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Abstract

A putative male-produced pheromone has recently been described for the global pest of

pines, Sirex noctilio, but field-activity has not been demonstrated. This study aimed to inves-

tigate the pheromone biology of S. noctilio in more detail. Specifically, we i) analysed effluvia

and extracts for additional compounds by gas chromatography coupled with electro-anten-

nographic detection (GC-EAD), mass spectrometry (GC-MS) and two dimensional time of

flight mass spectrometry (GC X GC TOF MS), ii) conducted dose-response experiments for

putative pheromone components, iii) determined the site of synthesis/ storage of the puta-

tive pheromone and iv) determined the release rate of the putative pheromone from males

and three types of lures. A blend of four compounds was identified, including the previously

described (Z)-3-decenol and (Z)-4-decenol, and two new compounds (Z)-3-octenol and (Z)-

3-dodecenol. All compounds elicited a response from both male and female antennae, but

the strength of the response varied according to sex, compound and dose tested. (Z)-3-

Decenol and (Z)-3-octenol at lower and higher doses, respectively, elicited larger responses

in males and females than the other two compounds. (Z)-3-Octenol and (Z)-4-decenol gen-

erally elicited larger female than male antennal responses. The site of synthesis and/or stor-

age in males was determined to be the hind legs, likely in the leg-tendon gland. The relative

release rate of the major compound by male wasps was shown to be 90 ± 12.4 ng/min,

which is between 4 and 15 times greater than that observed from typical lures used previ-

ously. These observations are consistent with the hypothesis that these compounds may

mediate lek formation in S. noctilio males and lek location in females.

Introduction

The European woodwasp, Sirex noctilio, is a global pest of Pinus trees. It is native to Eurasia

and northern Africa and has been reported worldwide: New-Zealand ~1900 [1], Australia in

1951 [2], South America during the 1980s [3], South Africa in 1994 [4], North America in
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2004 [5], and most recently in China in 2013 [6]. Females use a long, stiff ovipositor to drill

into the sapwood and inject its eggs, a phytotoxic mucus/venom, and the symbiotic fungus

Amylostereum areolatum [7]. The mucus/venom facilitates infection by, and growth of, the

symbiotic fungus [8, 9] which is important for larval nutrition and survival [10]. Larvae bore

into the wood as they develop [11]. The combination of the mucus, fungus and larvae together

affect wood quality and often lead to the death of the tree when multiple attacks occur [9, 12].

Control measures for S. noctilio focus on silvicultural practices and classical biological con-

trol. Several studies have observed that S. noctilio preferably attacks stressed and/or supressed

trees, and that artificially stressing trees increases attraction of females [13–16]. Removing

stressed and supressed trees, thinning and maintaining a low tree density helps to prevent out-

breaks of S. noctilio [17]. The most widely used biological control agent, Deladenus siricidicola,
gives variable results in controlling S. noctilio populations [18]. Implementation of both silvi-

culture and biological control can lower S. noctilio populations and prevent outbreaks, but

losses still occur.

Olfactory attractants are important surveillance tools that are used to delineate the distribu-

tion, and monitor population dynamics of, S. noctilio in pest management programs [19–22].

Sirex noctilio is known to detect [23], and be attracted to, a blend of volatiles emitted from

stressed host pines [24, 25]. Semiochemical-baited traps are also used to time the application

and subsequently measure the efficacy of silvicultural or biological control treatments targeting

S. noctilio [19, 21, 26]. Volatiles emitted by A. areolatum were attractive to the parasitoid Ibalia
leucospoides, but the compounds involved remain unknown [27]. Although available lures that

mimic stressed host pines work reasonably well for high density populations, they do not work

well for low density populations of S. noctilio [22].

After emerging from the tree, males form leks in the canopy and females must locate these

leks for mating although females are parthogenetic and can produce male progeny without

mating [15, 28]. Adults do not feed and therefore have a short lifespan of a few days up to two

weeks [5, 29], and consequently delayed mating should result in high fitness costs. The exis-

tence of a sex pheromone could facilitate rapid mate location and mitigate costs associated

with delayed mating. Cooperband et al. [30] identified (Z)-3-decenol as the major pheromone

released by males, and suggested that (Z)-4-decenol and (E,E)-2,4-decadienal were additional

minor male pheromone components. Laboratory tests demonstrated that the blend of (Z)-

3-decenol, (Z)-4-decenol and (E,E)-2,4-decadienal in a ratio of 100:1:1 was most attractive to

the wasp. Subsequent field trials observed that pine volatiles were attractive to females and that

the addition of the pheromone blend did not increase the number of females captured [25, 31].

The objective of this study was to examine the putative male-produced S. noctilio pheromone

in more detail. Specifically, we: i) collected male effluvia to confirm the presence of the previ-

ously identified putative pheromone components and look for additional components, ii) used

electro-antennogram (EAG) analyses to characterise male and female response profiles to two

previously identified putative pheromone components [30] and two putative pheromone com-

pounds identified in this study, iii) collected and analysed effluvia of different male body parts

to determine the site of production of the putative pheromone and iv) quantified the amount of

pheromone emitted by males and compared it to the release rate of three different lures.

Materials and methods

Insects

Pine logs infested with S. noctilio were collected from Knysna, South Africa during September

2018 and 2019 (n = 133). Trees with characteristic symptoms of infestation, such as browning

of needle tips and fresh resin beads on the bark were selected, felled and cut into 80 cm long
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logs. Logs were transported to and stored in an insectarium at 20˚C with ambient relative

humidity and a photoperiod of 12 hours from late October until the following January. After

emergence, insects not used immediately were stored in a refrigerator at 12˚C for later use.

Wasps were considered healthy and usable for experiments when they were walking and/or

flying within 30 min after being removed from the refrigerator.

Sample collection

Copper tubing was used to pass dry air through a hydrocarbon trap (Supelco Superpure HC)

and the flow rate was controlled with a manual flow rate regulator. The purified air entered a

one litre Consol glass jar through Teflon tubing (Supelco, SU20532). Custom made Teflon

septa were used as seals for the inlet and an outlet port attached to each Consol jar lid. A glass

tube filled with preconditioned PorapakQ (Supelco ORBO 1103, 50/80, 150/75 mg) was con-

nected to the outlet bulkhead union fitting during sampling. Flow rate measurements were

made by connecting a glass bubble flow meter to the outlet end of the PorapakQ filled glass

traps. Insects were placed in the sealed Consol jars and sampled for 24 hours at room tempera-

ture. Jars were washed and oven dried (110˚C) overnight before sampling. After sampling, the

PorapakQ inside the glass tubes was placed inside GC vials (vial N9 702293, Macherey-Nigel)

and eluted with 1 mL double distilled n-hexane for 2 hours. After 2 hours the solvent was

removed and stored in separate 1.5 mL amber storage vials. A total of 42 PorapakQ extracts

were obtained from dynamic headspace sampling (30 male, 8 female, 4 male and female).

Insects were individually sampled in a custom made hermetic glass container (0.167 dm3). A

Teflon lined septum (Macherney-Nagel 702292) was fitted into an open cap which was screwed

onto the top of the hermetic glass container outlet port. A solid-phase microextraction (SPME)

fibre (dvb/car/pdms, Supelco 57328-U) was inserted through the Teflon lined septum. The

SPME fibre was conditioned at 250˚C for 15 minutes before each use. The glass chamber was

partially submerged into a temperature controlled water bath. Insects were sampled individu-

ally for 15 minutes at 25˚C. Glass chambers were surface rinsed with 2 mL of double distilled n-

hexane after SPME or dynamic headspace sampling. The solvent rinse samples were stored in

1.5 mL amber storage vials and kept in a fridge (4˚C) until analysis. The glass container was

washed and dried out in an oven (110˚C) for 30 minutes before each sample collection. A total

of 15 SPME samples were obtained from static headspace sampling (11 male, 4 female), and 5

solvent rinse samples were obtained from the glass sampling chambers (4 male, 1 female).

Sample analysis

GC-EAD. Samples were screened on a GC-EAD system (Agilent 6890N coupled with a

Syntech IDAC 4 signal acquisition system) for the presence of electro-physiologically active

chromatographic peaks. A total of 76 GC-EAD runs were done with 34 PorapakQ, nine SPME

and four glass rinse samples. Samples that showed initial antennal responses were analysed

multiple times for confirmation of antennal responses. These included 66 runs done on the

ZB-5 column and 10 runs done on the ZB-wax column. A total of 17 different female antennae

and 26 different male antennae were used to confirm antennal responses. No antennal prepa-

ration was used for more than four GC-EAD runs.

Depending on the type of sample, it was either injected or desorbed splitlessly (vent after

one minute at 20 mL/min) through a SPME inlet liner (Supelco 2-6s375,01) at 250˚C. A con-

stant column head pressure of 16 psi (helium) was used. The oven temperature program

started at 50˚C for one minute and was increased at a rate of 20˚C per minute up to 300˚C for

the ZB-5 column (30 m × 0.320 mm I.D.×0.25 μm film; 7HM-G007-11; Zebron) or 250˚C for

the ZB-wax column (30 m × 0.320 mm I.D.×0.25 μm film; 7HM-G002-11; Zebron). The
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maximum oven temperature was held for two minutes in each case. A deactivated Y splitter

(Agilent 5181–3398) was used to split the column flow at the end of the column to both the

EAD and flame ionization detector (FID). The FID detector was heated at 250˚C and the trans-

fer line to the EAD heated to the maximum GC oven temperature used for each column (ZB-

wax: 250˚C, ZB-5: 300˚C).

Glass capillaries (Hirschmann 920132) were drawn to a fine tip with a capillary puller (Nar-

ishige PP-83). The tips of the capillaries were cut to the required size using a ceramic column

cutter. The capillaries were filled with Baedle-Ephrussi-Ringer solution (NaCl: 129, KCl: 4.7,

CaCl2: 1.9 millimoles/L). Silver wires were conditioned through electrolysis in HCl (0.1M)

using a 9V battery. The conditioned silver wires were inserted in the electrolyte filled capillar-

ies and held in place with the electrode holder. Antennae were removed with a scalpel blade

for electroantennographic analyses. The tip of each antenna was cut and connected to the

recording electrode while the basal end of the antenna was connected to the reference elec-

trode. Humidified and charcoal-filtered air was used as a carrier gas for the EAD detector. The

antennal preparation was placed as close as possible to the EAD outlet. Peaks that were electro-

physiologically active were selected and integrated (Chemstation version Rev. B.0211). For

those peaks, Kovats retention index (KI) values were calculated from the peak start time.

Recorded EAD signals were amplified 10 times and processed with a set of algorithms [32] in

RStudio (version 1.1.383).

A calibration curve of (Z)-3-decenol was created on the GC-FID system by injecting 1 μL of

(Z)-3-decenol diluted to 1, 5, 10, 50, 100 and 200 ng/μL in n-hexane. Standards were injected

on a GC-FID equipped with a ZB-5 column using the same method previously described. All

six diluted standards were injected on the same day. This procedure was repeated over 3 differ-

ent days.

GC-MS. Seven PorapakQ and four SPME samples that were shown to contain male spe-

cific chromatographic peaks were analysed by GC-MS (Agilent 7890B coupled to a 5977B

MSD). In addition, two glass wash extracts were analysed on the GC-MS. Samples were

injected or desorbed splitlessly (vent time at one minute and flow 20 mL/min) through a

SPME splitless inlet liner (2–6375.01) at 250˚C. Constant column pressure of 9.8 psi (helium)

was used. The oven temperature program started at 50˚C for one minute and was increased at

a rate of 20˚C per minute up to 300˚C for the HP-5 MS UI column (30 m × 0.250 mm I.D.×
0.25 μm film; 19091S-433UI; Agilent) or 250˚C for the ZB wax column (30 m × 0.250 mm I.

D.×0.25 μm film; 7HG-G007-11; Zebron). Electron impact ionization (70 e-V) was used to

generate ions. The mass spectrometer ion source was heated to 230˚C and the MS quadrupole

was heated to 150˚C. A mass scan range of 45 to 550 m/z at a rate of 4 scan/sec was used for

data collection. Peaks that were not in the blank samples were integrated (Chemstation, v.

F.01.03.2357) and KI calculated. Tentative identification was done first by comparing the mass

spectra of the sample to the NIST library. Then, the KI of the best matched compounds from

the NIST library were compared to the KI of the sample. Tentative identities were assigned

using the MSD Chemstation (v. F.01.03.2357) software interface and the NIST library (v 2.3).

Dimethyl disulfide (DMDS) was used to derivatize the unsaturated aliphatic chain of the

alcohol using a modified version of the protocol described in Buser et al. [33]. The reaction

was carried out at 60˚C overnight. Two male samples and one blank sample (no wasp) were

derivatized and compared to a derivatized (Z)-3-decenol standard. Derivatized samples were

injected in the GC-MS with the same method as previously described. Double bond configura-

tion was determined by examining the mass spectrum of the derivatized molecules. Standards

were purchased (Advances technology and industrial Co, LTD, Hong Kong) and were serially

diluted to 10 ng/μL in n-hexane. Kovats retention index values were calculated and mass spec-

tra of the standards were compared to the selected peaks in our samples to confirm compound
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identity. The standard of (Z)-4-decenol was injected with (Z)-3-decenol at a ratio of 99:1 ((Z)-

3: (Z)-4-decenol) and compared to male extractions injected in the GC-MS.

GC X GC TOF MS. Samples that had electrophysiologically active chromatographic

peaks were analysed further with GC X GC TOF-MS (Agilent 7890B coupled to a Pegasus

LECO). A total of 13 different samples were analysed by GC X GC TOF MS. All the samples

that were screened were obtained from PoropakQ extracts. The samples included nine S. nocti-
liomale extracts, two S. noctilio female extracts and two blank extracts. Samples were injected

splitlessly (vent time at 30 seconds and flow at 20 mL/min) through a splitless inlet liner at

250˚C. The primary oven temperature program started at 40˚C for three minutes and was

increased at a rate of 10˚C per minute up to 300˚C for five minutes. A Rxi-5 Sil MS column

(30 m × 0.250 mm I.D.× 0.25 μm film; 19091S-433UI; Agilent) was installed in the primary

oven. A constant flow rate of 1 mL/min (helium) was used. The secondary oven was kept at

5˚C above the primary oven and contained a Rxi-17 Sil MS column (0.97 m × 0.250 mm I.D.×
0.25 μm film; 19091S-433UI; Agilent). The modulator was set at a temperature that was 15˚C

more than the secondary oven temperature. The modulation period was set to be 3 seconds

with a hot pulse time of 0.8 seconds and a cold pulse of 0.7 seconds. The MS transfer line was

heated to 280˚C. Electron impact ionization (-70 e-V) was used to generate ions. The mass

spectrometer ion source was heated to 230˚C. A mass scan range of 40 to 550 m/z at a rate of

100 spectra/second was used when collecting data. Peaks that could be separated from the

major peak on the second dimension and that were not in the blank samples were selected and

integrated and compared to the NIST library.

Electrophysiology

In order to conduct a dose-response experiment we empirically determined the antennal

recovery time. Antennae from three males and three females were used and each antenna was

used for the same experiment three times. Each experiment started by puffing 10 000 ng of

(Z)-3-decenol at T = 0. Three puffs of 10 000 ng of (Z)-3-decenol were subsequently made on

the same antenna after a resting time of T = 30, 45 and 60 seconds from the previous puff. For

each experiment, the resting time between two subsequent puffs was randomised. The depo-

larisation after each resting time was expressed as a percentage compared to the depolarisation

at T = 0. No differences were found between male and female recovery time and individuals

were pooled together.

Six different concentrations of (Z)-3-octenol, (Z)-3-decenol, (Z)-4-decenol and (Z)-3-dode-

cenol standards were puffed on S. noctilio antennae. Each standard was diluted in dichloro-

methane to 10, 100, 500, 1 000, 5 000 and 10 000 ng/μL. Standards were screened on a total of

10 different male and female antennae. One experiment consisted of a sequence of 10 different

puffs with 45 seconds between sequential puffs. Each experiment was bordered by four identi-

cal puffs. The first and last puff were solvent blanks (dichloromethane). The second and penul-

timate puff were control puffs of 10 000 ng of (Z)-3-decenol. A trial was considered successful

if an antennal response was recorded after puffing each positive control. The six remaining

puffs were randomly assigned to the six different doses.

Antennal preparation and electro-antennogram recording were set-up similarly to what

was previously described. Antennal preparations were placed in front of an L-shaped glassware

linked to a humidified and charcoal-filtered constant air flow (2 m/sec). A 1.5 cm2 filter paper

(Whatman 1) impregnated with 10 μL of the diluted solution tested was placed in a Pasteur

pipette. A Pasteur pipette was linked at one end to a puffed air flow while the other end was

inserted inside the glassware directed to the antenna. The air flow directed to the Pasteur

pipette was manually controlled via a foot pedal. When the foot pedal was pressed, the sample
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tested was puffed for 0.5 sec at 2 m/sec and the constant air flow was cut for 0.5 sec. Depolari-

sation sizes were directly measured in the Syntech Data Acquisition system for Gas Chroma-

tography with EAD (V4.3).

Determination of production site of putative male pheromone blend

Volatiles were collected on a SPME fibre as previously described, except that the volatiles were

sampled for 15 minutes and the sealed GC vial was placed in a glass chamber in a hot bath at

32˚C. Samples were analysed by GC-FID with the same methodology as described above. Body

pieces of one S. noctilio were cut using microscissors. Body pieces were left for 20 minutes on a

clean laboratory bench to aerate before sampling to allow any cross contamination that may

have occurred to evaporate. For the first series of bioassays SPME samples were obtained from

the head, thorax, and abdomen separately. Analyses of these samples suggested that the puta-

tive pheromone was primarily present in the thorax. The same body segments aerated in the

first trial were then further dissected and the wings, front, middle and hind legs, the back half

of the thorax (containing the meta- and back half of the meso-thorax) and the front half of the

thorax (containing the pro- and front half of the meso-thorax) were aerated in a second series

of bioassays. Analyses of these samples mainly detected the putative pheromone components

in the hind legs. The same hind legs aerated were further dissected into the femur + coxa, tibia,

metatarsus and tarsi and aerated in a third series of bioassays. A total of three male S. noctilio
were dissected and measured separately.

Standards of (Z)-3-octenol, (Z)-3-decenol, (Z)-4-decenol and (Z)-3-dodecenol were injected

at a concentration of 10 ng/μL. Peaks that were eluting at the same retention time as the stan-

dards were selected and integrated. All body parts from which volatiles were collected were

freeze-dried and weighed. The hind legs and thorax could not be directly weighed since they

were freshly cut for the prior analyses before being freeze-dried. The weight of the hind legs

was calculated as the total weight of the different pieces constituting the hind legs. Similarly,

the weight of the thorax was calculated as the total weight of all the cut pieces constituting the

thorax. The chromatographic peak areas measured were subsequently divided by the dry mass

of the body part measured. The percentage of each compound detected in the different body

parts for each series of measurement was calculated. For each series of measurements, results

from the three Sirexmeasured were pooled and standardized to an average per individual.

Freeze-dried hind legs of male and female S. noctilio were dried overnight in a fume-hood

and compared morphologically by scanning electron microscopy (SEM). The tips of the legs

were mounted onto aluminium stubs with conductive carbon paint so that the ventral and the

dorsal surfaces of the legs were correctly oriented. The sample stubs were then carbon coated

using the K950X Turbo Evaporator (Emitech Ltd., UK), before being examined with the SEM

(Zeiss Crossbeam 540 FEG SEM, Oberkochen, Germany) at a voltage of 2 kV.

Comparison of putative pheromone release rates: Males and lures

Preliminary results on the quantification of the putative male pheromone observed very high

titres of (Z)-3-decenol in effluvia. Release rate data of the rubber septa used in field studies of

the putative male pheromone were not reported [25, 31]. We used the same type of red rubber

septa as used in previous field trials, and two additional types of lures. The effluvia from three

types of lures (silicone ring, polyethylene and red rubber septum) were collected on a SPME

fibre and release rates of the (Z)-3-decenol were determined by GC-FID. Three lures of each

type were filled with 10 μL of (Z)-3-decenol (95% purity). The silicone ring (SE) lure consisted

of a 3 cm long polydimethylsiloxane rubber tube (2.16 mm OD by 1.02 mm ID) with the ends

connected with a 1 cm long capillary glass containing the standard (see [34] for more details).
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The polyethylene (PE) lures consisted of the standard loaded in a 0.4 mL capped microcentri-

fuge tube (Thermo Fisher). Red-rubber septa lures (SEPTA) (Insect science) were soaked in n-

hexane for 48 h before use in a sealed jar. The septa were removed from the solvent and the

putative pheromone was immediately loaded into each septum and then left in a fume hood

for 1 hr to allow the loaded material to be absorbed. One extra lure of each type was not filled

with the standard and used as a blank. All lures were put on a cleaned and oven dried (110˚C

overnight) metallic grid where each lure occupied a 2 cm2 spot and was separated from the

next lure by an empty 2 cm2 square. Lures were left on the plate in a sealed climate controlled

room at 23˚C at ambient humidity. All lures were left for two days before the first measure-

ment. Release rates were measured after two and seven days. In addition, three live S. noctilio
males older than 2 days were measured. Lures and insects were placed in a clean and oven

dried hermetic glass jar placed in a 23˚C controlled water bath for measurement. A relative

measurement of the release rates of the lures and the insects were performed with a SPME

fibre inserted through a septum in the glass jar for 10 min. The SPME fibre was desorbed in

the GC-FID inlet and the GC was equipped with a ZB-5 column and the same analysis pro-

gram was used as previously described.

Statistical analyses

A Student’s t-test test was used to compare the antennal recovery time after confirming that

the data were normally distributed (Shapiro test, p = 0.108) and that the variance was homoge-

neous (Bartlett test, p = 0.228). For the dose-response experiment, solvent blanks were aver-

aged and subtracted from each data point. The control puffs were used to correct for variation

in the sensitivity of the antenna, control for any mechanical effects of the airflow and to nor-

malise the data. The difference between the first and second control puff was used to correct

for any decrease in antennal sensitivity over time, any observed decrease was assumed to be

linear. Corrected antennal responses were expressed as percentages relative to the control

puffs. Responses were normalised compared to the control puffs to minimize factors which

can affect the absolute size of the response such as the size of the insect [35]. A linear model

linking peak area to the quantity of (Z)-3-decenol was created. After testing normality of the

variable (α = 0.01) and a graphical validation of the residuals, using the “ChemCal” package in

R studio [36] the best model was found to be:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FID detector response

p
¼ 1:12762 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z � 3 � decenol
p

, with FID detector response mea-

sured in pa × sec and (Z)-3-decenol in ng. Data were not normally distributed and a Kruskall-

Wallis test (α = 0.05) was used to look for an effect of body part on the amount of the putative

pheromone component. Data were compiled and statistical analyses were performed in R Stu-

dio V.1.1.383.

Results

Sample collection

The chromatograms of samples obtained from female wasps were identical to blank samples.

Three chromatographic peaks were found in male samples not present in blank samples. Two

compounds were found to elicit antennal responses (Fig 1, Table 1).

Sample analysis

GC-EAD. The first compound to elute was observed in 22 of the 33 male samples

screened. Electrophysiological responses from male S. noctilio antennae were observed for

this chromatographic peak but only rarely and the response was not very strong (a small
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depolarisation of approximately 10 μV on 3 out of 12 male antennae and on 1 out of 6 female

antenna). The second of the three chromatographic peaks to elute was seen in all 33 samples

obtained from males. This peak was the largest peak present in male samples and elicited a

response from female (25 μV ± 22 μV, mean ± SD, n = 30) and male (50 μV ± 65 μV,

mean ± SD, n = 31) antennae. The third male chromatographic peak was only found in one

glass extract. This third peak was not detected in the blank samples or from female glass extract

samples. The third chromatographic peak did not elicit an antennal response and was present

in much smaller quantities when compared to the other two chromatographic peaks.

GC-MS. After GC-EAD analyses we did not observe any electrophysiologically active

peaks in any of the female samples so only male and blank samples were screened on the

GC-MS. Of the 14 total runs analysed on the GC-MS, 2 (one glass wash and one male sample)

were done on the HP-5 MS UI column and 12 (4 SPME, 7 male extractions and 1 glass wash)

were done on the ZB-wax column (Table 1).

According to the library comparison tentative identities for the first peak could be assigned

to three possible isomers of octenol. The ion with the highest m/z in the fragmentation pattern

of the first chromatographic peak was m/z = 110 (10). This ion may be created due to the loss

of water from octenol. The base peak had a m/z = 55 (100) followed by 81 (58), 68 (50), 67

Fig 1. Processed female antennal responses to the first and second chromatographic peak from male effluvia.

Black line: FID detector (pa), red line: mean antennal response (μV), green line: standard deviation (n = 6).

https://doi.org/10.1371/journal.pone.0244943.g001

Table 1. Kovats retention index values, ratios and antennal response sizes for the three chromatographic peaks found in male extracts (mean ± standard deviation).

First peak Second peak Third peak

KI (ZB-5) GC-EAD 1055.3 ±1.7 (n = 48) 1257.1 ± 1 (n = 60) NA

KI (ZB-wax) GC-EAD 1592.4 ± 0.3 (n = 4) 1791.6 ± 1.3 (n = 9) 1997 (n = 1)

KI (HP-5 MS UI) GC-MS 1055 (n = 1) 1258 ± 0 (n = 2) 1595 (n = 1)

KI (ZB-wax) GC-MS 1589.4 ± 1.8 (n = 12) 1789.7 ± 0.8 (n = 12) 1997.6 ± 1.9 (n = 8)

ratio GC-EAD (n = 52) 1.1 ± 0.6 98.9 ± 0.6 NA

ratio GC-MS (n = 9) 1.1 ± 1.2 98.7 ± 1.7 0.4 ± 0.6

EAD response ~10 μV (n = 3 male) 25 μV ± 22 μV (n = 30 female) NA

~10 μV (n = 1 female) 50 μV ± 65 μV (n = 31 male)

https://doi.org/10.1371/journal.pone.0244943.t001
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(44). The first peak was tentatively identified according to the mass spectrum and KI values to

three possible compounds: (Z)-3-octenol (KI semi polar: 1055 ± 4 (6), KI polar: 1563 ± NA

(1)), (E)-3-octenol (KI semi polar: 1066 ± NA (1), KI polar: 1550 ± 9 (2)) or (Z)-5-octenol (KI

semi polar: 1074 ± NA (1), KI polar: 1615 ± 1 (3)).

The second chromatographic peak was tentatively identified as (Z)-3-decenol (KI semi

polar: 1255 ± NA (1), KI polar: 1789 ± 1 (5)) or (Z)-4-decenol (KI semi polar: 1257 ± 1 (7), KI

polar: 1791 ± 7 (2)) based on their mass spectra and KI that were most similar on both column

types. It was not possible to differentiate between the two isomers based on the mass spectrum.

The identity of the third chromatographic peak was narrowed down to (Z)-3-dodecenol

and 11-decenol. The highest ion in the fragmentation pattern of the third chromatographic

peak was m/z = 166 (5). This ion may be created due to the loss of water from decenol. The

base peak had a m/z = 55 (100) followed by 68 (99), 67 (79), 81 (64). The (Z)-3-dodecenol (KI

semi polar: 1457 ± NA (1), KI polar: 2015 ± 26 (3)) and the 11-decenol (KI semi polar:

1455 ± 12 (2), KI polar: 2023 ± NA (1)) had mass spectra and KI values that were most similar

to the second chromatographic peak on both column types.

A small and large chromatographic peak were found in the derivatized male samples. The

two derivatized peaks were not detected in the derivatized blank sample. The first small chro-

matographic peak from the male sample had diagnostic ions m/z = 222 M+ (28), 117 (94) and

105 (23) confirming a double bond at the third carbon of a derivatized octenol molecule. The

large second chromatographic peak from the male samples had diagnostic ions m/z = 250 M+

(20), 145 (100) and 105 (30) confirming a double bond at the third carbon of a derivatized

decenol molecule. Retention time and diagnostic ions in the derivatized (Z)-3-decenol stan-

dard were identical to the large second chromatographic peak found in the derivatized male

sample. Diagnostic ions included m/z = 250 M+ (21), 145 (100) and 105 (30).

GC X GC TOF MS. All male samples screened on the GC X GC TOF MS contained a

large peak not present in blanks that eluted between 450 and 465 seconds in the first separation

dimension. The second dimension revealed a small (A) and large (B) chromatographic peak

that were not present in blank samples (S1 Fig). The large peak was present in very high quan-

tity compared to the small peak and overloaded the column. Consequently, the small peak

elutes in the tail of the large peak. The two peaks start eluting at T = 1.0 and 2.0 seconds on the

second dimension for peaks A and B. The best matches for peak A in the NIST library include

six isomers of decenol. The best results for the large co-eluting peak B in the NIST library

include seven isomers of decenol. For both co-eluting peaks A and B the two best matches in

the library are (Z)-3-decenol and the (Z)-4-decenol. The ratio of these two peaks was calculated

to be 98.1 ± 0.6: 1.9 ± 0.6 (A: B, mean ± SD, n = 9).

Compound identification

Retention index value and mass spectral comparison with a standard confirmed the first chro-

matographic peak was (Z)-3-octenol. Vinogradov [37] reported that (E)-3-octenol and (Z)-

3-octenol are separated by 5 and 23 KI units on a non-polar and polar column respectively. A

difference of 5 and 23 KI is feasible in our set-up, and the (Z)-3-octenol standard elutes at the

same retention time as the peak in our sample. The (Z)-3-octenol standard had a KI (semi

polar: 1056, polar: 1591) and mass spectrum (55 (100), 67 (44), 68 (47), 81 (58), 82 (19), 95

(13), 110 (10)) that was similar to the first peak found in the male samples (KI semi polar

1055.3 ±1.7, polar 1592.4 ± 0.3 mass spectrum: 55 (100), 67 (44), 68 (50), 81 (57), 82 (19), 95

(13), 110 (10)). The PubCHem library indicates that the three major ions for (E)-3-octenol

were m/z = 55, 41 and 68 (from highest to lowest), and m/z = 55, 81, 41 for the (Z)-3-octenol.

The most abundant ion after m/z = 55 in our samples is the m/z = 81 and not the m/z = 68
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(ion m/z = 41 was out of range of the detector set-up), suggesting that the peak is (Z)-3-octenol

rather than the (E)- isomer.

The identity of the large second chromatographic peak was confirmed to be (Z)-3-decenol.

The (Z)-3-decenol standard elutes at the same retention time as this peak in our samples. In

addition, Tamura et al. [38] reported that (E)-3-decenol and (Z)-3-decenol are separated by 6

and 25 KI units on an non-polar and polar column, respectively. The (Z)-3-decenol standard

had a KI (semi polar: 1255, polar: 1788) and mass spectrum (55 (100), 67 (73), 68 (83), 81 (57),

82 (35), 95 (23), 96 (21)) that was similar to the large second chromatographic peak found in

male samples (KI semi polar 1257 ±1; polar 1792 ± 1; mass spectrum: 55 (100), 67 (73), 68

(85), 81 (57), 82 (34), 95 (22), 96 (17)).

The identity of the small co-eluting chromatographic peak is likely (Z)-4-decenol. Deriva-

tized samples did not show diagnostic ions specific to a double bond in the fourth carbon

position, likely due to a very small amount of the compound in the samples analysed. Chro-

matographic peaks corresponding to the standards of (Z)-3 and (Z)-4-decenol in a ratio of

100: 1 ng/μL could not be separated on the GC-MS. Samples analysed in the GC-MS gave simi-

lar results as the standards tested in a 100:1 ratio, where the (Z)-4-decenol chromatographic

peak elutes in the tail after the large chromatographic peak of (Z)-3-decenol. (Z)-3-Decenol

was ~100–1000 times more abundant than (Z)-4-decenol which overloaded the column. For

this reason, separation of (Z)-3-decenol and (Z)-4-decenol extracted from the male sample

was not possible by GC-MS in this study.

The identity of the third chromatographic peak could not be confirmed by derivatisation.

The (Z)-3-dodecenol standard elutes at the same retention time as the peak in our sample. In

addition, Marques et al. [39] reported that (E)-3-dodecenol and (Z)-3-dodecenol were sepa-

rated by 6 and 24 KI units on the DB-5 and DB-wax columns, respectively. The standard of

(Z)-3-dodecenol had a KI (semi polar: 1457, polar: 1996) and mass spectrum (ion abundance:

55 (99), 67 (76), 68 (94), 82 (60), 95 (28), 96 (28)) very similar to the third peak found in male

samples (KI semi polar 1595, KI polar 1997.6 ± 1.9 mass spectrum: 55 (99), 67 (79), 68 (97), 81

(64), 82 (58), 95 (28), 96 (26)). The KI and mass spectrum strongly suggest that the third chro-

matographic peak identity is the (Z)-3-dodecenol.

Electrophysiology

No differences were observed between the size of the depolarisation after 45 and 60 seconds (S2

Fig). Therefore, we used an interval between the two puffs of 45 seconds in the dose-response

experiment. (Z)-3-Octenol elicited a significantly larger relative response than the other com-

pounds tested at doses> 5 000 ng (p< 0.05, Fig 2a). Females were more sensitive than males

to the (Z)-3-octenol except for doses of 100 ng (p = 0.358) and 10 000 ng (p = 0.104). Similar

antennal responses were recorded for doses between 50 000 ng and 100 000 ng of (Z)-3-octenol

for both males (p = 0.344) and females (p = 0.520), indicating antennal saturation.

Among all the putative pheromone components, (Z)-3-decenol elicited the biggest relative

responses for doses < 5 000 ng and second biggest relative response for doses> 5 000 ng (Fig

2b). For each dose tested, both males and females had similar relative responses (all p> 0.05).

The antennal responses were similar when doses of 50 000 ng and 100 000 ng were puffed for

both males (p = 0.912) and females (p = 0.734), indicating saturation of the antenna for this

compound.

(Z)-4-Decenol was found to elicit similar responses as (Z)-3-octenol for doses< 10 000 ng

(Fig 2c). Females were more sensitive to (Z)-4-decenol than males except when 100 ng

(p = 0.558) or 100 000 ng (p = 0.104) were puffed. As with the two previous compounds tested,
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antennal sensitivity for doses of 50 000 ng and 100 000 ng were similar for both males

(p = 0.597) and females (p = 0.622) and suggest antennal saturation for this compound.

(Z)-3-Dodecenol elicited the smallest antennal responses for all doses in both sexes (Fig

2d). Relative antennal responses of males and females were similar for each dose tested.

Determination of production site of putative male pheromone blend

Three putative pheromone components, (Z)-3-decenol previously reported by Cooperband

et al. [30], and (Z)-3-octenol and (Z)-3-dodecenol identified in this study are all released from

the hind legs of S. noctiliomales (Fig 3). Since the three compounds had the same source of

emission, all the data were pooled. A significant difference (p< 0.001) was observed in the

amount of the 3 putative pheromone components in the head, thorax and abdomen (Fig 3a).

A significant difference (p = 0.003) was observed among the different parts of the thorax (Fig

3b). More than 90% of (Z)-3-octenol and (Z)-3-decenol and more than 35% of (Z)-3-dodece-

nol were released from the hind legs. Small quantities of these putative pheromone compo-

nents were sometimes detected in samples from other parts of the body and it is suspected that

it might be due to male behaviour (e.g., during grooming). Significant differences were not

observed (p = 0.114) among the parts of the hind legs (Fig 3c). It was not possible to accurately

quantify the amount of (Z)-4-decenol as it eluted in the tail of (Z)-3-decenol. No trace of (Z)-

4-decenol was found, likely because it co-elutes with (Z)-3-decenol. Investigation of the body

parts where the (Z)-3-decenol was not found did not reveal traces of (Z)-4-decenol, suggesting

that the (Z)-4-decenol and the (Z)-3-decenol are released together.

The SEM study did not reveal any regions with abundant pores on the surface of the hind

legs of males. A sexually dimorphic region was found on the dorsal view of the tibia (Fig 4).

Both males and females have a triangular shaped structure on the back of their tibia but it is

larger on males. The inside of the triangular-shaped structures were smooth on males but

porous on females.

Fig 2. Electro-antennogram dose-response profiles of four compounds found in male effluvia. Relative EAG

responses (mean ± SE) of a) (Z)-3-octenol, b) (Z)-3-decenol, c) (Z)-4-decenol and d) (Z)-3-dodecenol puffed on male

(black, n = 10) and female (grey, n = 10) S. noctilio antennae for six different doses tested. Asterisk indicates significant

differences (p< 0.05) between male and female for the same dose puffed.

https://doi.org/10.1371/journal.pone.0244943.g002
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Comparison of putative pheromone release rates: Males and lures

Males of S. noctilio were found to release more (Z)-3-decenol than any of the three types of

lures. The average relative release rate for males was found to be 90 ± 12.4 ng/min of (Z)-

3-decenol. The average relative release rates after two days were 23.7 (± 7.2), 5.9 (± 2.8) and

19.6 (± 23.7) ng/min respectively for the Silicone, PE and SEPTA lure. Relative release rates

decreased to 0.1 (± 0.1), 4.5 (± 4.1) and 3.6 (± 3.6) ng/min after seven days.

Fig 3. Confirmation of the origin of the blend of pheromone from the hind legs of males. Panel a) shows the whole

body segment aerations, panel b) aerations of the portions of the thorax and appendages and panel c) the aerations of

the portions of the hind legs. Percentage of pheromone released found for each series / mg of dry mass ± SD of (Z)-

3-octenol (dark grey), (Z)-3-decenol (medium grey) and (Z)-3-dodecenol (light grey).

https://doi.org/10.1371/journal.pone.0244943.g003
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Discussion

This study increases our understanding of the chemistry, neurophysiology and site of synthesis

or storage of male specific compounds in S. noctilio. Two of the four compounds detected in

this study, (Z)-3-decenol and (Z)-4-decenol, were previously described in male S. noctilio efflu-

via [30]. The compounds (Z)-3-octenol and (Z)-3-dodecenol were identified in male effluvia

and this is the first report of these compounds in male S. noctilio effluvia. No trace of the other

putative pheromone component (E,E)-2,4-decadienal [26] was detected from male effluvia in

this study. Antennae of both sexes were sensitive to the four compounds, but differences in

sensitivity were observed among compounds, sex, and doses tested. Generally, at low and high

doses larger antennal responses were elicited by (Z)-3-decenol and (Z)-3-octenol, respectively,

than by any of the other compounds. At most doses tested, there were no differences in the

size of male and female responses; however, for (Z)-3-octenol and (Z)-4-decenol some differ-

ences were observed. In all of these instances female responses were larger than male

responses. The site of synthesis and/or storage was determined to be the hind legs in males.

The relative release rate of (Z)-3-decenol from the hind legs was determined to be 90 ± 12.4

ng/min per male, 4–15 times higher than any of the three lures tested. The actual release rate

from males is likely higher than measured here because only a fraction of the released com-

pound absorbs into the SPME fibre.

Both the chemistry and emitting sex of the male specific compounds in S. noctilio differ

from the general model known for non-apocrita Hymenoptera. All known sex pheromones

in non-apocrita Hymenoptera have been reported to be female emitted. Sex pheromones in

Diprionidae species possess acetate and/or propanoate of di- and tri- methyl-branched 2-alka-

nol of 11–20 carbon long backbones with different chiral centres [40–50]. In Cephidae, 9-acet-

yloxynonanal in Cephus cinctus [51] and (9Z)-octadec-9-en-4-olide in Janus integer [52] were

described as sex pheromones. The sex pheromone in Acantholyda erythrocephala (Pamphiliis-

dae) was identified as (Z)-6,14-pentadecadienal [53] and the sex pheromone in Pikonema alas-
kensis (Nematidae) is a blend of (Z)-5-tetradecen-l-ol and (Z)-10-nonadecenal [42, 54]. Sex

pheromones in sawflies are mostly produced from the oxidation of cuticular hydrocarbons

[e.g., A. erythrocephala [53], P. alaskensis [54],Macrocentrus grandii [55], C. cinctus [51]] and

these type of compounds were not observed in S. noctilio.
The chemistry of the male specific compounds in S. noctilio is similar to that found in vari-

ous insects and fungi. (Z)-3-Octenol has previously been described as a larval pheromone in

the sawflyHoplocampa testudinea (Hymenoptera: Tenthredinidae) [56]. 3-Octenol was also

Fig 4. Scanning electron microscope of the triangle shape situated on the back of the basitarsus of S. noctilio.

Many pores are visible in the triangle shape hind legs of the female (left) that were not visible on males (right).

https://doi.org/10.1371/journal.pone.0244943.g004
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reported to be produced by a species of fungus in the genusMucor [57]. Different n-octenol

molecules were reported to be emitted from Basidiomycete mushrooms and in mushroom-

mimicking orchids that mimic volatiles associated with the oviposition site of fungus gnats

(Diptera) [58, 59]. (Z)-3-Decenol is a minor component of the aggregation pheromone of the

Cerambicid beetle Rosalia funebris [60]. (Z)-3-Dodecenol is a trail pheromone in the Kaloter-

mitidae and Macrotermitinae families of termites [61–63]. Independently, 3-octenol, (Z)-

3-decenol and (Z)-3-dodecenol are attractive to insects from different orders.

The emission source of the male specific compounds was found to be the sexually dimor-

phic hind legs in S. noctilio. No significant differences of the normalised quantity of the male

specific compounds present between the different parts of the hind legs were recorded. A pos-

sible explanation is that the male specific compounds are stored in the leg tendon gland of the

hind legs. The leg tendon gland is a hollow reservoir starting in the femur and running down

to the unguitractor plate, manubrium and arolium structures situated at the end of the clamp

[64–66]. The arolium structures are likely to be used in pheromone release and are missing

or very reduced in S. noctilio females but well developed in males [67]. In our experimental

design, we cut the hind legs into different parts, which probably allowed the male specific com-

pounds to be released from the different hind leg parts and not only from the terminal open-

ing. Use of the leg tendon gland for storage would allow males to contain large amounts of

compounds and could explain the sexual dimorphism of the hind legs and terminal clamp

structures in S. noctilio.
The hind leg gland plays an important role in communication in the Hymenoptera. Hind

legs in ants are known or hypothesized to release trail, sex, lek-formation and marking phero-

mones. For example, the genus of ant Crematogaster is known to release trail pheromone from

the tibial tendon gland of their hind legs [68]. The major component of the trail pheromone of

C. castanea was identified as (R)-2-dodecanol [69]. Females in Ascogaster reticulatus release

(Z)-9-hexadecenal as a sex pheromone from the hind legs [70] and male Polistes dominulus are

thought to release a lek-formation pheromone from their legs [71]. Foragers in the stingless

beeMelipona seminigra use a pheromone from its hind leg tendon gland to mark its food site

[66]. The similarity in chemistry of compounds released from the hind legs of S. noctilio and

other Hymenoptera suggest that these compounds may mediate similar behaviours in S.
noctilio.

Two enlarged glomeruli were found in the male antennal lobe of S. noctilio (J. Spaethe, per-

sonnal communication). Different antennal response amplitudes were shown to be linked to

glomeruli size, and are typically linked to specific olfactory receptors [72]. Sexually dimorphic

enlarged glomeruli are typically linked to pheromone processing [73–75]. For example, the

processing of the queen pheromone in the honeybee was linked to enlarged glomeruli in males

[73]. This pheromone elicits an antennal response in males that is 2.5 times bigger than in

workers [76]. Our dose-response experiment did not show a higher antennal sensitivity in

males compared to females for the four compounds tested. The antennal recovery time in our

study was a compromise between recovery between puffs and the length of the experiment.

A longer (and likely more complete) recovery would have meant longer experiments and

increased risk of loss of sensitivity due to degradation of the antennal preparation. It is possible

that our recovery time led to an underestimation of the antennal response, but our randomisa-

tion of treatments would have prevented any bias. This result suggests that the enlarged glo-

meruli found in males are not involved in the detection of the male produced compounds that

we tested here, and must be linked to other compounds that are differentially detected between

males and females.

The additional information provided by this study on the male specific compound blend

released by S. noctilio corresponds to the description of an aggregation-sex pheromone [77].

PLOS ONE Male pheromone in Sirex noctilio

PLOS ONE | https://doi.org/10.1371/journal.pone.0244943 December 31, 2020 14 / 20

https://doi.org/10.1371/journal.pone.0244943


Aggregation-sex pheromones typically elicit a similar response from both male and female

antennae [78–81]. Additionally, aggregation behaviours are usually induced by chemicals

released by males [82–84]. In many insects lek and trail pheromones are released from the

hind legs. Cumulatively these observations are consistent with the hypothesis that the male

produced compounds reported here mediate lek formation in males and lek location in female

S. noctilio.
Various factors such as the pheromone blend composition or lure release rate can influence

pheromone activity in field trials. Female J. integer were shown to release ~10 ng/female/day

[52]. Traps captured more J. integer when baited with higher quantity of pheromone [85].

None of the lures tested in this study could match the average relative release rate of male S.
noctilio. If the lures previously tested in the field [25, 31] and those sampled in this study have

similar release rates, their low release rate might have contributed to the negative results. It is

also possible, as suggested by the differences in chemistry and the releasing sex, that these com-

pounds may not function as a sex pheromone in S. noctilio. In addition to aggregation, male-

produced pheromones in Hymenoptera also mediate dispersal, territory marking and aggres-

sion [45, 86].

The production and storage of large quantities and ability of both sexes to detect the com-

pounds identified in male hind legs, suggests that one or more of these compounds may play a

role in woodwasp biology. Comparison of our results with the existing literature suggests that

if these compounds are sex pheromones in S. noctilio they would differ from all other known

sawfly pheromones in terms of chemistry and the releasing sex. Our results are consistent with

the hypothesis that these male released compounds mediate lek formation and location in

males and females, respectively.

Supporting information

S1 Fig. Three dimensional chromatogram showing the two co-eluting peaks (A and B) elut-

ing in the tail of the large major chromatographic peak released by males. The best tentative

match for peak A was (Z)-3-decenol and peak B was (Z)-4-decenol in the NIST library.

(TIFF)

S2 Fig. Antennal recovery (in %) 30, 45 and 60 sec after 10 000 ng of (Z)-3-decenol puffed

(n = 3 males and 3 females). Different letters indicate significant differences of the recovery

time.

(TIFF)
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47. Östrand F, Anderbrant O, Wassgren A-B, Bergström G, Hedenström E, Högberg H-E, et al. Stereoiso-
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53. Staples JK, Bartelt RJ, Cossé AA, Whitman DW. Sex pheromone of the pine false webworm Acantho-

lyda erythrocephala. J Chem Ecol. 2009; 35: 1448–1460. https://doi.org/10.1007/s10886-009-9736-z

PMID: 20063203

54. Bartelt RJ, Jones RL. (Z)-10-Nonadecenal: A pheromonally active air oxidation product of (Z,Z)-9,19

dienes in yellowheaded spruce sawfly. J Chem Ecol. 1983; 9: 1333–1341. https://doi.org/10.1007/

BF00994802 PMID: 24407863

PLOS ONE Male pheromone in Sirex noctilio

PLOS ONE | https://doi.org/10.1371/journal.pone.0244943 December 31, 2020 18 / 20

https://CRAN.R-project.org/package=chemCal
https://CRAN.R-project.org/package=chemCal
http://viness.narod.ru
https://doi.org/10.1271/bbb1961.54.3171
https://doi.org/10.1271/bbb1961.54.3171
https://doi.org/10.1590/S0103-50532000000600007
http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-14659
https://doi.org/10.1007/s10886-010-9834-y
http://www.ncbi.nlm.nih.gov/pubmed/20680415
https://doi.org/10.1007/BF00994803
https://doi.org/10.1007/BF00994803
http://www.ncbi.nlm.nih.gov/pubmed/24407864
https://doi.org/10.1007/s001140050492
https://doi.org/10.1007/s10886-006-9161-5
http://www.ncbi.nlm.nih.gov/pubmed/17075724
https://doi.org/10.1007/b95452
https://doi.org/10.1007/b95452
http://www.ncbi.nlm.nih.gov/pubmed/22160233
https://doi.org/10.1007/BF01012286
http://www.ncbi.nlm.nih.gov/pubmed/24302241
https://doi.org/10.1007/s00049-003-0244-2
https://doi.org/10.1271/bbb.62.607
http://www.ncbi.nlm.nih.gov/pubmed/27315940
https://doi.org/10.1007/s001140050003
http://www.ncbi.nlm.nih.gov/pubmed/10663128
https://doi.org/10.1111/j.1439-0418.2005.00983.x
https://doi.org/10.1111/j.1439-0418.2005.00983.x
https://doi.org/10.1023/a:1017946527376
https://doi.org/10.1023/a:1017946527376
http://www.ncbi.nlm.nih.gov/pubmed/11925076
https://doi.org/10.1023/a:1010412826373
https://doi.org/10.1023/a:1010412826373
http://www.ncbi.nlm.nih.gov/pubmed/11545374
https://doi.org/10.1007/s10886-009-9736-z
http://www.ncbi.nlm.nih.gov/pubmed/20063203
https://doi.org/10.1007/BF00994802
https://doi.org/10.1007/BF00994802
http://www.ncbi.nlm.nih.gov/pubmed/24407863
https://doi.org/10.1371/journal.pone.0244943


55. Swedenborg PD, Jones RL. (Z)-4-Tridecenal, a pheromonally active air oxidation product from a series

of (Z,Z)-9,13 dienes in Macrocentrus grandii Goidanich (Hymenoptera: Braconidae). J Chem Ecol.

1992; 18: 1913–1931. https://doi.org/10.1007/BF00981916 PMID: 24254772
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