Mycologia, 88(1), 1996, pp. 104–113. © 1996, by The New York Botanical Garden, Bronx, NY 10458-5126

Isozyme variation and species delimitation in the Ceratocystis coerulescens complex

T. C. Harrington

J. P. Steimel

Department of Plant Pathology, Iowa State University, Ames, Iowa 50011

M. J. Wingfield

Department of Microbiology and Biochemistry, University of the Orange Free State, P.O. Box 339, Bloemfontein, 9300 South Africa

G. A. Kile

CSIRO, Division of Forestry, P.O. Box 4008, Queen Victoria Terrace, ACT 2600, Australia

Abstract: Nineteen electrophoretic phenotypes (unique combinations of electromorphs) were found among 98 isolates of Ceratocystis coerulescens and morphologically similar species using 10 isozymes. Analysis of the isozyme data and morphological comparisons suggested that there are five variants of C. coerulescens found on conifers: three are associated with blue-stain of Picea or Pinus, one (C. coerulescens f. douglassi) with blue-stain of Pseudotsuga, and one associated with the bark beetle Dendroctonus rufipennis on Picea. Ceratocystis polonica and C. laricicola, associated with bark beetle species in the genus Ips on Picea and Larix, respectively, had similar isozymes, are morphologically indistinguishable from each other, and should probably be synonymized. Ceratocystis virescens, cause of stain of hardwoods and sapstreak disease of Acer saccharum, is distinct from the conifer species of Ceratocystis in isozyme electromorphs and anamorph morphology. Isozymes of C. virescens show some similarity to those of two Australian species, an undescribed species of Ceratocystis from Eucalyptus and Chalara australis. The Chalara states of these three hardwood species and Chalara neocaledoniae are morphologically similar.

Key Words: Acer, blue-stain, Chalara, Dendroctonus, Eucalyptus, Larix, Picea, Pinus, Pseudotsuga

INTRODUCTION

Ceratocystis sensu stricto (excluding Ophiostoma) is a relatively small genus of often insect-vectored ascomycetes, comprised primarily of plant pathogens and wood-staining fungi (Kile, 1993). In spite of their economic importance, species limits within the genus are poorly defined, particularly in the group of taxa referred to here as the *C. coerulescens* complex. *Ceratocystis coerulescens* (Münch) Bakshi was described as a cause of blue-stain in the wood of spruce (*Picea*) and pine (*Pinus*) in Europe (Münch, 1907). The anamorph state may be *Chalara ungeri* Sacc. (Nag Raj and Kendrick, 1975).

Our examinations of *C. coerulescens* isolates suggest that there are up to five morphological variants of this species on conifers. Two of these variants from western North America were recognized by Davidson (1953, 1955), one as *C. c. f. douglasii* on wood of Douglasfir [*Pseudotsuga menziesii* (Mirb.) Franco] and the other as an associate of the spruce beetle, *Dendroctonus rufipennis* (Kirby) (Coleoptera: Scolytidae).

Two other conifer taxa related to C. coerulescens are also bark beetle associates. Ceratocystis polonica (Siemaszko) Moreau was described from spruce attacked by *lps typographus* L. (Siemaszko, 1939) and C. laricicola Redfern & Minter from larch (Larix) attacked by *lps cembrae* Heer (Redfern et al., 1987). The *lps typographus* associate had been known as Ophiustoma polonicum Siemaszko but recent studies (Visser et al., 1994) have shown that the species belongs in Ceratocystis. With this recognition, C. laricicola is difficult to distinguish morphologically from C. polonica.

Davidson (1935) and Verrall (1939) reported C. coerulescens as a cause of stain in hardwood lumber in the southeastern United States, and Davidson (1944) later described the hardwood fungus as new: C. virescens (Davidson) Moreau. Others (Hunt, 1956; Upadhyay, 1981) have considered this hardwood species as a synonym of C. coerulescens, although this was not supported by Kile and Walker (1987). The hardwood species is recognized as a cause of sapstreak of maple (Acer) in the northeastern United States, and similar diseases on angiosperms in New Caledonia and Australia (Kile, 1993) have been associated with Chalara species; Chalara neocaledoniae Kiffer & Delon was reported on coffee and guava and Ch. australis Walker & Kile on Nothofagus. The anamorph of C. virescens is similar to the two Chalara species and also to the anamorph of a weak pathogen on Eucalyptus, an undescribed species of Ceratocystis. Ascospores of the Eucalyptus fungus are much larger than those of C. virescens or C. coerulescens (Kile et al., 1994).

Isozymes have proved useful in delimiting species

Accepted for publication August 24, 1995.

and infra-specific taxa in other fungal groups (e.g., Leptographium, Zambino and Harrington, 1989; 1992). Before describing new taxa or synonymizing species based on morphology, we chose to apply isozyme analysis to the *C. coerulescens* complex. Besides the five variants of *C. coerulescens*, we studied *C. polonica*, *C. laricicola*, *C. virescens*, the undescribed *Ceratocystis* species from *Eucalyptus*, and two morphologically similar species with no known teleomorphs, *Chalara australis* and *Ch. neocaledoniae*.

MATERIALS AND METHODS

Ninety-eight isolates of *Ceratocystis* and *Chalara* from Australia, New Caledonia, Japan, North America and Europe were tested for isozyme variation (TABLE I). Many of the isolates were obtained from recognized collections (ATCC and CBS), and others were supplied H. Roll-Hansen and H. Solheim, Norwegian Forest Institute, Norway; D. Redfern, Forestry Commission, Northern Research Station, Edinburgh, U.K.; J. Gibbs, Forestry Commission Research Station, Alice Holt Lodge, Surrey, England; Y. Yamaoka, Department of Plant Pathology, University of Tsukuba, Ibaraki, Japan; D. Houston, U.S.D.A. Forest Service, Hamden, Connecticut; and T. Hinds, U.S.D.A. Forest Service, Ft. Collins, Colorado.

Fresh mycelium for enzyme extraction was grown in 30 ml of liquid medium (20 g Difco malt extract and 2 g yeast extract per liter of water) in 125 ml Erlenmeyer flasks and incubated at room temperature for approximately two weeks. Buffers and protocols for extraction of the enzymes from mycelia onto paper wicks were as previously described (Zambino and Harrington, 1989; 1992). Wicks were frozen at-70 C until electrophoresis. Starch gels (12 %) were prepared as described by Marty et al. (1984) and poured into gel forms such as those described by Cardy et al. (1983). Buffers and electrophoresis conditions are shown in TABLE II. Staining for FUM and G6PD activity followed the procedures of Marty et al. (1984), but staining for other isozymes followed the procedures of Cardy et al. (1983). At least two independent extractions from each isolate were tested for isozyme activity.

Among the isozymes tested, only 10 gave consistent results for all 98 isolates. For each isolate, only one band was evident for most of the 10 isozymes, but second bands were inconsistently seen in some isolates when tested for DIA, G6PD, and PGD activity. With these latter three isozymes, only the consistently produced band was scored. Electromorphs of representative isozymes are shown in FtG. 1. For each isozyme, electromorphs were designated by letters in order of decreasing anodal migration.

Electrophoretic phenotypes were defined as unique combinations of electromorphs for the 10 isozymes.

ABEGHGEBA ABDEDBA

FIG. 1. Representative electromorphs, designated by letter in order of decreasing anodal migration, for fumerase, isocitrate dehydrogenase, aspartate aminotransferase, and phosphogluconate dehydrogenase.

The electromorphs were used to cluster the ETs into putative taxonomic units. A matrix was developed using Rogers' genetic distance (NTSYS-PC program, Rohlf, 1990) or Nei's genetic distance (Felsenstein, 1993) and a phenogram was generated using neighbor-joining (Felsenstein, 1993).

RESULTS

Nineteen electrophoretic phenotypes (ETs) were identified among the 98 isolates of *Ceratocystis* and *Chalava* tested (TABLE III). One to four unique ETs were seen in each of 11 putative taxonomic units. The ETs within a taxonomic unit generally varied for only one or two isozymes, but the 10 tested isolates from *Eucalyptus* showed variation in electromorphs for four of the ten isozymes. The isozymes AAT, DIA and GDH were the most variable of the enzymes, with eight electromorphs for each found among the 98 isolates (TABLE II). In contrast, only two electromorphs were seen for G6PD.

Genetic distances among the electrophoretic phenotypes were determined by both Nei's and Rogers' methods, and neighbor-joining analyses of these matrixes gave similar topologies. The single isolate of *C. c.* f. douglasii represented a phenotype quite distinct from the others, and principal component analyses (Rohlf, 1990) indicated that this phenotype had little affinity to the others. It was used as an outgroup in generating the tree in FIG. 2. The other phenotypes fell into two clusters, one primarily of the isolates from hardwoods and the other of conifer isolates only.

Analysis of the isozyme data grouped similar ETs into what appear to be natural taxonomic units or

Species	Isolate No.*	Other No. /Collector ^b	Substrate	Country	Electro- phoretic phenotype	
C considerance on A	0497	CMW1383 0.005 (Chbc	Dimar	Findand	1	
er commencen sp. re	(1488	CMW1311_0.007/Clabk	Dinus infrastris truco	England	ĩ	
	C490	CMW1912 0.006/Cibbs	Pinus wigner Log	England	î	
	C100	CMW1992 0 001/Cable	Pinar nigra, tog	England	11	
C manufacture en 11	0603	CHE490 40/A 1055	Dinna or Dinn lor	Kinland	111	
C. mermanish sp. b	C212	CB5409.80/A. Luja	Piece aking wood	Commun	TTT	
	6313	ATCC19850 9 Comboll	Piece lanes, wood	Minimum ITE A	111	
	C301	CDE127 24/Exoteman	Males timber	Minnesota, U.S.A.	111	
25 Contraction (19)	6521	Children Constantian	Moist Innocr	Neurerianus Neur Menico, USA	111	
C. commencial sp. C.	0.50	Convest, COSSI/Timus	Picea engelmannin, wood	New Mexico, USA	19	
	6278	NER180-434-9	Picea aous, tog	Norway	1.4	
	C662	NFK180-404-10	Picea anies, would	Norway	10	
	C000	NKF11750-2/Koll-Hansen	Picna atties, tog	Norway	1.4	
and the second second	6276	ATG. 44993, NFRI66-157-21/Roll-Hansen	Picea abies, wound	Norway	V	
G. coerulescena sp. D	CEOS	252-8/Solbeim	Picea engelmannii, Dendrocton- us rufipennis	B.C., Canada	VI	
	C609	258-6/Solbeim	Picea engelmannii, Dendroctm- us rufipennis	B.C., Canada	VI	
	C610	280-7/Solheim	Picea engelmannii, Dendrocton- us rufițennis	B.C., Canada	VI	
	C611	285-8/Solbeim	Picea engelmannii, Dendrocton- us rulitennis	B.C., Canada	VI	
	C612	290-9/Solheim	Picea engelmannii, Dendrocton- us rafipennis	B.C., Canada	VI	
	C613	404-2/Solheim	Picea engelmannii, Dendrocton- us rulipennis	B.C., Canada	VI	
C. coerulescens f. douglasii	C324	CBS142.53, 70703/Davidson	Pseudotsuga menziesii, lumber from Oregon	Golorado, U.S.A.	VII	
C. polonica	C123	NCC1714-1-1	Picea abies	Norway	VIII	
	C320	CBS228.83, Solheim	Picea abies. Its typographus	Norway	VIII	
	C322	CBS133.38/Siemaszko	Picen ahies, Its typographus	Poland	VIII	
	C750	CMW2272, YCC115/Yamaoka	Picea jezoensis. Ita tubogratihus	lapan	VIII	
	C755	CMW2278, YCC067/Yamaoka	Picea jezoensis. Its tuborrathus	laoan	VIII	
	C757	CMW2274, YCC118/Yamaoka	Picea jezaensis. Its tytographus	Tanan	VIII	
	C731	CMW1164, ATCC62335, 80-53-7/Solheim	Picea ahies. Ibs typographus	Norway	VIII	
	C788	CMW2441, 83-14-40/Solbeim	Piera ahies. Its reportations	Norway	VIII	
	C789	CMW2442, 83-43-4/Solheim	Picea ahies, He typographies	Norway	VIII	
	C791	CMW2444, 90-120-181/Solheim	Picea ahies, Ibs typographys	Norway	VIII	
C. lavicienta	C741	CMW1953, L31A/Yamaoka	Larix, His cembrae	lanan	IX	
WARNER CONSIGNATION	C738	CMW1952, L35A/Yamaoka	Larix, Ips combrae	Japan	IX	

TABLE 1. Isolate numbers, substrate, origin and electrophoretic phenotype of isolates of Cenatocystis and Chalara examined for isozyme variation

106

Species	Isolate No.*	Other No./Collector ^b	Substrate	Country of origin	Electro- phoretic phenotype	
	C745	CMW1954, L30A/Yamaoka	Larix, Ibs cembrae	Japan	IX	
	C746	CMW1955, L20A/Yamaoka	Larix, Ibs cembrae	Japan	x	
	C177	55-9/Redfern	Larix decidua, Its cembrae	Scotland	XI	
	C178	56-13/Redfern	Lavix decidua, Ibs cembrae	Scotland	XI	
	C179	56-2/Redfern	Lavix decidua, Ibs cembrae	Scotland	XI	
	C180	56-12/Redfern	Lavix decidua, Ibs cembrae	Scotland	XI	
	C181	56-10/Redfern	Lavix decidua, Ibs cembrae	Scotland	XI	
C winescens	C68	Mantle1-1/Houston	Acer saccharinum	New York, U.S.A.	NII	
	C203	ATCC11066, Forintek 272A, 94256/Hepting	Lirisdendron tulipifera, veneer	North Carolina, U.S.A.	NII	
	C251	Mantle1-G25/Houston	Acer saccharum, sapstreak	New York, U.S.A.	XII	
	C252	Mantle60/Houston	Acer sucharien, sapstreak	New York, U.S.A.	XII	
	C253	Mantle68/Houston	Acer saccharum, sapstreak	New York, U.S.A.	NII	
	C254	Mantle95/Houston	Acer saccharum, sapstreak	New York, U.S.A.	XII	
	C255	Mantle128/Houston	Acer saccharum, sapstreak	New York, U.S.A.	NII	
	C256	3MTE/Houston	Acer saccharum, sapstreak	New York, U.S.A.	NII	
	C257	Lybdaker1/Houston	Acer saccharum, sapstreak	New York, U.S.A.	XII	
	C258	Lybdaker2/Houston	Acer saccharum, sapstreak	New York, U.S.A.	XII	
	C259	FFT#3/Houston	Acer saccharum, sapstreak	New York, U.S.A.	XII	
	C260	FFT#1/Houston	Acer saccharum, sapstreak	New York, U.S.A.	XII	
	C261	Yancy/Houston	Acer saccharum, sapstreak	New York, U.S.A.	XII	
	C69	Houston	Fagus americanum, log	New Hampshire, U.S.A.	XIII	
	C70	UM50, CMW447/Shigo		ner - se strangers	XIII	
	C74	RWD-431, CMW460, CO462/Hinds	Quercus, wood	New York, U.S.A.	XIII	
	C262	Houston	Acer succharum?, sapstreak?	New Hampshire, U.S.A.	XIII	
Ceratocystis sp. from Eucalyp-	C449	VIC1/Kile	Eucalyptus	Victoria, Australia	XIV	
DIX	C450	VIC8/Kile	Eucalyptus	Victoria, Australia	XIV	
	C639	V1/Kilc	Euculyptus sieberi	Victoria, Australia	XIV	
	C640	V2/Kile	Eucalyptus globaidea	Victoria, Australia	XIV	
	C641	V3/Kilc	Eucalyptus globoidea	Victoria, Australia	XIV	
	C646	V12/Kile	Eucalyptus sieberi	Victoria, Australia	XIV	
	C642	V5/Kile	Eucalyptus sieberi	Victoria, Australia	XV	
	C644	V6/Kile	Eucalyptus sieberi	Victoria, Australia	XV	
	C643	V8/Kile	Eucalyptus sieberi	Victoria, Australia	XVI	
	C645	V7/Kilc	Eucalyptus sieheri	Victoria, Australia	XVI	
	C457	YEP/Kile	Eucalyptus regnans	Tasmania, Australia	XVII	
Chalara australis	C448	1.91/Kile	Nothofagus cunninghamii	Tasmania, Australia	XVIII	
	C451	BR2/Kile	Nothofagus cunninghamii	Tasmania, Australia	XVIII	
	C452	BR5/Kile	Nothofagus cunninghamii	Tasmania, Australia	XVIII	
	C453	ESP3/Kite	Nothofagus cunninghamis	Tasmania, Australia	XVIII	

107

Isolate Species No."		Other No./Collector ⁶	Substrate	Country of origin	Electro- phoretic phenotype	
	C454	ESP6/Kile	Nothofagus cunninghamii	Tasmania, Australia	XVIII	
	C455	1.FRHeaped4/Kile	Nothofagus cunninghamii	Tasmania, Australia	XVIII	
	C456	LFRDrought6/Kile	Nothofagus cunninghamii	Tasmania, Australia	XVIII	
	C614	1.55/Kile	Nothofagus cunninghamii	Tasmania, Australia	XVIII	
	C615	X1/Kile	Nothofagus cunninghamii	Tasmania, Australia	XVII1	
	C616	Blackwater/Kile	Nothofagus cunninghamii	Tasmania, Australia	XVIII	
	C617	2.81/Kile	Nothofagus cunninghamii	Tasmania, Australia	XVIII	
	C618	2.85/Kilc	Nothofagus cunninghamii	Tasmania, Australia	XVIII	
	C619	T.50/Kile	Nothofagus cunninghamii	Tasmania, Australia	XVIII	
	C620	BR1/Kile	Nothofagus cunninghamii	Tasmania, Australia	XVIII	
	C621	BR8/Kile	Nothofagus cunninghamii	Tasmania, Australia	XVIII	
	C622	2.90/Kilc	Nothofagus cunninghamii	Tasmania, Australia	XVIII	
	C623	L1/Kile	Nothofagus cunninghamii	Tasmania, Australia	XVIII	
	C624	2.89/Kile	Nothofagus cunninghamii	Tasmania, Australia	XVIII	
	C625	2.88/Kile	Nothofagus cunninghamii	Tasmania, Australia	XVIII	
	C626	Esp5/Kile	Nothofagus cunninghamii	Tasmania, Australia	XVIII	
	C627	Esp11/Kile	Nothofagus cunninghamii	Tasmania, Australia	XVIII	
	C628	BR11/Kile	Nothofagus cunninghamii	Tasmania, Australia	XVIII	
	C631	N1/Kile	Nothofagus cunninghamii	Victoria, Australia	XVIII	
	C632	N2/Kilc	Nothofagus cunninghamii	Victoria, Australia	XVIII	
	C633	N3/Kile	Nothofagus cunninghamii	Victoria, Australia	XVIII	
	C634	N4/Kile	Nothofagus cunninghamii	Victoria, Australia	XVIII	
	C635	N5/Kile	Nothofagus cunninghamii	Victoria, Australia	XVIII	
	C636	N7/Kile	Nothofagus cunninghamii	Victoria, Australia	XVIII	
	C637	N6/Kile	Nothofagus cunninghamii	Victoria, Australia	XVIII	
	C638	1.66/Kile	Nothofagus cunninghamii	Victoria, Australia	XVIII	
C. neocaledoniae	C694	CBS149.83, LCPM1055/Kiffer	Coffea volnista	New Caledonia	XIX	

TABLE I. Continued.

* Isolate numbers from the collection of the senior author.

^b Collectors and their institutions are listed in the Materials and Methods.

MYCOLOGIA

108

Enzyme	Abbreviation	EC Number*	Buffer system/ Dilutions ^b	Number of electromorphs
Aspartate aminotransferase	AAT	2.6.1.1	E/1:1	8
NADH diaphorase	DIA	1.6.4.3	E/1:15	8
Fumerase	FUM	4.2.1.2	E/1:3	6
Glucose-6-phosphate dehydrogenase	G6PD	1.1.1.49	E/none	2
Glucosephosphate isomerase	GP1	5.3.1.9	B/1:3	5
Glutamate dehydrogenase (NADP)	GDH	1.4.1.3	B/1:3	8
Isocitrate dehydrogenase	IDH	1.1.1.42	E/1:3	4
Malate dehydrogenase	MDH	1.1.1.37	B/1:3	4
Phosphoglucomutase	PGM	5.4.2.2	B/1:3	3
Phosphogluconate dehydrogenase	PGD	1.1.1.43	E/1:1	5

TABLE II. Abbreviations, buffer systems and number of electromorphs found for 10 enzymes tested for variation in the Geratocystis coerulessens complex

* Nomenclature Committee of the International Union of Biochemistry.

^b Buffer B was a continuous histine cirrate system, adjusted to pH 5.7, run at 9 watts constant wattage for 4 hours. Buffer E was a continuous morpholine citrate system, adjusted to pH 8.1, run at 15 watts constant wattage for 6 hours, except for diaphorase, which was run at 9 watts for 6 hours.

species (FIG. 2). The single ET of *C. polonica* clustered with the three ETs of *C. laricicala*. Two ETs of *C. virescens* differed by only a single isozyme and were distinct from all other taxonomic units. The four ETs of the undescribed species from *Eucalyptus* clustered together. No variation was found among the 30 isolates of Ch. australis, which grouped nearest to Ch. neocalidoniae.

Within C. corrulescens, five clusters of ETs could be seen: sp. A, sp. B, sp. C, sp. D and f. douglasii. The two ETs of sp. A differed by only one enzyme, as did the two ETs of sp. C (TABLE III). Two of the variants

	Electro- phoretic phenotype	Num- ber of	Isozymes									
Species		lates	AAT	DIA	FUM	G6PD	GPI	GDH	IDH	MDH	PGM	PGD
C. coerulescens sp. A	1	3	B*	Е	E	в	С	в	С	D	в	D
an a second and a second date of	II	1	в	G	E	в	C	в	C	D	в	D
C. coerulescens sp. B	III	4	A	E	E	в	D	A	C	в	в	в
C. coerulescens sp. C	IV	4	E	D	D	в	C	C	A	G	A	в
	v	1	E	Hb	D	в	C	C	A	C	A	в
C. coerulescens sp. D	VI	6	H	в	D	B	B	G	A	C	A	в
C. coerulescens f. douglasii	VII	1	A	C	F	A	E	в	D	D	C	A
C. polonica	VIII	10	E.	B	D	B	D	в	C	в	в	E
C. laricicola	IX	3	E	E	D	в	D	в	C	в	в	E
	x	1	G	E.	D	B	D	в	C	в	в	E
	XI	5	E	F	D	в	D	в	C	в	в	Е
C. virescens	XII	13	F	в	D	в	C	D	A	A	A	В
	XIII	.4	D	в	D	B	C	D	A	A	A	в
C. sp. from Eucalyptus	XIV	6	F	C	Α	в	в	E	A	A	A	в
	XV	2	F	в	A	B	A	E	A	A	A	в
	XVI	2	F	C	A	B	в	E	A	A	A	C
	XVII	1	F	C	A	в	в	H	A	A	A	в
Chalara australis	XVIII	30	F	D	C	в	B	D	в	Α	C	в
Chalara neocalidoniae	XIX	1	C	Α	в	В	A	F	в	A	C	В

TABLE III. Isozyme electromorphs for 19 electrophoretic phenotypes among 98 isolates of the Cerutocyatis corrules complex.

* Letters represent isozyme electromorphs for each isozyme in order of decreasing anodal migration.

9 No activity for DIA.

FIG. 2. Phenogram (Neighbor-joining analysis) based on isozyme electromorphs of 19 electrophoretic phenotypes (Roman numerals) in the *Ceratocystis coerulescens* complex.

(sp. A and sp. B) grouped most closely to C. polonica and C. laricicola, and sp. C and D grouped most closely to C. virescens (FIG. 2). C. c. f. douglasii was represented by only one isolate, which had unique electromorphs for five of the ten isozymes tested and did not cluster with the other phenotypes.

DISCUSSION.

Analysis of the isozyme data clustered morphologically similar isolates and supported delineation of many species within the *C. coerulescens* complex. Although the number of isozymes tested was too low to confidently compare the relative relatedness among all the tested taxa, two broadly defined groups were suggested: one centered around the hardwood species *C. virescens* and another centered around *C. coerulescens sensu stricto* (sp. A). The isolate of *C. c. f. douglasii* did not cluster closely with other isolates.

Hardwood species. —Four taxa on hardwoods (C. virescens, Ceratocystis sp. from Eucalyptus, Ch. australis and Ch. neocalidoniae) share many isozyme electromorphs and have similar conidiophore states: tapering and proliferating phialides as opposed to the non-tapering phialides typically found in the conifer species of the C. coerulescens complex. Three of the hardwood species are primary pathogens and are believed to be similar in pathogenesis (Kile, 1993), but the species on Eucalyptus is only weakly pathogenic (Kile, unpublished).

The degree of within-species variation in the hardwood group may be a reflection of the sexual compatibility systems of these respective taxa. Among all the species studied, the Eucalyptus fungus had the greatest variation in isozyme electromorphs (four ETs among 10 isolates). This species is heterothallic (Kile et al., 1994), and assuming that ascospores are the primary dispersal propagule, an isolate would be forced to cross to be dispersed. Substantially less variation (two ETs among 17 isolates) was found in C. virescens. Aside from the species on Eucalyptus, the Ceratocystis species studied here, including C. virescens, are homothallic, perhaps due to a mechanism of mating type switching (Harrington and McNew, unpublished). Thus, ascospores can be produced by selfing in C. virescens, and an intermediate level of variation might be expected. Chalara australis showed no variation in isozyme electromorphs and has no known teleomorph; it is apparently dispersed as asexual propagules, most probably in the frass of ambrosia beetles (Kile, 1993). This low level of isozyme polymorphism might be expected in such an asexual fungus (Zambino and Harrington, 1989; 1992). The data would suggest that there has been little sexual recombination since speciation or since introduction of Ch. australis to Australia, but the species is not known outside southeastern Australia.

Conifer species .- Isozyme variation supports distinguishing five morphological variants of C. coerulescens as distinct taxa. Differences in electromorphs between any two of these variants was substantial, greater than that found within the other Ceratocystis species studied. Two of the variants of C. coerulescens showed similarity to C. polonica and C. laricicola, two were closer to the hardwood species C. virescens, and the single isolate of C. c. f. douglasii differed markedly from all of the other isolates in isozyme electromorphs. An isolate of C. coerulescens examined by Wingfield et al. (1994) for rRNA homology had greater similarity to C. virescens than to C. laricicola. It is not clear to which of the five variants of C. coerulescens their isolate belongs, but the isozyme data presented herein would suggest that their isolate was C. coerulescens sp. C.

Among the variants of *C. coerulescens*, the isolates of sp. A are morphologically closest to Münch's (1907) concept of the species. The four isolates we studied originated from stained wood of *Pinus* spp. in England. Perithecia produced by pairing isolate C490 with any of the three other isolates (C487, C488, or C489) were large and robust with long necks, fitting the dimensions given by Münch (1907) and as recognized by Lagerberg et al. (1927), Siemaszko (1939), and Bakshi (1951). Only one isolate (C301) representing sp. B produces perithecia in culture, and these perithecia are smaller than those of sp. A. However, Campbell (1957), who originally isolated C301, reported dimensions of perithecia for *C. corrulescens* similar to those reported by Münch (1907), and crossing C301 with C693 results in perithecia with necks comparable to those of species A. Our species B isolates were from both pine and spruce in Europe and North America. Similarity in biology and paucity of perithecial material for morphological comparisons preclude a clear separation of sp. A from sp. B.

Perithecia of sp. C produced in culture have shorter necks than the perithecia of sp. A. Isolates were obtained from Europe and North America. At least two of the isolates representing sp. C were from wounds in spruce. As a wound colonizer of living trees, this species may be weakly pathogenic, which is also true for the most electrophoretically similar variant, sp. D.

Species D appears to be the variant recognized by Davidson (1955) from beetle-attacked spruce in Colorado. Our isolates of sp. D grow slowly at room temperature and produce perithecia only at 20 C or less. Ascospores of this variant are larger than those of the other conifer species. Our isolates of sp. D all originated from *Dendroctonus rufipennis* or from *Picea engelmannii* attacked by this bark beetle in Canada. It appears to be pathogenic to spruce (Solheim, 1994) and is likely to be an important symbiont of this bark beetle. Its pathogenicity would tend to coincide with the pathogenicity of the other species with which it shared isozyme electromorphs (i.e., sp. C and the hardwood species of the complex).

Davidson's (1953) recognition of isolates of *C. coerulescens* from Douglas-fir as a separate form is well supported by the isozyme data, although *C. c. f. douglasii* was represented in this study by only one isolate. Its sensitivity to warm temperatures and the two types of conidiophores described by Davidson (1953), particularly the long, tapering phialides, further distinguish this fungus. Although treated as a synonym of *C. coerulescens* in the past (Hunt, 1956; Upadhyay, 1981) we believe that *C. c. f. douglasii* should be recognized at the rank of species.

The other examined species from conifers, *C. polonica* and *C. laricicola*, are noteworthy for their ascospores, which are relatively small, more broadly ellipsoid with broadly-thickened sheaths (outer walls), and have two distinct gutules at each end. The ascospores of the other *Ceratocystis* species studied are considerably longer and have sheaths that are most obvious at their terminal ends. Conidiophores are scarce in *C. polonica* and *C. laricicola* and often found only as hairs or ornamentation on the base of perithecia. When *C. laricicola* was described (Redfern et al., 1987), it was not compared to *C. polonica*, which was then believed to be an Ophiostoma species with a Leptographium anamorph. Now that C. polonica is recognized to have a Chalara anamorph (Visser et al., 1994), the morphological distinction between C. laricicola and C. polonica is difficult to discern. Isolates of C. polonica from Poland (an isolate from the holotype), Norway and Japan had identical isozyme electromorphs, and these differed only slightly from the ETs of C. laricicola, which originated from Japan and Scotland. These two taxa are strongly associated with closely related species of Ips, perhaps co-evolving with their insect symbionts.

Bark beetle associations.-Several characteristics of C. polonica and C. laricicola are also found in C. coerulescens sp. D, the other bark beetle associate in this study. These three taxa produce few conidiophores and generally lack strong, fruity odors, features important to spermatization of mats with conidia carried by fungalfeeding insects. Because the protoperithecia of these species are mostly confined to the galleries of bark beetles, the opportunity for cross-fertilization would be less than in the other Ceratocystis species, which tend to produce mats with protoperithecia on exposed wood. Because mats would not be exposed for acquisition and dispersal of spermatizing conidia, the bark beetle associates might be expected to suppress conidiophore production and the production of attractive volatiles (such as isobutyl acetate). They may also respond strongly to wounding of the mycelium (feeding by bark beetles) as a cue to producing many perithecia with ascospores, and cultures of these species on malt agar do tend to produce perithecia in abundance after wounding. Because the Ips-associated species (C. polonica and C. laricicola) and Dendroctonusassociated species (sp. D) showed dissimilar isozyme electromorphs, it may be that suppression of conidiophore production, the low level of odors and the wound response evolved separately in the Ibs and the Dendroctonus-associated Ceratocystis species.

Although the association of Ophiostoma species with bark beetles has been much discussed (most recently by Harrington, 1993), the association of Ceratocystis species with conifer-infesting bark beetles has only been recognized recently. Depending on whether C. laricicola and C. polonica turn out to represent distinct taxa or not, we are now aware of two or perhaps three species of Ceratocystis carried by conifer infesting bark beetles. From pathogenicity tests with C. polonica and C. laricicola (Christiansen and Solheim, 1990; Redfern et al., 1987; Solheim, 1993) and also with C. coerulescens sp. D (Solheim, 1994), indications are that the Ceratocystis species are considerably more virulent than Ophiostoma species to the tree hosts and of more importance to the beetle in killing mass-attacked trees. In contrast, the Ophiostoma species might be relatively unimportant and even a hindrance to the beetles, as proposed by Harrington (1993). As tree pathogens, these few *Ceratocystis* species may have evolved a mutualistic symbiosis with bark beetles, where both partners benefit from the relationship.

Many of the fungi studied here are believed to be dispersed by insects, which has apparently led to substantial convergence in morphological characteristics (Blackwell, 1994; Hausner et al, 1993; Wingfield et al., 1994). This convergence and limited variation has made species delimitation based on morphology alone difficult. However, variation in isozyme patterns within *C. coerulescens* and among related species generally corresponded well with the limited morphological variation in the group. The technique proved useful in helping to delineate taxa of common biology, and this information will be applied to revise the taxonomy of this important complex.

ACKNOWLEDGMENTS

We are grateful to all those who contributed isolates for this study. Portia Hsiau and Jonathan Wendel provided invaluable assistance with analysis of the data. Doug McNew has assisted with morphological comparisons of the species studied. The support of the Foundation for Research Development, Mondi Paper Company and the Ernest Oppenheimer Trust to MJW during sabbatical leave is acknowledged. Journal Paper No. J-16188 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa Project 0159.

LITERATURE CITED

- Bakshi, B.K. 1951. Studies on four species of Ceratocystis, with a discussion of fungi causing sapstain in Britain. Commonwealth Mycological Institute, Mycol. Pap. 35: 1–16.
- Blackwell, M. 1994. Minute mycological mysteries: the influence of arthropods on the lives of fungi. *Mycologia* 86: 1–17.
- Campbell, R. N. 1957. Studies on the biology of some wood-staining fungi. Ph.D. Thesis, University of Minnesota, St. Paul, 69 pp.
- Christiansen, E., and H. Solheim. 1990. The bark-beetle associated blue-stain fungus Ophiostoma polonicum can kill various spruces and Douglas fir. Eur. J. For. Pathol. 20: 436–446.
- Cardy, B.J., C.W. Stuber, and M.M. Goodman. 1983. Techniques for starch gel electrophoresis of enzymes from maize (Zea ways L.). Institute of Statistics Mimeo Series N. 1317R. North Carolina State University, Raleigh, North Carolina. 33pp.
- Davidson, R.W. 1935. Fungi causing stain in logs and lumber in the southern states, including five new species. J. Agric. Res. 50: 789–807.
- ———. 1944. Two American hardwood species of Endoconidiophora described as new. Mycologia 34: 650–662.

- ——, 1953. Two common lumber staining fungi in the western United States. Mycologia 43: 579–586.
- 1955. Wood-staining fungi associated with bark beetles in Engelmann spruce in Colorado. Mycologia 47: 58–67.
- Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package) Version 3.5p. University of Washington, Seattle.
- Harrington, T.C. 1993. Diseases of conifers caused by species of Ophinstoma and Leptographium. Pp. 173–184. In, Geratocystis and Ophiostoma. Taxonomy, Ecology and Pathogenicity. M. J. Wingfield, K. A. Seifert and J. F. Webber, eds. American Phytopathological Society Press, St. Paul, Minnesota.
- Hausner, G., J. Reid, and G.R. Klassen. 1993. On the subdivision of *Cerutocystis* s.l., based on partial ribosomal DNA sequences. *Canad. J. Bot.* 71: 52–63.
- Hunt, J. 1956. Taxonomy of the genus Genatocystis. Lloydia 19: 1–58.
- Kiffer, E., and R. Delon. 1983. Chalara elegans (:Thielaviopsis basicola) and allied species. II.—Validation of two taxa. Mycotaxon 18: 165–174.
- Kile, G. 1993. Plant diseases caused by species of *Ceratocystis sensu stricto* and *Chalara*. Pp. 173–184. In Ceratocystis and Ophiostoma. Taxonomy, Ecology and Pathogenicity. M.J. Wingfield, K.A. Seifert and J.F. Webber, eds. American Phytopathological Society Press. St. Paul, Minnesota.
- —, T. C. Harrington, and K. M. Old. 1994. A new *Ceratocystis* species from *Eucolyptus* and its relationship to *C. virescens* and *Chalara australis*. Proc. 5th Intern. Mycological Congress, Vancouver, Canada. p. 109.
- ——, and J. Walker. 1987. Chalara australis sp. nov. (Hyphomycetes), a vascular pathogen of Nothofagus cunninghamii (Fagaceae) in Australia and its relationship to other Chalara species. Austr. J. Bot. 35: 1–32.
- Lagerberg, T., G. Lundberg, and E. Melin. 1927. Biological and practical researches into blueing in pine and spruce. Svenska Skogsför. Tidskr. 25: 145–691.
- Marty, T.L., D.M. O'Malley, and R.P. Guries. 1984. A manual for starch gel electrophoresis: new microwave edition. Staff Paper #20. Department of Forestry, University of Wisconsin, Madison. 24 pp.
- Münch, E. 1907. Die blaufaule des nadelhoises. Naturwissenschaftliche Zeitschrift für Forst-und Landwirtschaft 5: 531– 573.
- Nag Raj, T. R., and B. Kendrick. 1975. A monograph of Chalara and allied genera. Wilfrid Laurier University Press, Waterloo, Ontario. 200 pp.
- Redfern, D. B., J. T. Stoakley, H. Steele and D. W. Minter, 1987. Dieback and death of larch caused by *Ceratocystis laricicola* sp. nov. following attack by *Ips cembrae*. *Plant Pathol.* 36: 467–480.
- Rohlf, F. J. 1990. NTSYS-pc. Numerical taxonomy and multivariate analysis system, ver. 1.6, Excter Software, Setauket, New York.
- Siemaszko, W. 1939. Zespoly grzybow towarzyszacych kornikom polskim. Planta Polonica 7: 1–52.
- Solheim, H. 1993. Ecological aspects of fungi associated with the spruce bark beetle *lps typographus* in Norway. Pp. 173–184. *In*: Ceratocystis and Ophiostoma. Tax-

onomy, Ecology and Pathogenicity, M.J. Wingfield, K.A. Seifert and J.F. Webber, eds. American Phytopathological Society Press, St. Paul, Minnesota.

- —. 1994. Studies on blue-stain fungi associated with the spruce beetle *Dendroctonus rufipennis*. Proc. of the 5th International Mycological Congress, Vancouver, B.C. Canada, p. 204.
- Upadhyay, H.P. 1981. A monograph of *Ceratocystis* and *Ceratocystiopsis*. The University of Georgia Press, Athens. 176 pp.
- Verrall, A.F. 1939. Relative importance and seasonal prevalence of wood-staining fungi in the southern states. *Phylopathology* 29: 1031–1051.
- Visser, C., M.J. Wingfield, B.D. Wingfield, G.J. Marais and Y. Yamaoka. 1994. Generic placement of Ophiostama

polonicum among the Ophiostomatoid fungi. Proc. of the 5th International Mycological Congress, Vancouver, B.C. Canada. p. 234.

- Wingfield, B.D., W.S. Grant, J.F. Wolfaardt and M.J. Wingfield. 1994. Ribosomal RNA sequence phylogeny is not congruent with ascospore morphology among species of *Genatocystis sensu stricto. Molec. Biol. and Evol.* 11: 376–383.
- Zambino, P.J., and T.C. Harrington. 1989. Isozyme variation within and among host-specialized varieties of Leptographium wageneri. Mycologia 81: 122–133.
- , and _____, 1992. Correspondence of isozyme characterization with morphology in the asexual genus *Leptographium* and taxonomic implications. *Mycologia* 84: 12–25.