke
et al. 2006) using Fusarium graminearum as a species
model. The taxonomic identity of the sequenced genome
was confirmed by Maximum likelihood (ML) analysis of
authenticated sequences using MEGA version X (Kumar
et al. 2018).

Results and discussion
The assembled draft genome of Fusarium xylarioides
was estimated to be 55.24Mb with a coverage of 61x,
corresponding to 424 scaffolds larger than 500 bp with
an N50 value of 250 204 bp, and an average GC content
of 43.4%. Among the FFSC species for which genomes
sequences are available, F. xylarioides thus has the lar-
gest predicted genome size, i.e., the genomes of F. circi-
natum is 43.43Mb, F. temperatum 45.46Mb, F.
fracticaudum 46.29Mb, F. pininemorale 47.83Mb, and
F. nygamai is 51.61Mb (Wingfield et al. 2015a, 2015b,
2017, 2018a). The predicted size of our sequenced gen-
ome was similar to that of another F. xylarioides strain
K1 (55.11Mb), whose genome sequence has recently
been made available on NCBI under nucleotide acces-
sion number GCA_004329255.
Based on BUSCO analysis, genome completeness was

99.0% (C:3687 [S:3680, D:7], F:26, M:12, n:3725), suggest-
ing that the assembly covers the majority of the organism’s
gene content. AUGUSTUS predicted that the assembly
encodes 14 588 open reading frames (ORFs) and this was
in agreement with data from other members of the FFSC
(Wingfield et al. 2015a, 2015b, 2017, 2018a).

Phylogenetic analysis based on partial gene sequences
of β-tubulin and TEF-1α confirmed the sequenced gen-
ome to be of F. xylarioides (Fig. 2). F. xylarioides and F.
udum are the only two members of the FFSC that cause
true vascular wilt diseases (Geiser et al. 2005). Therefore,
the increase in available whole genome data will not only
allow for taxonomic re-evaluation of F. xylarioides, but
will also enable comparative genomics studies to better
understand the biology and evolution of members of the
FFSC.
Authors: V.S. Bushula-Njah*, T.A. Duong, D.M. Geiser,

E.T. Steenkamp, and B.D. Wingfield.
*Contact: Vuyiswa.bushula@fabi.up.ac.za

IMA GENOME-F 11C
Draft genome sequences of Teratosphaeria gauchensis
and T. zuluensis, causal agents of Teratosphaeria stem
canker
Introduction
Teratosphaeria stem canker (previously known as Con-
iothyrium canker) is a fungal disease of Eucalyptus trees
planted outside of their native range for the production
of wood and non-wood products. Since its discovery in a
South African plantation in the late 1980’s (Wingfield et
al. 1996), this disease has emerged in Eucalyptus planta-
tions in 14 additional countries where tropical or sub-
tropical climates predominate (Aylward et al. 2019).
Infection is characterized by necrotic lesions that grow
and eventually merge to form large gum-filled, bleeding
cankers (Wingfield et al. 1996). Gum-stained wood is
unsuitable for timber production and lesions hinder de-
barking so that pulping is affected (Old et al. 2003).
Teratosphaeria gauchensis and T. zuluensis, Dothideo-

mycete fungi (Capnodiales, Teratosphaeriaceae), cause
Teratosphaeria stem canker independently (Cortinas et
al. 2006). These two species are unique in that they are
the only known stem canker pathogens in a genus pre-
dominantly associated with the leaves of Eucalyptus spe-
cies (Fig. 3; Quaedvlieg et al. 2014). Until recently, they
were thought to have distinct geographic distributions,
but in 2014 both were identified in a Ugandan plantation
(Jimu et al. 2014). Together with the 2015 discovery of
T. gauchensis in southern Africa (Jimu et al. 2015), this
suggests that concurrent infections are bound to occur
in plantations of central and southern Africa (Aylward et
al. 2019).
We present the genome sequences of the ex-holotype

of T. gauchensis (CBS 119465) and the ex-type of T.
zuluensis (CBS 119470). These genomes will enable ex-
ploration of the intriguing case of two different species
causing identical disease symptoms. Future studies will
focus on the eucalypt stem specificity of these pathogens
in contrast to the widespread eucalypt leaf association of
other Teratosphaeria species.
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Fig. 2 Maximum likelihood (ML) tree based on partial gene sequences of β-tubulin and translation elongation factor 1-α. Sequence alignments
were assembled with MAFFT version 7 (Katoh and Standley 2013). The program MEGA X version 7 (Kumar et al. 2018) was used to estimate the
best-fit substitution model (TN93) with a discrete gamma distribution (+G). The same program was used for ML phylogenetic analysis and
percentage bootstrap support (1000 replications) values are indicated at branch nodes

Fig. 3 Maximum Likelihood phylogeny of the Teratosphaeria stem canker pathogens and related species based on the Elongation Factor (EF1-α)
gene. Leaf-associated species are highlighted in teal, whereas the stem canker pathogens are yellow. The genome isolates described in this study
are indicated with arrows. GeneBank accessions are shown after the species name
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Sequenced strain
Teratosphaeria gauchensis: Uruguay: La Juanita: isol.
Stem cankers on Eucalyptus grandis, Feb. 2005, M.J.
Wingfield (CBS 119465 = CMW 50181- culture, PREM
62331 – dried culture).
Teratosphaeria zuluensis: South Africa: KwaZulu-Natal

Province (Kwambonambi plantation): isol. Stem cankers
on Eucalyptus grandis, Feb. 2005, M.J. Wingfield (CBS
119470 = CMW 50183 – culture, PREM 62332 – dried
culture).

Nucleotide accession number
The genomic sequence data of T. gauchensis and T.
zuluensis have been deposited at DDJ/EMBL/GenBank
under the accessions VCMR00000000 (T. gauchensis)
and VCMQ00000000 (T. zuluensis). This paper describes
the first versions of these genomes.

Material and methods
Fungi were cultured on 2% Malt Extract Agar (Merck,
Wadeville, South Africa) at 25 °C for approximately 2
weeks. DNA was extracted as described for T. destruc-
tans (Wingfield et al. 2018b). The quality of the extracted
DNA was estimated from the absorbance curve and the
260/280 and 260/230 absorbance ratios determined by a
NanoDrop ND-1000 spectrophotometer (ThermoFisher
Scientific, Wilmington, USA). DNA concentrations were
determined with a Qubit® 2.0 Fluorometer (Invitrogen,
Carlsbad, California).
Teratosphaeria gauchensis (CBS 119465) was sequenced

at Macrogen (Seoul, Korea) using a single PacBio Sequel
SMRT Cell as well as a portion of an Illumina HiSeq 2500
lane at Inqaba Biotec (Pretoria, South Africa). The single
paired-end Illumina library had an insert size of 550 bp
and a target read length of 250 bp. A hybrid assembly was
computed by trimming the raw Illumina sequence reads
with Trimmomatic 0.38 (Bolger et al. 2014) and using
these in LoRDEC 0.6 (Salmela and Rivals 2014) to correct
the PacBio reads. The corrected PacBio reads were assem-
bled with Canu 1.7.1 (Koren et al. 2017). An Illumina as-
sembly was subsequently constructed in SPAdes 3.10.1
(Bankevich et al. 2012), using k-mer values of 21, 33, 55,
and 77 and applying the Canu assembly as “trusted reads”.
A final error correction of the hybrid assembly was per-
formed with Pilon 1.22 (Walker et al. 2014).
Teratosphaeria zuluensis (CBS 119470) was sequenced

with the Ion 520™ & Ion 530™ ExT Kit and an Ion 530™
Chip (ThermoFisher Scientific, MA) at the Central Ana-
lytical Facility (CAF, Stellenbosch University, South Af-
rica). Assembly of reads was done with SPAdes 3.10.1
(Bankevich et al. 2012) using k-mer values 21, 33, 55, 77,
99, and 127. For both T. gauchensis and T. zuluensis,
genome completeness was estimated with Benchmarking

Universal Single-Copy Orthologs (BUSCO) 2.0.1 (Simão
et al. 2015) using the “Ascomycota odb9” dataset.
Repeats within each genome were identified with

RepeatScout and masked with RepeatMasker Open-4.0.7
(http://www.repeatmasker.org). Annotation was performed
with the MAKER 2.31.10 pipeline (Campbell et al. 2014)
using pre-trained de novo gene predictors AUGUSTUS 3.3
(Stanke et al. 2006), GeneMark-ES Suite 4.35 (http://exon.
gatech.edu/GeneMark/) and SNAP 2006-07-28 (Korf 2004).
External EST and protein evidence from 15 other Capno-
diales species were included in the annotation pipeline.
The Elongation Factor genes (EF1-α) of the two stem

canker pathogens were extracted from their genomes
and used along with the EF1-α genes of related species
(Quaedvlieg et al. 2014) for phylogenetic analysis. The
Maximum Likelihood tree was computed with the
PhyML+SMS “one-click” method on NGPhylogeny.fr
(Lemoine et al. 2019). This protocol employs MAFFT
(Katoh et al. 2017) for multiple alignment, BMGE
(Criscuolo and Gribaldo 2010) for alignment curation
and the aLRT SH-like method (Anisimova and Gascuel
2006) for calculating bootstrap support.

Results and discussion
Teratosphaeria gauchensis was assembled into 53 contigs
larger than 1 kb, with an N50 = 1.44Mb and L50 = 8.
This equated to a total assembly size of 30.27Mb with a
GC content of 45.6%. The PacBio reads provided an esti-
mated genome coverage of 124x with an additional 160x
coverage obtained from the Illumina data. The T.
zuluensis assembly yielded 86 contigs above 1 kb (N50 =
1.00Mb, L50 = 12), an estimated genome size of 28.71
Mb, 44.5% GC and estimated 155x genome coverage.
The search for 1315 Ascomycota ortholog proteins iden-
tified 97.6% (1285) single-copy orthologs in T. gauchen-
sis and 96.9% (1274) in T. zuluensis, indicating that these
genomes are ca. 97% complete. This presents a higher
level of completeness than the 84.5% of T. destructans,
the only other published Teratosphaeria genome (Wing-
field et al. 2018b).
A similar number of genes were predicted in T. gau-

chensis and T. zuluensis at 11699 and 11520, respect-
ively. Of these, 9304 predictions in T. gauchensis and
9457 in T. zuluensis were supported by external evi-
dence. Both genomes had a low repeat content of 2.2%,
much lower than the ca.17% estimated for T. destruc-
tans (GenBank RIBY01000000). Since the genomes of
these stem canker pathogen species, as well as T.
destructans, were sequenced with long-read technolo-
gies, we are confident that this is not an underestimate,
but reflects the true repeat content in these genomes.
The EF1-α gene tree (Fig. 3) illustrates the relationship

of T. zuluensis and T. gauchensis to leaf-associated Tera-
tosphaeria species. This phylogeny, as well as others
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(Aylward et al. 2019; Quaedvlieg et al. 2014), suggests
that the association with Eucalyptus stem cankers
evolved more than once. The T. zuluensis genome isolate
CBS119470 groups with the ex-epitype strain CBS120301
(KF903368), however, the T. gauchensis strain sequenced
in this study (CBS119465) groups sister to a clade that
contains an ex-type strain (CBS120304; KF903314) of T.
gauchensis and T. stellenboschiana. A similar phylogenetic
relationship is apparent with both the ITS and β-tubulin
gene regions as well as with concatenated gene trees (data
not shown). Teratosphaeria gauchensis is known to repre-
sent a species complex displaying statistical support for
subgroups within the species (Aylward et al. 2019; Silva et
al. 2015). Future studies should take the taxonomic pos-
ition of this genome isolate into consideration when inter-
preting genomic data.
Several other fungal groups affect Eucalyptus stems, in-

cluding species in the genera Chrysoporthe (Gryzenhout et
al. 2004), Cytospora (Adams et al. 2006), Holocryphia (Van
der Westhuizen et al. 1993) and Neofusicoccum (Slippers et
al. 2009). Of these, genomes of Eucalyptus-specific isolates
are available only for Chrysoporthe austroafricana, C. cuben-
sis and C. deuterocubensis, the causal agents of Cryphonec-
tria canker (Wingfield et al. 2015a, 2015b). Teratosphaeria
gauchensis and T. zuluensis, therefore, represent the second
group of Eucalyptus stem canker pathogens to be se-
quenced. In future, comparative genomics projects that in-
clude various Eucalyptus stem pathogens as well as closely
related species associated with other plant organs (e.g. T.
destructans), may reveal fungal characteristics that enable
stem pathogenicity.
Authors: J. Aylward, B.D. Wingfield, L.L. Dreyer, F.
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