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Abstract

Draft genomes of Penicillium roqueforti, Fusarium sororula, Chalaropsis populi, and Chrysoporthe puriensis are presented.
Penicillium roqueforti is a model fungus for genetics, physiological and metabolic studies, as well as for biotechnological
applications. Fusarium sororula and Chrysoporthe puriensis are important tree pathogens, and Chalaropsis populi is a soil-
borne root-pathogen. The genome sequences presented here thus contribute towards a better understanding of both
the pathogenicity and biotechnological potential of these species.
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IMA GENOME – F 14A
Draft genome sequence of Penicillium roqueforti CECT
2905T

Introduction
Penicillium roqueforti is one of the economically most
important fungal species within the genus Penicillium.
This fungus is widely known in the food industry because
it is responsible for the ripening of blue cheeses (Chávez
et al. 2011). In addition, in recent years, P. roqueforti has
acquired growing importance as a model fungus for genet-
ics, physiological and metabolic studies, as well as for bio-
technological applications (Coton et al. 2020).
Phylogenetically, P. roqueforti belongs to section

Roquefortorum within the genus Penicillium (Houbraken

et al. 2020; Fig. 1). P. roqueforti was originally described
by Thom (1906), and the nomenclatural type of the spe-
cies is the neotype IMI 024313 (Frisvad and Samson
2004). From this neotype strain, several ex-type strains
have been obtained, which are stored in different culture
collections around the world.
Among the ex-type strains obtained from the neotype

IMI 024313, P. roqueforti CECT 2905T is one of the
most widely used. Many molecular studies have been
carried out in this ex-type strain, including the analysis
of regulatory genes of development and metabolism
(García-Rico et al. 2009; Gil-Durán et al. 2015; Torrent
et al. 2017; Rojas-Aedo et al. 2018), and importantly, P.
roqueforti CECT 2905T has been used to demonstrate
the functionality of all biosynthetic gene clusters (BGCs)
for the production of secondary metabolites character-
ized so far in this fungal species (Hidalgo et al. 2014;
Kosalková et al. 2015; Del-Cid et al. 2016; Fernández-Bo-
dega et al. 2017; Rojas-Aedo et al. 2017).
Owing to the importance of P. roqueforti CECT 2905T

as model for molecular studies and BGCs characterization,
the availability of its genome would be very useful.
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Consequently, we report this genome resource here. The
availability of the genome of P. roqueforti CECT 2905T

will facilitate future studies on the functional
characterization of further BGCs and genes related with
the regulation of development and metabolism in this im-
portant fungal species.

Sequenced strain
USA: Connecticut: Storrs, isol. ex French Roquefort
cheese, 1904, C. Thom (CECT 2905T, ex-type strain
from the neotype IMI 024313).

Nucleotide sequence accession number
The genome sequence of Penicillium roqueforti CECT
2905T has been deposited in the DDBJ/ENA/ GenBank
databases under the accession number MSQC00000000;
Bio project PRJNA351232; Bio-sample SAMN05951162.
The version described in this paper is version
MSQC00000000.

Materials and methods
Penicillium roqueforti CECT 2905T was grown on CM
broth as described before (Gil-Durán et al. 2015). Myce-
lium was harvested, washed with NaCl 0.9%, and high-
molecular weight DNA was extracted exactly as was de-
scribed by Bainbridge et al. (1990).
High-molecular weight DNA from P. roqueforti CECT

2905T was sequenced using the Illumina HiSeq 2000
platform at Macrogen (Seoul, Korea). A pair-end library
with insert sizes of 550 bp was prepared using TruSeq
DNA PCR Free kit, and used to generate 101 bp length

reads. The quality of the data obtained was assessed
using FastQC. Low quality data and adapters were re-
moved with Trimmomatic v. 0.36 (Bolger et al. 2014).
Genome assembly of high quality Illumina raw reads
was performed with Bowtie2 v. 2.4.1 (Langmead and
Salzberg 2012), using the genome of P. roqueforti FM164
(Cheeseman et al. 2014) as reference. The final assembly
was subjected to completeness assessment using Bench-
marking Universal Single-Copy Orthologs program
(BUSCO v. 4.0.6; Seppey et al. 2019), utilizing Eurotiales
odb10 dataset. Genes were predicted with AUGUSTUS
v. 3.3.3 (Stanke et al. 2008) using the training dataset
from Aspergillus nidulans. Finally, in order to identify
BGCs, anti-SMASH fungal version v. 5 (Blin et al. 2019)
was conducted with default parameters.
The phylogenetic analysis of P. roqueforti CECT 2905T

and related species was done using combined β-tubulin
(BenA), calmodulin (CaM) and RNA polymerase II sec-
ond largest subunit (RPB2) regions (Guevara-Suarez
et al. 2020). Sequences from related species were ob-
tained from GenBank accessions reported by Houbraken
et al. (2020), whereas those from P. roqueforti CECT
2905T were extracted from the sequence genome. Max-
imum Likelihood analysis was done in MegaX (Kumar
et al. 2018) under GTR +G model.

Results and discussion
The phylogenetic tree based on the concatenated BenA,
CaM and RPB2 regions confirmed that the sequenced
genome belongs to the species P. roqueforti. P. roqueforti
CECT 2905T clustered together with P. roqueforti CBS

Fig. 1 Phylogenetic tree obtained after Maximum Likelihood analysis of the genome sequence of Penicillium roqueforti CECT 2905T and related species. The
analysis was done as detailed in the Materials and methods section. Bootstrap support values (> 50%) are shown at the nodes (bootstrap iterations = 1000). The
tree was rooted using combined BenA, CaM and RPB2 regions from Aspergillus glaucus NRRL 116T. T = ex-type strain
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221.30T with a bootstrap support of 100%. In addition,
this P. roqueforti clade was clearly separated from the
other five species within the Roquefortorum section
(Fig. 1).
Table 1 summarizes the main metrics of the assembled

genome sequence of P. roqueforti CECT 2905T. The as-
sembled draft genome has a total length of 26.1Mb corre-
sponding to 1168 contigs with an N50 value of 70,366 bp,
L50 value of 112, and an average GC content of 48.9%.
AUGUSTUS predicted 9015 protein coding genes, with
an average gene density of 345.4 genes per 1Mb. BUSCO
analysis reported a completeness score of 98.8% based on
the identification of 4141 complete and 18 fragmented
genes from a total of 4191 Eurotiales genes searched. The
estimated genome size of P. roqueforti CECT 2905T is
comparable to that of other P. roqueforti strains found in
databases, namely JCM 22842 (27.1Mb; GenBank acces-
sion number BCID00000000), UASWS P1 (27.9Mb;
GenBank accession number JNNS01000000) and FM164
(28Mb; Cheeseman et al. 2014).
The BGCs prediction performed with anti-SMASH

fungal version yielded a total of 34 regions associated
with biosynthesis of secondary metabolites. The BGCs
found correspond to type I polyketide synthases (PKS),
non-ribosomal peptide synthetases (NRPS), NRPS-like

fragments, PKS-NRPS, NRPS-indole, NRPS-like-indole,
terpene, siderophore, and beta-lactone. The number of
BGCs predicted in this work is in good agreement with
previous estimation by Coton et al. (2020) who sug-
gested that strains of P. roqueforti would contain be-
tween 34 and 37 BGCs. To date, only six BGCs have
been functionally characterized in P. roqueforti CECT
2905T (Hidalgo et al. 2014; Kosalková et al. 2015; Del-
Cid et al. 2016; Fernández-Bodega et al. 2017; Rojas-
Aedo et al. 2017), so the availability of its draft genome,
informed in this paper, will facilitate future studies of
functional characterization of further BGCs in this im-
portant fungus.
Authors: Natalia Valdés, Mario Tello, Inmaculada Vaca,
Carlos Gil-Durán, Gloria Levicán, and Renato Chávez*
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IMA GENOME – F 14B
Draft genome assembly of Fusarium sororula
Introduction
Fusarium species within the Fusarium fuikuroi species
complex (FFSC) are plant pathogens of various culti-
vated crops of economic importance (Kvas et al. 2009;
Leslie and Summerell 2006). As such, numerous FFSC
species have their genomes sequenced, with the first, F.
verticillioides, published in 2010 (Ma et al. 2010). Cur-
rently, 51 FFSC species have genome sequences publicly
available (www.ncbi.nlm.nih.gov).
In a study exploring the diversity of FFSC species

associated with Pinus species in Colombia, five new
species were described (Herron et al. 2015). One of
these, Fusarium sororula, was isolated from diseased
P. tecunumanii seedlings that displayed symptoms of
wilt, shoot dieback and roots with lesions that were
resin soaked (Steenkamp et al. 2012). These are all
symptoms typical of infection by the pitch canker
pathogen, F. circinatum. This new species was able to
cause disease on susceptible P. patula, at similar
levels as F. circinatum (Herron et al. 2015). Fusarium
sororula is consequently a threat to global commercial
forestry and the availability of its genome sequence
will contribute to studies aimed at better understand-
ing its biology and genetics.

Sequenced strain
Colombia: Angela Maria, Santa Rosa, 75°36′21″W
4°49′18″N, isolated from diseased Pinus tecunumanii
seedlings, 2006, C.A. Rodas (CMW 25513; FCC 5425;
PREM63211-dried culture) (Herron et al. 2015).

Nucleotide sequence accession number
This Whole Genome Shotgun project has been depos-
ited at DDBJ/ENA/GenBank under the accession

Table 1 General characteristics of the genome of Penicillium
roqueforti CECT 2905T

Assembly metrics

Total bases 2,019,762,619

Read count 22,375,066

GC (%) 48.9

Number of contigs 1168

Assembly size (Mb) 26.1

N50 (bp) 70,366

L50 112

Predicted genes models 9015

Gene density (genes per Mb) 345.4

BUSCO completeness 98.8%

Biosynthetic gene clusters (BGCs)

PKS type I 9

PKS type I-NRPS 3

NRPS 7

NRPS-indole 1

NRPS-like fragments 6

NRPS-like fragment-indole 1

Terpene 3

Beta-lactone 2

Indole 1

Siderophore 1
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JACWFA000000000. The version described in this paper
is version JACWFA010000000.

Materials and methods
The Fusarium sororula isolate was grown on half
strength potato dextrose agar (BD Difco™) and gen-
omic DNA was extracted according to the protocol of
Möller et al. 1992. One pair-end library (550 bp insert
size, read length of 250 bp) was generated using the
Illumina HiSeq 2500 platform at Macrogen (Seoul,
Korea). Poor quality and duplicate reads were re-
moved using Qiagen Genomics Workbench v 20.0.4
(CLCBio, Aarhus). Reads were assembled using
SPAdes v 3.13.0 (Bankevich et al. 2012). Completeness
of the genome assembly was evaluated with BUSCO v
4.0.6 (Seppey et al. 2019), using the hypocreales data-
set. Annotation was done with the MAKER annota-
tion pipeline (Cantarel et al. 2008) using Augustus
(Stanke et al. 2006a, 2006b), Genemark ES (Ter-Hov-
hannisyan et al. 2008) and SNAP (Korf 2004). Gene
model data from F. circinatum (Wingfield et al.
2012), F. fujikuroi (Wiemann et al. 2013), F. verticil-
lioides and F. graminearum (Ma et al. 2010), as well
as F. mangiferae and F. proliferatum (Niehaus et al.
2017), were included as additional evidence.

Results and discussion
The genome sequence of F. sororula was assembled into
328 scaffolds with a total genome size of 47,806,863 bp.
The N50 value was 1,089,458 bp and the genome had a
G + C content of 45.99%. BUSCO analyses showed that
the assembly was 99.9% complete [4486 complete and
single-copy BUSCOs, 7 complete and duplicated BUS-
COs; 2 fragmented BUSCOs, 6 missing BUSCOs; n =
4494]. A total of 15,668 open reading frames (orfs) were
predicted using the MAKER annotation pipeline, with a
gene density of 327.74 orfs/Mb. Sequence comparisons
indicated that all twelve known chromosomes typical for
species in the FFSC are present. Phylogenetic analysis of
sequences from the sequenced genome confirmed the
taxonomic identity of the sequenced Fusarium strain as
F. sororula (Fig. 2).
This genome announcement is the third for a Fusar-

ium species isolated from Pinus species in Colombia.
The two previously sequenced and assembled genomes
where for F. fracticaudum (Wingfield et al. 2018a) and
F. pininemorale (Wingfield et al. 2017). This genome as-
sembly for F. sorula is comparable to other American
clade species from the FFSC isolated from Pinus species
(Table 2; Wingfield et al. 2018a; Wingfield et al. 2017;
Wingfield et al. 2018b), with genome size, G + C content
and gene density all in a similar range.

Authors: Lieschen De Vos*, Magriet A. van der Nest,
Quentin C. Santana, Emma T. Steenkamp, Brenda D.

Wingfield
*Contact: lieschen.bahlmann@fabi.up.ac.za

IMA GENOME – F 14C
Draft nuclear genome assembly of Chalaropsis populi, the
second genome from the genus Chalaropsis
Introduction
Chalaropsis populi is a soil-borne root-pathogen in the
family Ceratocystidaceae (Paulin-Mahady et al. 2002;
de Beer et al. 2014). The first record of Ch. populi is
from the early 1970’s where it was isolated from the
bark of Populus and Salix spp. in Belgium (Veldeman
1971). This species was referred to as Chalaropsis
populi, but no validly published description ever ap-
peared (Kiffer and Delon 1983). Kiffer and Delon
(1983) subsequently validated the name Chalaropsis
populi, as Chalara populi, but in 2002 this species
was once again redescribed and included in Thiela-
viopsis as T. populi (Paulin-Mahady et al. 2002). Most
recently, the genus Chalaropsis was re-established and
now includes three named species: Ch. ovoidea, Ch.
populi, and Ch. thielavioides, although some evidence
supports the recognition of a fourth taxon (de Beer
et al. 2014).
Species of Chalaropsis are not considered of signifi-

cant ecological or economic importance despite being
predominantly isolated from diseased plant material
(de Beer et al. 2014). The type species of the genus,
Ch. thielavioides, is commonly associated with post-
harvest moulding of carrot (Weber and Tribe 2004;
Milosavljević et al. 2015; Xu et al. 2020), although the
economic impact of the disease is negligible. Chalar-
opsis ovoidea is predominantly isolated from Fagus
trees (and discoloured planks produced from the
wood), but can occasionally be found in Quercus spe-
cies as well (Nag Raj and Kendrick 1976; Kraj and
Kowalski 2005). Chalaropsis populi was originally iso-
lated from brown spots associated with trunk scab
disease in Populus and Salix, prompting its descrip-
tion as a cambium killer (Kiffer and Delon 1983). A
subsequent study also found Ch. populi in combin-
ation with other fungi from diseased roots of Populus
and Euramericana trees, but the authors considered it
a weak pathogen (Szabó and Harrington 2004).
The low level of importance of these pathogens has

resulted in very little research effort focussed on
Chalaropsis species. Nevertheless, the taxonomic posi-
tioning of Chalaropsis as a sister genus to many im-
portant pathogens in the genera Berkeleyomyces,
Ceratocystis, and Endoconidiophora make this group
of interest. A draft genome for Ch. thielavioides was
generated by the RIKEN Center for Life Science
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Technologies, Division of Genomic Technologies, and
is publicly available (GCA_001599435.1) (JCM-Riken
2016). In the current study, a draft genome sequence
for Ch. populi is presented to accompany that of Ch.
thielavioides. It is hoped that the availability of two
genome sequences for Chalaropsis species will sup-
port future studies on comparative genomics, while
also addressing the taxonomic complexities associated
with asexual fungi.

Sequenced strain
Belgium: Gent: Moerzeke Populetum, isol. from necro-
sis in Populus gelrica, 1970, R. Veldeman (CMW 26388,
CBS 486.71, CBS H-10141 - dried culture).

Nucleotide sequence accession number
This Whole Genome Shotgun project for Chalaropsis
populi isolate CMW 26388 has been deposited at DDBJ/
ENA/GenBank under the accession JADILG000000000.

Table 2 Genome statistics for Fusarium sororula and its close relatives

Genome size (Mb) GC content (%) Predicted orfsa Gene density (orfs/Mb) References

F. sororula 47.81 45.99 15,688 327.74 This study

F. fracticaudum 45.80 47.56 14,136 308.67 Wingfield et al. (2018a)

F. pininemorale 47.78 45.98 15,455 323.47 Wingfield et al. (2017)

F. circinatum 45.10 46.97 15,091 334.61 Wingfield et al. (2018b)
aDetermined as described in text

Fig. 2 Maximum Likelihood tree based on the partial gene sequences of translation elongation factor 1-α and β-tubulin (Herron et al. 2015).
Sequence alignments were assembled with MAFFT v 7.472 (Katoh et al. 2019). The program jModelTest v 2.1.10 (Darribo et al. 2012) was used to
determine the best-fit substitution model (GTR + I + G substitution model) with gamma correction (Tavare 1986). A maximum Likelihood (ML)
phylogenetic analysis was performed using PhyML v 3.1 (Guindon et al. 2010). Values at branch nodes are the bootstrapping confidence values
with those ≥85% shown. The F. sororula isolate sequenced in this study is indicated in bold
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The version described in this paper is version
JADILG010000000.

Materials and methods
Chalaropsis populi isolate CMW 26388 was obtained
from the culture collection (CMW) of the Forestry and
Agricultural Biotechnology Institute (FABI) based at the
University of Pretoria and grown on 2% malt extract
agar (MEA: 2% w/v, Biolab, South Africa) at 25 °C for
the duration of the study. Genomic DNA was isolated
from a 14-day old culture grown on a cellophane sheet
using the DNeasy Plant Mini Kit (Qiagen, Germany).
The isolated DNA was sent to the Agricultural Research
Council Biotechnology Platform (ARC-BTP; Pretoria,
South Africa) where it was used to prepare a pair-end li-
brary with an insert size of 500 bp. An Illumina HiSeq
2500 (Illumina, San Diego, CA) was used to generate
125 bp length reads from both ends of the insert.
The raw reads generated were imported and trimmed

(using the Trim Sequences command and default values) in
CLC Genomics Workbench v. 20.0.3 (CLCBio, Aarhus) be-
fore being used in a de novo assembly to generate a draft
genome sequence. The untrimmed paired reads were also
used for read-error correction and assembly with SPAdes v.

3.14.0 (Bankevich et al. 2012) using custom K-values (21, 33,
55, 77), applying the “careful” option to reduce mismatches
and including the CLC-generated scaffolds as untrusted con-
tigs. An estimation of the number of protein coding genes in
the Ch. populi genome was made using the AUGUSTUS de
novo prediction software with Fusarium graminearum gene
models (Stanke et al. 2006a, 2006b; Keller et al. 2011). Gen-
eral genome statistics (genome length, GC content, N50 and
L50 values) for the Ch. populi assembly were calculated
using QUAST v. 5.0.1 (Gurevich et al. 2013), while both this
genome and the Ch. thielavioides JCM 1933 assembly (JCM-
Riken 2016) was assessed for completeness using the Bench-
marking Universal Single Copy Orthologs tool (BUSCO v.
4.0.6) (Simão et al. 2015) using both the Fungi_odb10 and
Ascomycota_odb10 datasets.
The publicly available genome sequence for Ch. thiela-

vioides JCM 1933 was retrieved from the genome reposi-
tory at the National Center for Biotechnology
Information (NCBI) (JCM-Riken 2016). The beta-tubulin
gene was extracted from the draft genome assemblies of
both Ch. populi CMW 26388 and Ch. thielavioides JCM
1933 using CLC Genomics Workbench. These were
used together with published sequences from Ch. ovoi-
dea, Ch. thielavioides, Ch. populi, Ceratocystis adiposa

Fig. 3 A Maximum Likelihood phylogeny based on the beta-tubulin gene from species of Chalaropsis. This analysis confirms the identity of the
genome assembly presented here (shown in bold) as Chalaropsis populi. Interestingly, the publicly available Ch. thielavioides JCM 1933 genome
(Genbank accession: GCA_001599435) grouped in the same clade as Ch. ovoidea. Ceratocystis adiposa and Berkeleyomyces basicola were used as
outgroups, and the results for the approximate likelihood ratio test for branch support are shown as percentages
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and Berkeleyomyces basicola in a phylogenetic analysis
to confirm the identity of the sequenced strains (Fig. 3).
To do this, the one click mode phylogeny online tool
(Dereeper et al. 2008, 2010) that included MUSCLE
alignment (Edgar 2004), curation via Gblocks (Castre-
sana 2000), PhyML steps (Guindon and Gascuel 2003)
and a Maximum Likelihood test for branch support was
used (Anisimova and Gascuel 2006). The tree was rooted
using Ceratocystis adiposa and Berkeleyomyces basicola.

Results and discussion
The draft genome sequence of Ch. populi had a length
of 23,877,278 bp present in 2158 contigs, of which 1398
were larger than 1000 bp. The genome had a GC content
of 52.56%, an average coverage of 81x, a N50 value of
29,267 bp and a L50 value of 239. AUGUSTUS predicted
6654 protein coding genes, while BUSCO analysis re-
ported a completeness score of 96.7 and 98.0% for Ch.
populi for the respective Ascomycota and Fungi BUSCO
datasets. This was based on the analysis of 1706 and 758
orthologs for the Ascomycota and Fungi datasets respect-
ively, where 1650 and 743 were present and complete,
while 48 and 13 copies were completely absent. The
comparative BUSCO analysis for the Ch. thielavioides
JCM 1933 genome assembly indicated a 84.1% (1435
complete and 266 missing BUSCOs) and 85.8% (650
complete and 108 missing BUSCOs) completeness for
the Ascomycota and Fungi dataset.
Phylogenetic analysis using the beta-tubulin gene

from the sequenced genome confirmed the identity of
the isolate as Ch. populi (Fig. 3), although the pub-
licly available genome sequence for Chalaropsis thie-
lavioides JCM 1933 grouped closer to Ch. ovoidea
than known Ch. thielavioides strains. When compared
to the Ch. thielavioides genome, Ch. populi has a
similar genome size (23,8 Mb for Ch. populi vs 23,3
Mb for Ch. thielavioides), although it is more frag-
mented (2158 vs 252 contigs) (JCM-Riken 2016). This
is supported by the N50 values (29,267 bp for Ch.
populi vs 161,617 bp for Ch. thielavioides). However,
the Ch. populi genome was more complete based on
the BUSCO assessments.
The Ch. populi draft assembly is the second genome

sequence available for a Chalaropsis sp. This will support
research efforts aimed at understanding the biology of
these understudied fungal pathogens (Weber and Tribe
2004). For example, all three known species of Chalaropsis
are considered asexual (de Beer et al. 2014), a stark con-
trast to the predominantly sexual species in the Ceratocys-
tidaceae. Much work has been focussed on sexual
reproduction in the family (e.g. Wilken et al. 2017; Nel
et al. 2018; Simpson et al. 2018), and the availability of two
genome sequences for putatively asexual members will be
a valuable addition to this ongoing project. Together with

the Ch. populi sequence, there are now 30 species residing
in Ceratocystidaceae of which the genomes have been se-
quenced and these include representatives of ten genera
(https://www.ncbi.nlm.nih.gov/datasets/genomes/?txid=
1028423&term=Ceratocystidaceae&utm_source=
assembly&utm_medium=referral&utm_campaign=:
assemb). These sequences provide the opportunity to
perform family-level analyses seeking to answer ques-
tions regarding speciation processes, host adaptations,
and comparative genomics. They will also provide a
basis for further functional studies (e.g. Sayari et al.
2019; Wilson et al. 2020) in Ceratocystidaceae.
Authors: Jostina R. Rakoma, Frances A. Lane, P.

Markus Wilken*
* Contact: Markus.Wilken@fabi.up.ac.za

IMA GENOME– F 14D
Draft genome sequence of Chrysoporthe puriensis: the
cause of a canket disease on Eucalyptus and Tibouchina
Introduction
The genus Chrysoporthe accommodates numerous eco-
nomically important pathogens of plantation Eucalyptus
species and other members of Myrtales (Gryzenhout
et al. 2009). These fungi cause serious stem canker dis-
eases, predominantly in tropical and subtropical parts of
the world (Wingfield 2003). Chrysoporthe puriensis was
first reported causing a stem canker disease on Tibou-
china spp. in Brazil (Oliveira et al. 2021). Pathogenicity
tests showed that C. puriensis is pathogenic on the hy-
brid Eucalyptus grandis × E. urophylla, suggesting that
the fungus could threaten commercially-grown Eucalyp-
tus plantations in South America (Oliveira et al. 2021).
Similar to other Chrysoporthe spp. causing stem cankers
on trees, C. puriensis is a potential threat to trees in
Myrtales grown as non-natives for commercial purposes
or where they are native. Countries such as Australia
that has a mega-diverse Myrtales flora are especially vul-
nerable to these relatively wide host range pathogens
(Burgess and Wingfield 2017); as has been seen for the
globally spreading myrtle rust pathogen Austropuccinia
psidii (Glen et al. 2007; Roux et al. 2016).
Genome sequences are available for three species of

Chrysoporthe, which infect Eucalyptus. These include, C.
austroafricana, C. cubensis, and C. deuterocubensis
(Wingfield et al. 2015a, 2015b). The aim of this study
was to sequence and assemble the genome of C. purien-
sis that will enable comparative genome studies focussed
on further understanding the biology of Chrysoporthe
species and to improve disease management strategies
for them.

Sequenced strain
Brazil: Minas Gerais: Silveirânia, Tibouchina granulosa,
2018, M.E.S. Oliveira (CMW 54409).
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Sequence accession numbers
The genome sequence of Chrysoporthe puriensis (isolate
number CMW 54409) has been deposited in DDBJ/
EMBL/GenBank databases under the accession numbers
CP064894 - CP064907.

Materials and methods
Genomic DNA was extracted from freeze-dried myce-
lium of isolate CMW 54409 grown in malt yeast
broth (2% malt extract, 0.5% yeast extract; Biolab,
Midrand, South Africa) using the Qiagen® Genomic-
tip DNA extraction protocol for plants and fungi. To
verify the identification of the isolate, sequencing of
the internal transcribed spacer (ITS) region and the

partial β-tubulin gene (tub1 and tub2) was performed.
The reference sequences were obtained from Gen-
Bank. Amphilogia gyrosa was used as an outgroup.
Sequence datasets were aligned using an online ver-
sion of MAFFT v.7 (Katoh and Standley 2013). A
maximum likelihood analysis was performed using
RAxML (Stamatakis 2014) using the GTR + G substi-
tution model and branch support was calculated using
1000 bootstrap replicates.
Nanopore sequencing was conducted using the

MinION sequencing device. The sequencing library was
prepared using the Genomic DNA by Ligation (SQK-
LSK109) protocol. The library was loaded on a MinION
flow cell (R10.3) and sequencing run was carried out for

Fig. 4 Maximum Likelihood tree based on ITS region and partial gene sequences of but1 and but2. Bootstrap values ≥65% are shown. The
isolates used in this study are indicated in blue and bold
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48 h. Base calling was conducted using ONT Guppy
basecalling software v 4.0.14.
Nanopore reads were trimmed using Porechop (v0.2.1,

https://github.com/rrwick/Porechop). The genome was
assembled using Flye v 2.7 (Kolmogorov et al. 2019).
The assembly was polished using Rebaler v0.2.0 (Wick
et al. 2019), which runs multiple rounds of Racon
v1.4.13 (Vaser et al. 2017) and followed by two rounds
of polishing iterations with Medaka v1.0.3 (https://
github.com/nanoporetech/medaka). Protein coding gene
models were annotated using AUGUSTUS v.3.3 with
Magnaporthe grisea as the model organism (Stanke and
Morgenstern 2005). The assembled genome complete-
ness was evaluated using the Benchmarking Universal
Single-Copy Orthologs tool, BUSCO v. 4.1.3 by using
the fungal lineage dataset (Simão et al. 2015).

Results and discussion
Phylogenetic analysis using three gene regions (ITS,
tub1, and tub2) confirmed the taxonomic identity of iso-
late CMW 54409 as C. puriensis (Fig. 4). The assembly
of C. puriensis consisted of 14 contigs, with the N50 of
4.78Mb and L50 of 5. The calculated genome size was
approximately 44.66Mb and with a CG content of
53.91%. AUGUSTUS predicted 13,166 protein coding
gene models in the assembled genome. BUSCO analysis
using the sordariomycetes_odb10 dataset indicated the
assembled genome to have a 98.3% completeness score.
Of the 3817 BUSCO groups searches, 13 BUSCO ortho-
logs were reported to be fragmented and 54 BUSCO
groups were reported to be missing.
The estimated genome size and gene number for C.

puriensis is similar to that of other Chrysoporthe species:
Chrysoporthe ausroafricana (44.6 Mb, 13,484) (Wingfield
et al. 2015a), C. cubensis (42.6Mb, 13,121) (Wingfield
et al. 2015b), C. deuterocubensis (43.9Mb; 13,772)
(Wingfield et al. 2015b). The draft genome sequence of
C. puriensis generated here will be used for comparative
genomics studies as well as to better understand its,
biology and role as a tree pathogen.. Furthermore, the
genome sequence will be useful for to develop molecular
markers for population studies of the species and to de-
termine its origin and pathways of movement in forests.
Authors: H. Suzuki, T.A. Duong*, M.A. Ferreira, M.J.

Wingfield, B.D. Wingfield
*Contact: Tuan.Duong@fabi.up.ac.za
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