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In this study, we evaluated an admixed South African Simbra crossbred population,

as well as the Brahman (Indicine) and Simmental (Taurine) ancestor populations to

understand their genetic architecture and detect genomic regions showing signatures

of selection. Animals were genotyped using the Illumina BovineLD v2 BeadChip (7K).

Genomic structure analysis confirmed that the South African Simbra cattle have an

admixed genome, composed of 5/8 Taurine and 3/8 Indicine, ensuring that the Simbra

genome maintains favorable traits from both breeds. Genomic regions that have been

targeted by selection were detected using the linkage disequilibrium-based methods

iHS and Rsb. These analyses identified 10 candidate regions that are potentially under

strong positive selection, containing genes implicated in cattle health and production

(e.g., TRIM63, KCNA10, NCAM1, SMIM5, MIER3, and SLC24A4). These adaptive alleles

likely contribute to the biological and cellular functions determining phenotype in the

Simbra hybrid cattle breed. Our data suggested that these alleles were introgressed from

the breed’s original indicine and taurine ancestors. The Simbra breed thus possesses

derived parental alleles that combine the superior traits of the founder Brahman and

Simmental breeds. These regions and genes might represent good targets for ad-hoc

physiological studies, selection of breeding material and eventually even gene editing, for

improved traits in modern cattle breeds. This study represents an important step toward

developing and improving strategies for selection and population breeding to ultimately

contribute meaningfully to the beef production industry.

Keywords: simbra, crossbreeding, genomic selection, indicine, taurine

INTRODUCTION

Cattle play an important part in the agricultural economy worldwide. Modern cattle were derived
from at least two independent domestication events that gave rise to two subspecies of cattle (Loftus
et al., 1994; Ajmone-Marsan et al., 2010). The one is humpless Taurine (Bos taurus taurus) cattle,
with Bos primigenius primigenius ancestry, which was domesticated ∼10,500 years ago in Eastern
Europe. The other is the humped zebu or Indicine (Bos taurus indicus) cattle, with Bos primigenius
namadicus ancestry, which was domesticated ∼7,000 years ago in India (Bradley et al., 1996).
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Domestication of cattle resulted in animals with high overall
genetic and phenotypic variability (Taberlet et al., 2008).

The rise of the “breed” concept, and associated intensive
artificial selection, had resulted in specialized cattle breeds that
underwent further organized selection to enhance production
and adaptability (Iso-Touru et al., 2016). Taurine breeds have
been intensively selected for milk and meat yield (Low et al.,
2020). For example, selection for traits associated with meat
production (e.g., fast growth, carcass quality, meat quality, and
meat yield) and increased fertility gave rise to Simmental, which
is the oldest and one of the most widespread Taurine beef breeds
(Bordbar et al., 2020; Ríos-Utrera et al., 2020). In contrast,
selection for high tolerance to parasites, heat resistance and
overall hardiness gave rise to Indicine breeds, such as Brahman,
the first beef cattle breed developed in the United States (Dikmen
et al., 2018).

Various crossbreeds have also been developed to improve
environmental adaptability and desirable performance (Paim
et al., 2020). These cattle breeds combine the favorable
traits/genes that characterized their purebred parental breeds. An
added benefit inherent of crossbreeding is heterosis or hybrid
vigor that may give rise to qualities that are more superior
in the crossbreed than its parental inbred lines (Harrison and
Larson, 2014; Frankham, 2015; Gouws, 2017). Furthermore,
crossbreeding remains an important mechanism for increasing
the overall genetic variation of modern cattle breeds (Kristensen
et al., 2015), especially given the substantial losses incurred due
to intensive selection for improved productivity and adaptability
(Albertí et al., 2008; Taberlet et al., 2008). However, despite
these benefits, it is still unclear whether the genetic composition
of a crossbreed is stable over time (Paim et al., 2020). It
is also not known if crossbreeding may cause reduction in
performance and fitness due to genetic erosion and outbreeding
depression (Harrison and Larson, 2014; Frankham, 2015; Gouws,
2017). Genetic erosion may cause reduction in performance
since genetic diversity is necessary for evolution to occur, while
loss of genetic diversity is related to inbreeding that reduces
reproductive fitness (Reed and Frankham, 2003).

The Simbra crossbreed was developed in the United States
in the late 1960s, shortly after the first Simmental arrived
from Europe (Gouws, 2016). It has been described as the “all-
purpose American breed “and was developed by hybridization of
the Brahman and Simmental breeds (Gouws, 2016). Generally,
crossbreeding of Brahman with Taurine breeds produces hardy
animals with better meat quality than purebred Brahmans
(Crouse et al., 1989; Johnson et al., 1990; Schatz et al., 2014).
The high tolerance of Simbra to harsh conditions (e.g., heat,
humidity, parasites, seasonally poor pasture quality, and large
distances required to be walked while grazing) is thus derived
from its Brahman parentage. In turn, its good meat quality (e.g.,
carcass composition and conformation), early sexual maturity,
milking ability, rapid growth, and docile temperament are
attributed to its Simmental ancestry (Smith, 2010). Although
Simbra cattle are mainly produced in the USA, the breed was
also introduced to other countries. For example, Simbra was
introduced to South Africa in the late 1990s where it is among
the 10 most popular breeds in the country (Scholtz et al., 2008).

Several population studies provided insight regarding genetic
structure of popular South African cattle breeds (e.g., Simmental,
Afrikaner and Nguni) (Bennett and Gregory, 1996; Pico, 2004;
Martínez and Galíndez, 2006; Greyling et al., 2008; Sanarana
et al., 2016; Pienaar et al., 2018). However, little is known
about the genetic diversity and population structure within and
between South African Simbra and the ancestral Brahman and
Simmental breeds.

Various studies showed that information mined from whole
genome data is useful for estimating proportional ancestry,
maximizing genetic variability and for developing breeding
strategies (Kim et al., 2017; Sharma et al., 2017; Bhati et al., 2020).
In other words, knowledge emerging from genomic studies
can be used to improve livestock in terms of meat and milk
production, disease resistance and reproductive health (Kim
et al., 2017; Sharma et al., 2017; Bhati et al., 2020). For example,
genome-wide association studies (GWAS) have been used to
identify genes involved in meat quality in different Taurine
(Gutiérrez-Gil et al., 2008; McClure et al., 2012; Allais et al., 2014;
Xia et al., 2016), Indicine (Tizioto et al., 2013; Magalhães et al.,
2016), and crossbreeds (Bolormaa et al., 2011; Lu et al., 2013;
Hulsman et al., 2014). Genome-based selection strategies are
thus increasingly regarded as invaluable for ultimately improving
cattle fitness, productivity, and quality (Daetwyler et al., 2014;
Kim et al., 2017).

The overall goal of this study was to estimate the
adaptive potential of the Indicine- and Taurine-derived genomic
components in the South African Simbra cattle breed. We
therefore aimed to (i) determine levels of heterozygosity; (ii)
infer the overall population structure and admixture ancestry
in Simbra cattle; (iii) and identify genomic regions subject
to positive selection and to associate these with putative
productivity and adaptive traits. For this purpose, Simbra,
Brahman and Simmental animals were genotyped using the
cost-effective Illumina’s low density Bovine BeadArray (7K)
technology that allows the genotyping of a larger number
of individuals, as part of the South African Beef Genomics
Project. Several studies have successfully used this approach in
genome-wide association studies as genotyping large numbers
of individuals with thousands of SNPs remains prohibitively
expensive for many research groups. The data generated in
this study will be instrumental for informing and designing
appropriate management and breeding strategies for maximizing
Simbra productivity in South Africa and cattle in general.

MATERIALS AND METHODS

Animals
A total of 321 animals were genotyped in this study. These
included animals from the South African Simbra crossbred
population (Simbra, n = 69), as well as Brahman (Bos
taurus indicus, n = 161) and Simmental (Bos taurus taurus,
Simmental n = 91) populations. These animals were part of
stud breeding programs aimed at producing registered Simbra
(3/8 Brahman, 5/8 Simmental; Figure 1) that is registered in
a herdbook, Brahman and Simmental cattle and were not
part of a designed experiment. They were selected based
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on phenotypic appearance, which was consistent with typical
breed characteristics and pedigree information accepted by local
breeders and breed societies.

SNP Genotyping and Quality Control
Genomic DNA was extracted at the ARC-Biotechnology
Platform from blood/hair root samples using Qiagen’s DNeasy
extraction kit (Qiagen, Valencia, CA). The quality and quantity
of the DNA were estimated using a Qubit R© 2.0 fluorometer (Life
Technologies, ThermoFisher Scientific, USA), Nanodrop 1000
spectrophotometer (Nanodrop Technologies, Wilmington, DE),
and agarose gel electrophoresis. These DNAs were then used in
genotyping experiments at the ARC-Biotechnology Platform as
part of the SA Beef Genomics Project during the period 2015–
2018. This was done using the Illumina BovineLD v2 BeadChip
(7K) (Illumina, San Diego, CA), which features 7,931 single
nucleotide polymorphism (SNP) probes that are distributed
across the whole bovine genome, with <3 kilobase pair (kb)
median gap spacing. Samples were processed according to the
Illumina Infinium-II assay protocol (Illumina, Inc. San Diego,
CA, 92122, USA). Only autosomal chromosomes were used, and
SNP quality control was assessed using PLINK (Purcell et al.,
2007). SNPs with a call rate <95% and minor allele frequencies
(MAF) <5% across all breeds were removed. SNPs with a high
linkage disequilibrium (LD) at a threshold of LD ≥0.8 were
also pruned. The SNP & Variation Suite v.8.8.3 (Golden Helix
Inc., Bozeman, MT, USA; www.goldenhelix.com) was used to
estimate the identity-by-descent (IBD) values between pairs of
individuals that can be used to detect and remove related and
duplicate samples.

Genetic Diversity
Various analytical tools were used to estimate the genetic diversity
among the Simbra, Brahman and Simmental populations.
The observed heterozygosity estimates for each population, as
an indication of within-breed diversity, were calculated from
observed genotype frequencies obtained from PLINK (Purcell
et al., 2007). Here, observed heterozygosity was calculated as (N
- O)/N, where N is the number of “non-missing genotypes” for a
given individual and O is the number of observed homozygous
genotypes for that individual. We also estimated the inbreeding
coefficient (F) as a measure of “excess” homozygosity using the
SNP & Variation Suite.

Population Structure
Principal Components Analysis (PCA) (Patterson et al., 2006)
and fastSTRUCTURE (Raj et al., 2014) analyses were used to
identify patterns of admixture and relatedness among the Simbra
cattle, in relation to the Simmental and Brahman populations.
PCA was performed using the EIGENSTRAT methodology
embedded in the SNP & Variation Suite. The fastSTRUCTURE
analysis employed an admixture model and two clusters (K =

2; based on the number of ancestral populations) (Smith, 2010).
The analysis was executed using independent allele frequencies,
and a burn-in of 100 000 iterations, followed by 1 000 000Markov
ChainMonte Carlo iterations. Graphical display of the admixture

output was generated using Distruct v1.1 (http://web.stanford.
edu/group/rosenberglab/distruct.html).

Local ancestry for admixed Simbra animals were inferred
using PCAdmix (Brisbin et al., 2012), which uses PCA to
determine the posterior probabilities for the ancestry of a
genomic region along each chromosome. More specifically,
PCAdmix classifies blocks of SNPs by ancestry through PCA,
projecting the loadings of admixed individuals based on the
loadings of putative ancestors. It employs a Hidden Markov
Model (HMM) to smooth the results and returns the posterior
probabilities of ancestry affiliation for each block from the HMM
(Brisbin et al., 2012).

To prepare input files for PCAdmix, haplotypes were
built using Beagle 5.1 by phasing and imputing missing
genotypes from the SNP unphased data (Browning et al.,
2018). Chromosomes for each individual in a population were
artificially strung together to create two haploid genomes
for the individual to increase the amount of information
used for PCA. Since PCAdmix requires predefined ancestral
groups, we selected two main ancestral groups (Simmental and
Brahman cattle) for the Simbra cattle. PCAdmix was assigned
with a posterior probability threshold of 0.8. In order to
remove highly linked alleles from different populations and
avoid spurious ancestry transitions, ancestral populations were
thinned using a SNPs pairwise linkage disequilibrium (LD)
value (r2) of <0.8. We defined a constant recombination rate
of 1e-8 based on the assumption that 0.01 recombination
occur per 1,000 kb (equivalent to 1 cM) (Khayatzadeh et al.,
2016).

Identification of Selection Signatures
To identify signatures of selection we used LD-based methods
that search for haplotypes driven to complete fixation (Vitti
et al., 2013). These include the integrated haplotype score (iHS),
which is a within-population statistic reflecting the amount of
extended haplotype homozygosity (EHH) for a given SNP along
the ancestral allele relative to the derived allele. Because of the
limitation of this statistic when the selected allele is near fixation,
we also used the method developed by Tang et al. (2007) that
compares EHH profiles between pairs of populations. Based on
EHHS, a so-called “site-specific EHH measure,” the Tang et al.
method estimates a weighted average of the EHH at both alleles
of each SNP in each population. Then, the distribution of the
standardized log-ratio of the integrated EHHS (iES) between
pairs of populations (referred to as Rsb) is used to detect signals
of selection. The advantage of the Tang et al. method is that it
calculates EHH for the entire population instead of partitioning
it into ancestral and derived alleles, which eliminates the allele
frequency constraint and makes it capable of detecting selection
sweeps near fixation. The Rsb scores for Simbra crossbred
cattle were calculated using the Simmental and Brahman as a
reference population.

In this study, the ancestral alleles required for the computation
of iHS were inferred as the most common alleles in the entire
dataset following Bahbahani and Hanotte (2015). Haplotypes for
the iHS and Rsb analyses were derived with fastPHASE (Scheet
and Stephens, 2006) using 10 starts (T10) and 25 iterations

Frontiers in Genetics | www.frontiersin.org 3 January 2021 | Volume 11 | Article 608650

http://www.goldenhelix.com
http://web.stanford.edu/group/rosenberglab/distruct.html
http://web.stanford.edu/group/rosenberglab/distruct.html
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


van der Nest et al. Genomic Evaluation of Simbra Breed

FIGURE 1 | Illustration of two hybridization schemes (A) and (B) used to establish the Simbra crossbreed (adopted from Paim et al., 2020). A 5/8 Simmental and 3/8

Brahman are the optimum composition needed to retain the favorable traits both parental breeds (O’ Connor et al., 1997; Smith, 2010). Controlled breeding programs

are used to establish the next Simbra generations with the optimum composition.

(C25) of the expectation-maximization (EM) algorithm (Scheet
and Stephens, 2006). The iHS and Rsb analyses were performed
using the rehh package (Gautier and Vitalis, 2012) in R version
3.4.4. For the analysis of within-population an iHS score >5
(equivalent to P-value = 1e-06) and for the analysis of between-
population differences a Rsb score >5 (equivalent to P-value
= 1e-06) were used to infer the candidate genomic regions
under selection.

We also examined the gene content within genomic regions
containing signatures of selection. This was done using
the annotated UMD3.1 reference genome for the Taurine
breed Hereford available on the Bovine Genome Database
(https://bovinegenome.elsiklab.missouri.edu/). To determine
potential overlap of these regions with previously published
quantitative trait loci (QTLs), the bovine database (http://www.
animalgenome.org/cgi-bin/QTLdb/BT/search) incorporated in
the Animal QTL database (Animal QTLdb) of Hu et al. (2019),
was used.

RESULTS

SNP Genotyping and Quality Control
After quality control to remove SNPs with <95% call rate, MAF
< 0.05 and LD (r2 = 0.8), 4 488 SNPs were retained for analyses.
We also performed a sample filtering to limit the inclusion of
very closely related individuals (Figure 2A). Accordingly, all 321
animals were retained for analysis (i.e., 69 Simbra, 161 Brahman,
and 91 Simmental genomes), based on IBD values of ≥0.45. IBD
represents the probability that two randomly chosen alleles of
an individual are inherited from a common ancestor, with the
length of haplotypes shared between individuals being inversely
proportional to the time since divergence from that common
ancestor (Browning and Browning, 2010).

Genetic Diversity
Among the three populations, Simbra and Simmental had
comparable observed heterozygosity values (i.e., 0.427 with
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FIGURE 2 | Identity-by-descent (IBD) results of the crossbred South African

Simbra population, as well as the ancestral South African Simmental and

Brahman populations (A). Green indication a closer genetic distance and red

indicating that the genetic distance is farther. FastSTRUCTURE (Raj et al.,

2014) results from the 7k SNP panel set at K = 2 according to the historical

number of ancestral populations (Smith, 2010). Simmental ancestry are

indicated in red, while Brahman ancestry are indicated in blue (B). First

principal component (PC1) vs. second principal component (PC2) results from

the principal component analysis (PCA) for the Simbra, Simmental and

Brahman populations computed using the SNP and Variant Suite v.8.8.3

(Golden Helix Inc., Bozeman, MT, USA; www.goldenhelix.com) (C).

standard deviation [±SD] of 0.020 and 0.417 with ±SD 0.015,
respectively), which were much higher than those for Brahman
(0.295, ±SD 0.029, n = 161). In comparison with the Simmental
(0.0003, ±SD 0.031) and Simbra cattle (−0.011, ±SD 0.045)
populations, limited diversity was observed for Brahman (0.022,
±SD 0.103) population.

Simbra Population Structure and Genomic
Content
FastSTRUCTURE separated the animals genotyped in this study
into three distinct clusters (Figure 2B). A similar clustering

pattern was observed using PCA (Figure 2C), where 55.66%
of the genetic variability was explained by the first two
principal components (with the first explaining 50.2%). These
three clusters corresponded to the Brahman and Simmental
ancestor populations, and the Simbra population, representing
an admixture between the Taurine and Indicine cattle.

The Simbra hybrid genomes were partitioned into segments of
inferred Simmental and Brahman ancestry using the PCAdmix
algorithm (Figure 3). We used the default parameters in
PCAdmix thereby removing SNPs in high LD (r2 > 0.8) and
SNPs that were monomorphic between the breeds. Subsequent
ancestry inference of each genome revealed that the South
African Simbra breed is composed of a higher average proportion
of Taurine (64.8%, ±SD 8) than Indicine (35.2%, ±SD 8)
backgrounds (Figure 3A), as was expected for the breed (O’
Connor et al., 1997; Smith, 2010). However, 19 of the 69 Simbra
individuals had genomic compositions that deviated substantially
from this expectation (Figure 3A); i.e., the Indicine contribution
was <27.2% in 9 genomes and >43.2% in 10 genomes.

Using the PCAdmix algorithm, we determined the most
probable ancestry along each chromosome of the Simbra
genomes (Figures 3B,C). Accordingly, we identified 256 genetic
ancestry blocks (i.e., block SNPs with the same inferred ancestry),
spread across 29 Bos taurus autosomes (BTA1–BTA29) with
polymorphic SNPs (call rate less <95% and MAF >5% across
all breeds). Of these blocks, 191 (75%) showed a similar pattern
as observed above for the average genome composition (i.e.,
64.8%, ±SD 8 with Taurine and 35.2%, ±SD 8 with Indicine).
The remaining 65 deviated substantially from the expected
distribution pattern, with 22 blocks (33.9%) having an excess
of Indicine ancestry blocks (>43.2% Brahman blocks) and
43 blocks (66.1%) having excess Taurine ancestry (>27.2%
Simmental blocks).

Genomic Regions Containing Signatures of
Positive Selection
Our analyses revealed the presence of nine genomic regions
containing signatures of positive selection in the Simbra genome
(Table 1). These regions were identified using intra-population
iHS and inter-population Rsb analyses (Vitti et al., 2013).
Focusing on the Simbra hybrid cattle, the intra-population iHS
analysis identified eight of these regions, which were located on
BTA 1, BTA 2, BTA 3, BTA 9, BTA 19, BTA 20, and BTA 21
(Table 2; Figure 4A). Additionally, the Rsb analyses identified
five positive selection regions (i.e., on BTA 2, BTA 3, BTA 19,
BTA 20, and BTA 21) using Simmental as reference population,
and two using Brahman as reference population (i.e., on BTA 21
and on BTA 23) (Table 2; Figures 4B,C). Five of these genomic
regions were detected using both the iHS and Rsb statistics. The
region on BTA 21 was identified with Rsb analyses employing
both Simmental and Brahman as reference populations, while
the remainder (i.e., on BTA 2, BTA 3, BTA 19, and BTA 20)
were detected using the Simmental reference population. Overall,
five (BTA 1, BTA 3, BTA 5, BTA 21, and BTA 23) of the nine
regions in which positive selection was detected were located
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FIGURE 3 | Local ancestry for the crossbred South African Simbra cattle

population (A) and representative haplotypes (B,C) inferred using PCAdmix

(Brisbin et al., 2012). The Brahman and Simmental cattle populations were

used as source populations (Smith, 2010).

within genetic ancestry blocks that displayed a deviation in the
expected genomic composition for Simbra (Table 2).

Comparison of all of the identified genomic regions harboring
signals for positive selection signatures to the genomic resources
included in the Animal QTL database, indicated that nine of the
identified regions overlapped with those underlying previously
published QTLs for cattle (Table 2). These QTLs were previously
linked to different biological properties, including reproduction
(interval to first oestrus after calving, QTL:170016; lactation
persistency, QTL:125219; ovulation rate, QTL:10570), milk
traits (milk lauric acid content, QTL:172178), production traits T
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TABLE 2 | Functional annotation of genomic regions showing evidence of selection in the Simbra crossbred cattle.

Selection testa Selected

population

Selection region

position (Mb)b
Top significant

SNPc

QTLd Biological rolee References

iHS Simbra BTA1:131.6–133.5 BovineHD0100037757 170016 Interval to first

estrus after calving

Zhang et al., 2019

iHS, Rsb Simbra,

Simbra+Simmental

BTA2:126.6–128.6 BovineHD0200037032 125219 Lactation

persistency

Do et al., 2014

iHS Simbra BTA3:32.0–34.0 BovineHD0300010276 179821 Ketosis Nayeri et al., 2019

iHS Simbra BTA5:55.6–57.7 BovineHD0500016044 10570 Ovulation rate Kirkpatrick et al., 2000

iHS Simbra BTA9:9.8–11.8 BovineHD0900002705 15914 Carcass weight Berkowicz et al., 2012

iHS, Rsb Simbra,

Simbra+Simmental

BTA19:55.6-57.7 BovineHD1900016000 4383 Residual feed

intake

Berkowicz et al., 2012

iHS, Rsb Simbra,

Simbra+Simmental

BTA20:21.2–23.2 BovineHD2000006648 5016 Heat intensity Hoglund et al., 2009

iHS, Rsb Simbra,

Simbra+Simmental,

Simbra+Brahman

BTA21:56.6–58.6 BovineHD2100016574 172178 Milk lauric acid

content

Gebreyesus et al.,

2019

Rsb Simbra+Brahman BTA23:38.3–40.3 BovineHD2300011367 11177 Body weight (birth) McClure et al., 2010

aSignatures of selection was identified using the two LD-based methods (Rsb and iHS) (Vitti et al., 2013).
bCandidate regions are represented as (BTA: start – stop Mb), BTA, Bos taurus autosomes.
cTop significant SNP for the Rsb and iHS analyses.
dPotential overlap of the regions that display signatures of selection with previously published quantitative trait loci (QTLs) in the bovine database (http://www.animalgenome.org/cgi-

bin/QTLdb/BT/search).
eBiological role of the QTL in the bovine database (http://www.animalgenome.org/cgi-bin/QTLdb/BT/search).

(residual feed intake, QTL:4383; carcass weight, QTL:15914),
health (ketosis, QTL:179821), and adaptation traits (Heat
tolerance, QTL:31195).

The candidate genomic regions with signatures of positive
selection also harbored annotated genes (6–77 genes) (Tables 1,
3, Supplementary Table 1). These included genes that encode
putative kinesin family member 13A (KIF13A), the small
integral membrane protein 5 (SMIM5), MIER family member
3 (MIER3), Solute carrier family 24 member 4 (SLC24A4),
muscle-specific ligases tripartite motif containing 63 (TRIM63;
also called muscle-specific ring-finger protein 1 or MuRF-1),
as well as the potassium voltage-gated channel subfamily A
member (KCNA10).

DISCUSSION

This is the first study to utilize genome-wide polymorphism
data to investigate the genetic diversity, population structure and
patterns of local ancestry of the South African Simbra hybrid
breed and its Taurine and Indicine ancestor breeds. We also used
the SNP data obtained to identify candidate genomic regions
with signatures of adaptive introgression and positive selection.
The availability of the genome sequencing data from the SA Beef
Genomics Project will make it possible in the future to augment
conventional livestock breeding and performance management
programmes with genomic information.

Our results showed that hybridization of the Taurine and
Indicine breeds conferred a higher genetic diversity of the Simbra
breed in comparison with the purebred breeds (Ghafouri-Kesbi,
2010; Zhang et al., 2015). This was obvious from the negative
inbreeding coefficient (f ) estimate that indicated an excess of

heterozygosity even beyond what is expected under Hardy-
Weinberg equilibrium in the Simbra population (Maiorano et al.,
2018). Compared to the two ancestral breeds, the South African
Simbra population had the highest genetic diversity, although it
was only marginally higher than that of the Simmental breed.
Therefore, hybridization of subspecies remains an important
tool for expanding the genetic variation within modern cattle
breeds (Gregory and Cundiff, 1980). Also, the genetic diversity
inherent to South African Simbra holds significant potential
for improvements in production and environmental adaptability
(Sölkner et al., 1998; Becker et al., 2013).

The limited diversity observed for Brahman breed is most
likely a consequence of intensive artificial selection for improved
productivity (Albertí et al., 2008). It was previously suggested
that the low genetic diversity in the Brahman breed may be
partly ascribed to the use of elite sires (Makina et al., 2014).
Such practices are consistent with the observed F value (0.0003),
which are suggestive of some inbreeding in the Brahman
populations examined (van der Westhuizen et al., 2019). Genetic
diversity within the Simmental population was slightly higher
than in the Brahman breed. This may be because the cattle
BeadChip was optimized for use in Bos taurus taurus breeds
(Cheruiyot et al., 2018).

Genome-wide polymorphism data indicated that the genomic
background of the South African Simbra hybrid breed represents
a mosaic of the Taurine and Indicine ancestor breeds, as
was expected (Smith, 2010). Our data also confirmed the
optimal 5/8 Simmental and 3/8 Brahman composition of the
Simbra genomes included in this study, since this composition
ensures maintenance of favorable traits from both breeds (i.e.,
meat tenderness of the Simmental breed and heat-tolerance of
the Brahman breed) (O’ Connor et al., 1997; Smith, 2010).
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FIGURE 4 | Manhattan plots of genome-wide signatures of positive selection

analyses. Distribution of iHS scores in the Simbra crossbred cattle (A), Rsb

analysis with the Simbra and Simmental cattle (B), and Rsb analysis with the

Simbra and Brahman cattle (C). The iHS and Rsb analysis was performed

using the rehh package (Gautier and Vitalis, 2012) in R v. 3.4.4. The dashed

line corresponds to a significance threshold (–log10) that was set at 6, which is

equivalent to P-value = 1e−06.

Additionally, the PCA and FastSTRUCTURE data also clearly
demonstrated that the South African Simbra has evolved into
a unique breed, as three distinct clusters were identified. This
suggests that, after initial formation and subsequent intense
artificial selection and breeding, the Simbra breed composition
has stabilized over time (Paim et al., 2020).

Our results suggested that crossbreeding, followed by
selection, was key in shaping the genome of the South African
Simbra hybrid breed (Ríos-Utrera et al., 2020). Consistent
with previous studies (e.g., Bahbahani and Hanotte, 2015;
Bahbahani et al., 2017), the two EHH-based statistics used in

this study allowed for the identification of genomic regions
that display signatures of positive selection in the hybrid
genome. These included regions that were identified using the
intra-population iHS statistics, as well as the inter-population
Rsb statistics using the Simmental and Brahman cattle as
reference populations. The candidate regions identified using
the iHS and Rsb statistics supports the role of selection
pressures, and not natural demographic processes, in shaping
the genomic pattern of these regions (Bahbahani et al.,
2018). Also, 25% of the regions displayed ancestry deviation.
Furthermore, only five genomic regions that displayed signatures
of positive selection overlapped with regions containing locus-
ancestry deviation. This may be because EHH-based statistics
identify older signals of selection, while ancestry deviation
is likely caused by recent post-admixture selection (Oleksyk
et al., 2010; Bahbahani et al., 2018). Regions that display
ancestry deviation observed in the young Simbra crossbreed
that was developed in the United States in the late 1960s
(Gouws, 2016), is most likely the result of recent post-
admixture selection.

The South African Simbra hybrid breed appears to be evolving
separately from its ancestoral breeds, with selection driving
the increase in prevalence of advantageous alleles derived from
both the parent breeds (Xu et al., 2015). The presence of
genomic regions displaying locus-ancestry deviation supports
the likelihood that they are important for the adaptability of
Simbra cattle to the local environment (Bahbahani et al., 2018).
The inter-population Rsb statistics, using Brahman as reference,
allowed for the identification of Taurine haplotypes in regions
that are under selection. Similarly, Rsb statistics using Simmental
as reference allowed for the identification of regions that support
selection pressures on Indicine haplotypes. As suggested recently,
the identified genomic regions under selectionmay have adaptive
significance to maximize their reproductive fitness and their
adaptability to environmental challenges (Bahbahani et al., 2018).

Analysis of genes and known QTLs in regions of the Simbra
genome that harbor signals of positive selection suggest that these
are likely involved in its improved environmental adaptability
and productivity (Paim et al., 2020; Ríos-Utrera et al., 2020).
Many of the genes located in these genomic regions have
previously been implicated in traits that are highly valued in
the Simbra composite breed (Smith, 2010). The location of
these regions also overlapped or co-occurred with previously
reported bovine quantitative trait loci (QTLs) (https://www.
animalgenome.org), which strongly reflect the overall breeding
goals of the Simbra breed (Smith, 2010). For example, one of
the adaptive regions located on BTA 23 co-occurred with a QTL
associated with body weight (Lu et al., 2013). This region that
is derived from the Simmental ancestry is important for growth
performance in the Simbra breed (Pico, 2004; Amen et al., 2007;
Smith, 2010; Maúre et al., 2018). The heritability of these traits
may be due to positive selection of gene regions that is caused
by beneficial polymorphisms in the genes affecting the traits,
because mutation that provides a fitness advantage will increase
in frequency in the population (Taye et al., 2017).

Most of the genomic regions experiencing positive selection
were implicated in traits that are valued in breeds of Indicine
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TABLE 3 | Examples of candidate genes within the candidate regions of the different analyses conducted in the study.

Selected populationa Selection region position (Mb)b ENSEMBLE gene IDc ENSEMBLE Gene named

Simbra 1:131.6–133.5 ENSBTAG00000014589,

ENSBTAG00000008299

Claudin 18 (CLDN18) Interleukin

20 receptor subunit

beta (IL20RB)

Simbra, Simbra+Simmental 2:126.6–128.6 ENSBTAG00000001513,

ENSBTAG00000005085

PDLIM1 interacting kinase 1

like (PDIK1L) Tripartite motif

containing 63 (TRIM63)

Simbra 3:32.0–34.0 ENSBTAG00000015459 Potassium voltage-gated

channel subfamily A member 2

(KCNA2)

Simbra 5:55.6–57.7 ENSBTAG00000018361,

ENSBTAG00000008322

R3H domain containing

2 (R3HDM2) Potassium

voltage-gated channel subfamily

A member 10 (KCNA10)

Simbra 9:9.8–11.8 ENSBTAG00000048046 Uncharacterized protein

Simbra, Simbra+Simmental 19:55.6–57.7 ENSBTAG00000010758,

ENSBTAG00000011713

Small integral membrane protein

5 (SMIM5) Uncharacterized

protein

Simbra, Simbra+Simmental 20:21.2–23.2 ENSBTAG00000014248,

ENSBTAG00000047548

MIER family member 3

Uncharacterized protein (MIER3)

Simbra, Simbra+Simmental, Simbra+Brahman 21:56.6–58.6 ENSBTAG00000006620 Solute carrier family 24 member

4 (SLC24A4)

Simbra+ Brahman 23:38.3–40.3 ENSBTAG00000019217 Kinesin family member 13A

(KIF13A)

aSignatures of selection was identified using the two LD-based methods (Rsb and iHS) (Vitti et al., 2013).
bCandidate regions are represented as (BTA: start – stop Mb), BTA, Bos taurus autosomes.
cENSEMBLE gene ID obtained from Ensembl (http://www.ensembl.org/index.html).
dENSEMBLE gene name obtained from Ensembl (http://www.ensembl.org/index.html).

ancestry. For example, the region located on BTA 5 that
displays locus-ancestry deviation (excess of Brahman parent
alleles) co-occurred with a QTL associated with ovulation
rate. This confirms that regions/genes related to fertility and
reproduction are hotspots of selection in breeds living in tropical
environments (Bahbahani et al., 2018). The region located on
BTA 20 co-occurred with a QTL associated with heat intensity
(i.e., heat tolerance), and is derived from the Brahman ancestry.
Adaptation to the harsh South African environment that is
valued in the Indicine parent breed will allow for the Simbra
breed to adapt to climate change that will likely cause South
Africa to become hotter and drier (Girvetz et al., 2019). Of
the genomic regions displaying positive selection, and that co-
occurred with known QTLs linked with production in the
Simmental breed, many were also previously demonstrated to be
under selection in Western and Russian Simmental populations
(Mészáros et al., 2019). These included QTLs associated with
carcass weight that are located on BTA 9, milk production
located on BTA 2 and BTA 21, as well as fertility located
on BTA 1, that display locus-ancestry deviation (excess of
Simmental parent alleles) (Berkowicz et al., 2012; Do et al.,
2014; Gebreyesus et al., 2019; Zhang et al., 2019). These
genomic regions include genes that encode for a SLC24A4
homolog located on BTA 21, which is known to be associated
with milk production and fertility (Nayeri and Stothard, 2016;
Nayeri et al., 2016). Our results could therefore highlight
new regions and pathways that may contribute to variation

in reproductive health, fertility, and milk production in cattle
in general.

Many of the genes occurring in regions under positive
selection in Simbra were previously identified using genome-
wide association studies (GWAS) where they were linked to meat
quality of Taurine, Indicine and composite breeds (Allais et al.,
2014; Hulsman et al., 2014; Magalhães et al., 2016; Xia et al.,
2016). For example, KCNA10 encoded on BTA 3 is likely involved
in determining meat quality in Simbra that may be derived from
the Simmental parent breed (Lang et al., 2000; Fleet et al., 2011).
Other genes, derived from the Brahman parent breed that include
SMIM5 encoded on BTA 19 that display locus-ancestry deviation
(excess of Brahman parent alleles), may negatively influence
carcass and meat properties (e.g., marbling) (Mateescu et al.,
2017; Taye et al., 2017). Some of the adaptive alleles identified
in Simbra were implicated in the sensory characteristics of meat
(e.g., tenderness, flavor, juiciness, and color), which are mainly
affected by proteolytic activities of muscle (Taye et al., 2017). For
example, a homolog of TRIM63 (also called MuRF-1), located
on BTA 2, has been linked with meat tenderness in Nellore
cattle (Indicine) (Muniz et al., 2016). MuRF-1 is an important
component of the ubiquitin-proteasome system, which is the
main proteolytic pathway in skeletal muscle growth in domestic
animals (Koohmaraie et al., 2002). This pathway regulates the
balance between the amounts of muscle proteins synthesized
and degraded to control the skeletal muscle mass (Koohmaraie
et al., 2002). Accordingly, the ubiquitin-proteasome system and
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its components have been linked to meat tenderness (Yin et al.,
2010; Taye et al., 2017), productivity and economic value of
animals (Sadri et al., 2016; Nakanishi et al., 2019). The high
number of genes identified in this study and other studies that
are associated with meat quality, underscore the complexity of
this trait and that it is regulated by multiple interrelated causative
factors and layers of feedback regulation (Diniz et al., 2019).

Some of the genomic regions subject to positive selection
are likely involved in overall health and fitness of the Simbra
breed. For example, the region located on BTA 3, which is
known to be under selection in Western and Russian Simmental
populations (Mészáros et al., 2019) and most likely derived from
the Simmental parent breed, overlaps with a QTL associated
with ketosis (QTL:179821). The latter is a metabolic disorder
where negative energy balances (when energy demand exceeds
intake) affect animal health and productivity (Nayeri et al.,
2019). It has been postulated that such failure to maintain
internal homeostatic and homeorhetic regulation maybe caused
by intense genetic selection (Nayeri et al., 2019). Furthermore,
metabolic disorders have also been demonstrated to negatively
influence the immune response in cattle (Wathes et al., 2009;
Esposito et al., 2014). The results of this study can be used for
further genetic analysis to identify causal variants that affect
ketosis and metabolic diseases.

Likewise, health and fitness traits that had likely been derived
from Indicine ancestry were also encoded in Simbra genomic
regions subject to selection. These regions are located on BTA 5,
BTA 19, BTA 20, and BTA 21, which appear to be derived from
Brahman. BTA 5 harbors a gene encoding KCNA10 (potassium
voltage-gated channel subfamily A member 10) known to
influence potassium metabolism and play a role in human and
animal production and health (Lang et al., 2000; Fleet et al.,
2011). This protein regulates acid-base balance and maintains
cellular pH and electrical gradients (Lang et al., 2000; Fleet et al.,
2011), which has previously been demonstrated to influence
meat quality in cattle (Diniz et al., 2019). Likewise, BTA 21
contains the SLC24A4 gene that encodes amember of potassium-
dependent sodium or calcium exchanger protein family, which
may influence pigmentation related traits that may influence
health (e.g., UV protection) (Sulem et al., 2007). The selection
region on BTA 19 contains a gene encoding the small integral
membrane protein 5 (SMIM5) that is associated with udder
health and clinical mastitis in Holstein cattle (Wu et al., 2015).
The region experiencing selection on BTA 20 harbors a gene
that encodes MIER family member 3 Uncharacterized protein
(MIER3), which is associated with survival in Holstein and Jersey
cattle (Raven et al., 2014).

Finally, analysis of genome-wide polymorphisms further
showed that the genetic diversity of the South African purebred
Brahman parental breed was slightly lower than the Simmental
population. This is similar to what has been reported previously
(Qu et al., 2006; Agung et al., 2016; Utrera et al., 2018). The low
level of diversity in the Brahman breed may be an indication
of relative homogeneity in the South African populations as
a consequence of intensive artificial selection for improved
productivity (Albertí et al., 2008; Taberlet et al., 2008). It was
also previously suggested that the low genetic diversity observed

in the Brahman breed may be partly ascribed to the use of elite
sires (Makina et al., 2014). Such practices are consistent with
the observed inbreeding coefficient (f ) estimate (0.022), which
is suggestive of some inbreeding in the Brahman populations
examined (van der Westhuizen et al., 2019). Although it cannot
be excluded that the low genetic diversity in the Brahman
population may be due to the fact that the cattle BeadChip was
optimized for use in Bos taurus taurus breeds (Cheruiyot et al.,
2018), it is important that genetic diversity must be maintained
and increased for sustainable production andmanagement of this
purebred cattle breed.

CONCLUSIONS

The SNP array data allowed for the assessment of genetic
diversity, population structure and admixture of the South
African Simbra population. Our findings contribute to the
current knowledge of the genetics of the Simbra breed, and
provides insight into how genomic architecture changes with
hybridization and crossbreed formation. Results of this study
emphasize the importance of assessing the genetic diversity,
population structure and admixture of other South African cattle
breeds. It also emphasize the importance of implementing a
management strategy to increase diversity in the purebred breeds.

The genome-wide SNP array further allowed for the
identification of signatures of positive selection in the Simbra
hybrid genome, and these putatively introgressed genomic
regions may have adaptive significance, affecting important
phenotypic traits (e.g., adaption, reproduction, and production)
in the breed. These include Indicine-derived alleles associated
with heat tolerance and Taurine-derived alleles that are associated
with body weight.

Knowledge of the genetics controlling meat quality will
increase the ability of the industry to produce better meat, which
will benefit consumers and should increase the demand for beef,
which is of great interest to the beef industry (Mateescu et al.,
2017). The identified adaptive introgression of alleles of Indicine-
and Taurine derived ancestral genes may lay the foundation
for ad-hoc physiological studies and targets for selection (and
potentially gene editing), that may increase production and
health in modern cattle breeds. Ultimately, this study represents
an important step toward developing and improving strategies
for targeted selection and breeding that will ultimately contribute
meaningfully to the beef production industry of South Africa.
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