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For the large family Curculionidae, the number of species considered pests is expected to increase due to global 
movement of plant and soil material, as well as climate change. Pheromones are increasingly popular for use 
in pest management programmes, either as stand-alone tactics or with other management tactics. Biological 
differences between Curculionidae species often require species-specific optimization of methodologies 
to successfully collect, identify and integrate pheromones into management programmes. This review aims to 
provide an overview of current knowledge on non-Scolytinae Curculionidae pheromones and their use in strategies 
to manage these insects where they are pests. Throughout, we highlight the importance of understanding the 
chemical ecology of target pests and related species to direct pheromone sampling and the development of 
pheromone-based management tactics. 

Keywords: chemical ecology, Integrated Pest Management, pheromone-baited trap, pheromone development, weevil pheromone

Online supplementary material: Supplementary data for this article are available at https://doi.org/10.2989/20702620.2020.1858204

Southern Forests is co-published by NISC (Pty) Ltd and Informa UK Limited (trading as Taylor & Francis Group)

Introduction

Species in the Curculionidae family are phytopha-
gous as adults or larvae or both. Their feeding on plants, 
predominately fruits, inner phloem and roots, can result in 
economic damage (Tewari et al. 2014; Garnas et al. 2016). 
Management programmes for weevils, and insects in 
general, often incorporate or rely exclusively on behaviour-
modifying semiochemicals in Integrated Pest Management 
(IPM) programmes (Pickett et al. 1997). These programmes 
often target pheromone communication because the high 
level of specificity minimizes non-target impacts (Nadel et 
al. 2012; Larsson 2016). Successful implementation of such 
pheromone-based management tactics, however, relies on 
a thorough understanding of the chemical ecology of target 
pests. 

The first pheromone from species of non-Scolytinae 
Curculionidae was isolated and identified for the boll weevil, 
Anthonomus grandis Boheman, a serious pest of cotton 
in the USA (Tumlinson et al. 1969). The isolation process 
required solvent extraction and distillation of 54.7 kg of frass 
obtained from 4.5 million weevils of mixed sex. Samples 
were fractionated using column chromatography and 

each fraction was screened for behavioural responses in 
laboratory bioassays. Structure elucidations of biologically 
active components were determined by mass spectrometry 
(MS), nuclear magnetic resonance (NMR) and infrared 
spectroscopy (IR). The biologically active male-specific 
boll weevil pheromone was ultimately determined to be 
a multicomponent blend. Although initial field studies 
identified a component ratio of 6:6:1.5:1.5 for optimal 
capture (Tumlinson et al. 1969), subsequent studies 
showed that an adjusted ratio, 3:4:1.5:1.5, with lower 
production costs, did not reduce trap captures (Hedin et al. 
1979). 

The discovery of the boll weevil pheromone stimulated 
studies into the pheromones of many other economically 
important species in the Curculionidae family (Hardie and 
Minks 1999; Ambrogi et al. 2009; Tewari et al. 2014). 
Pheromones have primarily been identified from adults 
(Ambrogi et al. 2009; Tewari et al. 2014). Male-produced 
pheromones are generally aggregation pheromones 
(Ambrogi et al. 2009; Tewari et al. 2014), whereas female-
produced pheromones are usually short-range sex 
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pheromones (Heath et al. 1986; Ravi and Palaniswami 
2002; Cork and Lobos 2003). Non-volatile contact 
pheromones have also been identified from both adults and 
larvae (Mody et al. 1975; Mutis et al. 2009). There have 
been few studies of larval pheromones, most probably 
because of their limited applications in pest management.

To date, pheromones have been identified from 45 
species of non-Scolytinae Curculionidae and some 
of these pheromones are being used in management 
programmes. However, successful elucidation of new 
effective pheromone formulations for species where 
pheromone blends are unknown remains a major challenge. 
In the light of the expected increase of Curculionidae 
pests worldwide (Wingfield et al. 2008), the need for fast 
development of pest management tools is higher than ever. 
Here we review the literature on weevil pheromones and 
identify several lessons learned. Our hope is that this will 
facilitate future weevil pheromone identifications. We also 
review the methods used for pheromone identification and 
consider reasons that may explain why these procedures 
were successful. We exclude the Scolytinae subfamily, as 
their biology and pheromone functionality forms part of a 
specialised group which has been reviewed elsewhere 
(Wood 1982; Gitau et al. 2013).

Weevils are globally important pests

Studies of non-Scolytinae Curculionidae beetle pheromones 
are usually initiated in response to economic loss (Szmedra 
et al. 1991; Palacio-Cortés et al. 2015; Drmić et al. 2017). 
For example, the boll weevil caused severe crop damage 
for years in the USA, despite considerable effort to control 
population levels including the application of systemic 
insecticides that were subsequently banned (Szmedra et 
al. 1991; Haney et al. 2009). Tumlinson et al. (1969) identi-
fied the boll weevil pheromone and a pheromone trapping 
and monitoring system was subsequently developed 
(Hardee et al. 1974; Hedin et al. 1979). An IPM programme 
with systemic and conventional insecticides combined 
with pheromone-based trapping was implemented during 
1987-1990 in Georgia (Haney et al. 2009). In short, insecti-
cides were used to kill most of the boll weevil population 
in one season, and surviving weevils in diapause were 
captured with a single pheromone trap per acre in the 
following season. The effect of this programme was quickly 
evident as yield increased from $482 per acre (average 
between 1971-1986) to $733 per acre (average between 
1991-1995) and acreage increased from 228 000 to 770 
000. In addition, the number of costly insecticide applica-
tions could be reduced by 60% (Szmedra et al. 1991; 
Haney et al. 2009). Reduction of insecticide applications 
also resulted in resumed biological control of other pests 
(Haney et al. 2009). Even though the current dominant 
control strategy of the boll weevil is the use of transgenic 
cotton (Ribeiro et al. 2017), existing boll weevil pheromone-
based applications include lure-and-kill, mass-trapping and 
monitoring which continues to inform decisions on insecti-
cide application (Hardee et al. 1974; Hedin et al. 1979; 
Ambrogi et al. 2009; Haney et al. 2009). 

An extensive range of commodities incur economic loss 
due to damage caused by non-Scolytinae Curculionidae 

including orchard crops, forestry and grain and stored 
products (Supplementary Table 1). The ways in which 
weevils cause damage varies among species. For example, 
adults may damage hosts directly by feeding on phloem 
or bark (Booth et al. 1983), plant roots or foliage (Lapointe 
et al. 2012). Direct damage caused by different life stages 
of the same species may also vary. For example, adult 
weevils may defoliate while larvae feed on roots (Kamiya 
et al. 2015) or internal parts of the same host (Zarbin et al. 
2003; Silva et al. 2018). 

Indirect damage may also occur via weevils that vector 
important plant pathogens (Supplementary Table 1). 
These include palm weevils which vector the nematode, 
Bursaphelenchus cocophilis Cobb., which causes red ring 
disease in palm trees (Giblin-Davis et al. 1997; Alpizar et al. 
2002; Oehlschlager et al. 2002), agave weevils that vector 
a gram positive bacterium, Pseudomonas fluorescens, 
causing petrification of the agave plant (Ruiz-Montiel et 
al. 2003; 2008), and citrus root weevil larvae that create 
galleries which increase host susceptibility to Phytophthora 
infections (Graham et al. 1996). In these scenarios it is 
more cost-effective to control the weevil vectors with the 
objective of preventing, rather than controlling, the diseases 
that they transfer to their hosts. 

More than three-quarters of the weevils for which 
pheromones have been described are borers (35 out of 
43 species). As a group the borers are diverse and include 
fruit-borers (13 out of 43 species), stem-borers (12 out 
of 43 species), pseudostem-borers (7 out of 43 species), 
two ‘borers’, and one legume-borer species. Pheromones 
are also known for one defoliator species, stored product 
weevils (n = 3) and root-feeders (n = 4) (Figure 1, 
Supplementary Table 1).

Weevil biology: impact on identification and 
implementation of pheromones into IPM programmes

The process of identifying pheromones for a new weevil 
species is complex and requires a good understanding of 
the chemical ecology of the target species. In general, the 
life cycle of most Curculionidae involves female oviposi-
tion on the host plant or in the soil. Eggs then develop into 
larvae and these larvae go through a number of instars 
before they are ready to pupate. Pupation occurs either 
in or on the host, or in the soil. In some species, adult 
weevils have a maturation feeding period before mating 
(Ruiz-Montiel et al. 2009) while in others this does not occur 
(Giblin-Davis et al. 2000; Kamiya et al. 2015).

Variations of this life cycle exist (Supplementary Table 
2). For example, the time required for larval development 
can range from as little as five months for the citrus root 
weevil, Diaprepes abbreviatus Linnaeus (Wolcott 1936), 
to up to five years for the large pine weevil, Hylobius 
abietis Linnaeus (Langstrom 1982). The number of larval 
instars may also differ between species. For example, the 
Eucalyptus snout beetle, Gonipterus sp. complex, has four 
larval instars (Tooke 1953), while the citrus root weevil has 
sixteen (Wolcott 1936).

Pheromone-based management tactics target exposed 
life stages (usually adults) and have most commonly been 
developed for species that are exposed for all or a portion 
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of their adult stage (Supplementary Table 2). For example, 
adult grain, maize, bearded and corkwood weevils typically 
move around outside their host plant in search of mates 
and are easiest to target and capture with pheromones at 
this developmental stage (Faustini et al. 1982; Walgenbach 
et al. 1983; Kamiya et al. 2015; Reis et al. 2018). 
However, less than a quarter (12 out of 43 species) of the 
Curculionidae for which pheromones have been described 
are exposed and vulnerable to control measures throughout 
the adult life stage (Supplementary Table 2). The 
potential to use pheromones in weevil IPM and to confirm 
pheromone activity for putative pheromone structures is 
higher in species where adults are exposed than in those 
with concealed adults. Despite this, pheromones have 
been identified and incorporated into IPM programmes for 
several species that are concealed as adults, illustrating 
the potential for pheromone identification and use in weevil 
IPM.

For most weevils, the majority of the life cycle is spent 
concealed within host tissues and consequently protected 
from most control tactics (Supplementary Table 2). Adults 
of some species have periods where they are exposed 
and periods where they are concealed, primarily in host 
tissues (Booth et al. 1983; Phillips et al. 1984; Giblin-
Davis et al. 1996; Illescas-Riquelme et al. 2016; Reis et al. 
2018). Approximately half of the species of non-Scolytinae 
Curculionidae for which pheromones have been described 
are inconspicuous as adults (21 out of 43 species) and 
another nine species are hidden to some extent as adults 
(Supplementary Table 2). These are adults such as the 
sugar beet weevil, Bothynoderes punctiventris, which are 
hidden in the soil during overwintering, and exposed during 
defoliation (Drmić et al. 2017), or cactus weevil adults, 
Metamasius spinaolae, that feed on young stems internally 
or externally (Tafoya et al. 2003).

Pests that develop while concealed within host tissues 
are often not detected until high levels of damage occur 
(Chambers et al. 1996). For example, the banana 

pseudostem weevil adults may live for up to 200 days 
concealed in fallen or rotten banana stems and infestations 
are only noticed from the damage they cause (Ravi and 
Palaniswami 2002) (Supplementary Table 2). Larvae of 
the citrus root weevil also feed while concealed in host 
tissue but can cause severe root damage in as little as five 
weeks (CABI 2019). Sensitive pheromone-based monitoring 
strategies that detect adults may aid in these cases, as 
surveillance or detection of hidden larvae typically requires 
manual inspection which is time-consuming and expensive 
(Chambers et al. 1996; Ravi and Palaniswami 2002; 
Lapointe et al. 2012).

The biology of the weevil being targeted can also affect 
trapping success rates. For example, adults of some 
weevil species require a period of maturation feeding to 
become sexually mature and responsive to pheromone 
signals (Booth et al. 1983). Ideally, pheromone-induced 
behaviours are confirmed in the field, because behaviours 
observed in situ are not always observed in field conditions 
(Hedin et al. 1979). In addition, correct placement of traps 
along environmental gradients and the timing of trapping 
interventions is crucial (Tooke 1953; Hallett et al. 1993; 
Piñero and Prokopy 2003; Reddy et al. 2012; Drmić et al. 
2017). In some cases, the efficacy of pheromone-based 
pest management can also depend on the population 
density of the pest (Alpizar et al. 2002; Oehlschlager et al. 
2002; Drmić et al. 2017).

Larvae of some species may be exposed during 
characteristic behaviours and can be targeted during those 
time windows. For example, citrus root and plum curculio 
weevil larvae crawl on the soil for up to three hours before 
burrowing into it for pupation. Control measures were 
developed to specifically target this larval behaviour, 
although these did not involve the use of pheromones 
(Jones and Schroeder 1983; Akotsen-Mensah et al. 2012).

Developmental time of different life stages varies among 
species and this impacts how control measures should 
be implemented (Supplementary Table 2). For instance, 

Figure 1: Types of host damage caused by non-Scolytinae Curculionidae for which pheromones have been described (n = 43, 
Supplementary Table 1). Borers represent 81% of all the species with known pheromones, and are subdivided into groups including fruit, 
stem, pseudostem and legume borers and a catch-all term of ‘borers’ for weevils that feed on miscellaneous host tissues
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the larvae of the pecan weevil may enter a diapause 
period that lasts up to two years before they develop into 
pupae (Tedders and Wood 1994). Adults of this species 
often emerge synchronously and, within a relatively short 
time-frame of four to six days, mate and lay eggs (Hall 
2018). This results in huge larval populations approximately 
one month later when eggs hatch. Control measures can be 
difficult to implement for univoltine weevil species such as 
these (Simpson et al. 1996), because they emerge in short 
time windows, which are often difficult to predict. Sensitive 
pheromone-based population monitoring strategies have 
been implemented for species like this to aid with timing 
of control activities, and these have had variable rates of 
success (Tedders and Wood 1994).

Polyphagous species can be more difficult and 
expensive to control than monophagous species. The 
citrus root weevil, D. abbreviatus, the plum curculio, 
Conotrachelus nenuphar, the palm weevil, Rhynchophorus 
spp. (Hallett et al. 1993) and the maize weevil, Sitophilus 
zeamais (Walgenbach et al. 1983; Hallett et al. 1993) 
(Supplementary Table 2) are all polyphagous. Control of 
these weevils is difficult because they have multiple hosts 
that can serve as population reservoirs in the vegetation 
surrounding the commodity of interest (Simpson et al. 
1996). Area-wide applications of pheromone-based control 
measures are usually advised in such circumstances 
(Haney et al. 2009; Reddy et al. 2012; Drmić et al. 2017). 
In contrast, weevils that feed on a single host plant species, 
such as the banana weevil Cosmopolites sordidus, can 
be simpler to control because the area treated can be 
restricted to the planted area (Budenberg et al. 1993; 
Rannestad et al. 2011) (Supplementary Table 2). 

Knowledge of the biology of a pest may not be available, 
which complicates predicting when, where and how to 
sample for pheromones. Researchers thus often depend on 
knowledge from other, often related, systems that may not 
be applicable (Giblin-Davis et al. 1996; Ramirez-Lucas et 
al. 1996; Unelius et al. 2013). After the initial pheromone 
identification, the next challenge is the correct formulation 
and presentation of a synthetic pheromone to achieve the 
desired release rate and ratio of components from the lure 
matrix. Lures have to release pheromones in blend ratios 
(Phillips et al. 1989; Hibbard and Webster 1993; Zarbin et 
al. 2003; Unelius et al. 2013) and at rates (Hardee et al. 
1974; Hallett et al. 1993; Piñero and Prokopy 2003) that are 
biologically active for their target species. 

The pheromone identification process

Behaviour guides sampling
Most successful pheromone studies are preceded by 
behavioural studies that confirm or suggest the existence 
of pheromone-mediated behaviours. Some of these 
behavioural studies observe and describe mating behaviour 
in controlled laboratory assays (e.g. Sitophilus granarius 
(Faustini et al. 1982), Cyrtomon luridus (Kamiya et al. 2015) 
and Odoiporus longicollis (Ravi and Palaniswami 2002)). 
Others use bioassays to provide evidence for pheromone-
mediated reproduction. Female O. longicollis have been 
observed to expose their ovipositor, rub it on a surface, 
and knock on the substrate with their rostrum (Ravi and 

Palaniswami 2002). In response, conspecific males were 
observed to lift their heads, extend their antennae and 
move rapidly towards the calling female; probe females 
with their antennae and mount them (Ravi and Palaniswami 
2002). This sexual interaction implies the existence of a 
female-produced sex pheromone. Pheromone-mediated 
mate location has also been demonstrated with field 
trapping tests. For example, traps baited with males or 
females can be used to demonstrate pheromone-mediated 
mate location and which sex is responsible for pheromone 
production.

If behaviours are reproducibly associated with pheromone 
production, this can facilitate sampling (Patrock 1986; 
Roseland et al. 1990). For example, the timing of collection 
of pheromones from guava weevil males was facilitated 
through observation that mounting behaviour only occurs 
at night (Zarbin et al. 2007; Palacio-Cortés et al. 2015). 
Similarly, pheromone production periodicity was identified 
for red pine weevils, which were investigated for pheromone 
presence multiple times throughout the year. In this study, 
pheromone production was shown to be seasonal and 
pheromone was only isolated during spring and summer 
when females were sexually mature (Booth et al. 1983).

In addition to providing evidence for pheromone-
mediated behaviours, preliminary bioassays can elucidate 
functionality (sex, aggregation). For example, the angle 
of approach toward an odour source has been used to 
discriminate between sex (approach from the back leading 
to mounting and copulation) and aggregation (approach 
from the side, no mounting and copulation) functions 
(Collins 1996; Ravi and Palaniswami 2002; Zarbin et al. 
2007; Kayima et al. 2015). They can also facilitate the 
development of bioassays critical to demonstrating activity 
of identified putative pheromones (Palacio-Cortés et al. 
2015).

In some species, adult weevils must feed to become 
sexually mature and produce pheromones. When a study 
is initiated, it is not always known if maturation feeding is 
required for such pheromone production. Similarly, in 
some species mating status can influence production 
and response to pheromone (Dickens and Wiygul 1987; 
Piñero et al. 2001). Previous studies have used both 
mated and unmated weevils for pheromone sampling. 
For example, red pine (Booth et al. 1983), plum (Eller and 
Bartelt 1996) and New Guinea sugarcane weevils (Giblin-
Davis et al. 2000) were sampled for pheromone as virgins 
(Supplementary Table 3). Virgin male pecan weevils, 
Curculio caryae, were found to produce pheromone 
when they mount virgin females (Hedin et al. 1997). In 
contrast, boll weevil, A. grandis pheromone production 
was diminished when females were present in a sampling 
chamber (Dickens and Wiygul 1987). In other studies, both 
mated and virgin male maize weevils were determined to 
produce the same amount of pheromone (Walgenbach et 
al. 1983).

Although knowledge of beetle age and mating status 
can be critical to successful pheromone sampling (Giblin-
Davis et al. 2000; Azuara-Domínguez et al. 2013), 
field-collected weevils of unknown physiological state 
and age are often used for sampling (Oehlschlager et al. 
1995) (Supplementary Table 3). This was done for weevils 
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including banana (Budenberg et al. 1993), cactus (Tafoya 
et al. 2004), and cranberry weevils (Szendrei et al. 2011). 
Sampling beetles from different developmental stages or in 
large cohorts may improve the likelihood of having some 
individuals of the correct physiological state to produce 
pheromone during the sampling process. Alternatively, 
beetles can be reared in captivity in order to know their 
exact age and mating status (Ehounou and Ouali-N’goran 
2018). However, development of laboratory rearing 
techniques can be time-consuming and is not always 
successful (Ambrogi et al. 2012). 

Behaviours that potentially suggest the utilisation of 
pheromones can be observed in the field. For example, 
it was observed that male red sunflower seed weevils, 
Smicronyx fulvus LeConte, were always present on 
sunflowers before females. This suggested that males may 
use volatile chemicals to attract females to sunflowers for 
mating (Roseland et al. 1990). Rhyncophorus cruentatus 
was observed to aggregate on newly painted cars (Bare, 
1929, as cited in Giblin-Davis et al. 1996). One potential 
explanation for this behaviour was that R. cruentatus has 
pheromone-mediated aggregation and the paint contained 
volatile constituents that mimicked the aggregation 
pheromone. This hypothesis was later confirmed when the 
aggregation pheromone was identified and aggregations 
induced with synthetic pheromone and host volatiles 
(Weissling et al. 1994; Giblin-Davis et al. 1996).

Pheromone production may occur only under 
specific conditions, and these can vary among species 
(Supplementary Table 3). For example, pheromone 
production may be dependent on the presence of 
appropriate host plant material, as in the case of guava 
(Zarbin et al. 2007) and agave weevils (Ruiz-Montiel et 
al. 2003). In these species, host-derived precursors may 
be necessary for pheromone biosynthesis, as previously 
observed in other Curculionidae (Hughes 1974; Byers 1981; 
Jurenka 2004).

As in bark beetles (Borden et al. 1969; Vanderwel 1994), 
weevil pheromone production is suspected to be hormone 
regulated. The regulation of pheromone biosynthesis is 
not fully understood, as only a few studies have been 
conducted in this field for non-Scolytinae Curculionidae. 
Increased production of pheromone constituents has been 
shown in S. humeralis (Imrei et al. 2017) and A. grandis 
(Hedin et al. 1982) upon topical treatment with juvenile 
hormone III (JHIII), with 20 and threefold increases, 
respectively. 

Weevils do not always produce pheromones during 
sampling, and it is not always clear why. For example, a 
comprehensive study of variation among agave weevil 
males manipulated photoperiod, male age, the presence 
of host material and starvation to test the hypotheses that 
these were factors affecting pheromone release by males 
(Ruiz-Montiel et al. 2009). These factors could not explain 
why there were always some males that did not produce 
pheromone.

There are examples where pheromones of 
non-Scolytinae Curculionidae were successfully isolated 
and identified without knowledge of mating behaviour 
(Oehlschlager et al. 1995; Palacio-Cortés et al. 2015). In 
these studies, GC-EAD analyses of dynamic headspace 

extracts of field-collected Rhynchophorus bilineatus 
(Oehlschlager et al. 1995) and Conotrachelus psidii weevils 
(Palacio-Cortés et al. 2015) observed responses to single 
chromatographic peaks. These peaks were identified as 
4-methyl-5-nonanol and papayanol and behavioural assays 
confirmed activity in each species. Such cases are the 
exception rather than the rule. 

Pheromone identification
Various methods of sampling have been used for species 
of non-Scolytinae Curculionidae. Samples are generally 
screened with electrophysiological (e.g. GC-EAD) assays 
to identify putative pheromone components, the activity of 
which must be subsequently confirmed behaviourally. Most 
pheromone identification methods are general for insects 
(Supplementary Appendix 1), but some aspects of the 
pheromone identification process are specific to non-Scolyt-
inae Curculionidae. For example, antennal preparations from 
species in the Curculionidae often give noisy signals (Branco 
et al. 2019), therefore, true responses are often difficult to 
detect. Different antennal preparation methods have been 
explored to reduce noise in signals. The recording electrode 
is generally attached to the club-shaped terminal tip of the 
antenna, and a grounding electrode is attached to the base 
of the antenna. In some studies, authors pierce the antennal 
tip with the recording electrode (Chambers et al. 1996; 
Giblin-Davis et al. 1997) and in others they simply touch the 
recording electrode to the tip of the antenna (Van Tol and 
Visser 2002). Sometimes it is necessary to remove the distal 
part of the flagellum to expose the neurons in the antenna 
to improve the signal to noise ratio (Unelius et al. 2013). 
The antennae can be cut near the scape (Giblin-Davis et al. 
1997) or pedicel (Budenberg et al. 1993) or the grounding 
electrode can be coupled by inserting it through the ventral 
surface of the insect head (Chambers et al. 1996; Unelius 
et al. 2013). At the processing level, the signal-to-noise 
ratios can be enhanced with analysis algorithms (Slone and 
Sullivan 2007). 

Once putative pheromone structures have been 
identified, behavioural activity must be demonstrated 
with laboratory and/or field bioassays (Supplementary 
Table 4). In addition to confirming behavioural activity, 
these trials often determine the impact of component 
ratios (Supplementary Table 4). These bioassays can 
also demonstrate the biological function of the identified 
pheromone (Supplementary Table 4), although this 
might already be known if behavioural studies preceded 
pheromone identification. 

Laboratory bioassays have the advantage of often being 
easier to implement and less expensive than field bioassays 
(Hedin et al. 1979). For the same reasons, they often do 
not accurately reflect natural conditions and results can be 
artefacts of laboratory conditions. Despite the increased 
logistical challenges and expense, field-based pheromone 
bioassays have been more common than laboratory-based 
assays for species of non-Scolytinae Curculionidae. Some 
of the challenges associated with field bioassays include 
weather and variation in population densities. Like all 
insects, weevils are exotherms and rainy or cold weather 
usually leads to decreased weevil activity, which may 
result in low capture numbers in pheromone-baited traps 
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(Eller et al. 1994). In addition, weevil population densities 
often fluctuate from one year to the next. Even though the 
same fraction of a population may be captured in different 
seasons, the number of weevils captured may differ due 
to differences in population densities (Alpizar et al. 2002; 
Walgenbach and Burkholder 1986). These fluctuations 
can be confounded by the effect of trap colour, design or 
placement on weevil behaviour, and together may lead to 
incorrect conclusions (Heuskin et al. 2011). 

In addition to abiotic factors that challenge the success 
of field bioassays, several programmatic considerations 
can have significant impacts on field studies. For example, 
the absence of an effective trap design can result in field 
bioassays providing false negatives (i.e. no attraction to 
correctly identified pheromone compounds). The optimal 
trap design depends on the target species and how they 
interact with the trap (Laurent and Frérot 2007; Piñero et al. 
2011; Silva et al. 2018). Knowing the behaviour of the target 
pest can therefore help with the selection and development 
of trap designs. For example, the trap developed for the rice 
weevil, Sitophilus oryzae, exploits its tendency to hide or 
crawl into enclosed spaces (Trematerra and Girgenti 1989). 
A floor trap was developed from corrugated cardboard with 
a central hole from which pheromones and host volatiles 
are released and into which beetles can crawl (Trematerra 
and Girgenti 1989). An added advantage of this trap design 
is that captured weevils are not killed and also release 
pheromone, which enhances trap performance (Trematerra 
and Girgenti 1989).

Various elements of trap design can influence captures of 
target insects. Black and green pyramidal traps consistently 
captured more plum curculio weevils than white, yellow or 
clear traps of the same shape (Leskey 2006). Similarly, 
pecan weevils, C. caryae, were more attracted to brown 
than white pyramidal traps (Tedders and Wood 1994), 
and yellow sticky traps were consistently more attractive 
to cranberry weevils, A. musculus, than white sticky traps 
(Silva et al. 2018). In terms of trap shape, pyramid-shaped 
traps were superior for plum curculio weevil capture than 
cylindrical traps (Leskey 2006), and sticky traps were best 
for cranberry weevils, A. musculus (Silva et al. 2018). 
How weevils interact with the trap can also be significant. 
Some species prefer to enter traps through holes at the 
top (El-Shafie and Faleiro 2017), and others through 
holes in the bottom (Van Tol et al. 2012; Silva et al. 2018). 
Horizontal and vertical orientation of traps has also been 
shown to affect capture rates of the strawberry blossom 
weevil, A. rubi (Innocenzi et al. 2001).

Trap placement both relative to other traps (i.e. intertrap 
distance) and along environmental gradients can influence 
field bioassays. The odour plumes of traps that are too 
close together will coalesce downwind and consequently 
adjacent traps may interfere with each other. For example, 
plum curculio weevils, C. nenuphar, seemed to avoid each 
other due to confusion in high pheromone concentrations 
when traps were placed 1 m apart, but not when traps were 
10 m apart (Piñero and Prokopy 2003). 

Trap location along both horizontal and vertical 
gradients can also influence trap captures. The underlying 
mechanisms for these gradient effects include resource 
availability, microclimate and interspecific interactions. If 

the effects of horizontal and vertical gradients on weevil 
distribution are unknown, randomisation of traps along 
gradients can avoid biased results (Piñero et al. 2001; 
2003). Effects of gradients on weevil distribution can be 
exploited in IPM programmes. For example, traps can be 
concentrated in areas along gradients with high weevil 
activity to optimise the sensitivity of monitoring programmes 
(Trematerra and Girgenti 1989). 

Timing of trap deployment may depend on seasonal 
progression that may change how weevils respond to 
pheromone signals. For instance, mated female maize 
weevils, S. zeamais, are less responsive to pheromone. 
This could result in decreased trapping efficiency when 
more mated females are in the environment later in 
the season (Walgenbach et al. 1983; Walgenbach and 
Burkholder 1986). The sex ratio of captured strawberry 
blossom weevil, A. musculus, varies seasonally (Innocenzi 
et al. 2001). In contrast, the activity of plum curculio (C. 
nenuphar) pheromone lures was independent of host fruit 
development, mating status, and density of mated females 
in the vicinity (Piñero et al. 2001; 2003). Consideration of 
the impact of these factors on trap capture can facilitate 
programme optimisation and interpretation of results. 

The amount and ratio of components released from lures 
can affect weevil captures in field bioassays (Hardee et al. 
1974). The natural release rate of pheromone from an adult 
weevil ranges among species, from as low as 2.8 ng/male/
day for A. musculus (Szendrei et al. 2011) to as high as 
6 µg/male/day for A. rubi (Innocenzi et al. 2001). It may be 
necessary to adjust release rates of synthetic pheromone 
from traps, either to make pheromone release last longer 
between lure replacements (Hardee et al. 1974), or to 
enhance capture efficiency. To reduce the release rate, 
pheromones have been diluted with mineral oil (Eller et 
al. 1994; Piñero et al. 2001), and higher release rates can 
be created by using more than one dispenser on a trap. 
However, trap captures can be reduced if release rates 
become too high (Ravi and Palaniswami 2002; Piñero 
and Prokopy 2003). Often the most effective lures release 
pheromone consistently and at low rates [<10 mg/day] 
(Hardee et al. 1974; Heuskin et al. 2011) even though 
these rates may be orders of magnitude higher than natural 
release rates from weevils. For example, Giblin-Davis et al. 
(2000) used high density polyethylene in black buckets that 
released 3 mg of pheromone per day. Ruiz-Montiel et al. 
(2008) used polypropylene microcentrifuge tubes with two 
or three pinholes in the caps and they released pheromone 
at a rate of 2.6 to 3 mg/day. 

When the ratios of pheromone components are similar 
between closely-related species of non-Scolytinae 
Curculionidae (i.e. major pheromone components do not 
differ), inter-specific attraction can occur. For example, 
even though the amount of pheromone released by pepper 
weevil males, A. eugenii, is approximately three times 
greater than that released by boll weevil males, A. grandis 
(Tumlinson et al. 1969), their similar blend compositions 
causes interspecific attraction to the same pheromone 
blend (Eller et al. 1994). In this case, both species are 
considered pests, making the interspecific capture a 
welcome occurrence. A similar trend was also seen in 
Sitophilus species, where rice and maize weevils, S. oryzae 
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and S. zeamais, are attracted to the same pheromone 
components in very similar blend ratios (Walgenbach et 
al. 1983). Because high release rates often increase trap 
captures, pheromone dispensers usually have higher 
release rates than calling insects (Allison and Cardé 2016). 

Release of component ratios from lures that differ from 
those released by weevils can result in skewed sex ratios 
or failure of trapping programmes (Ramirez-Lucas et al. 
1996). For example, pure 2S,3R-sitophilate is less attractive 
to the grain weevil, S. granarius than natural extracts from 
conspecifics (Faustini et al. 1982). This was due to the 
absence of another pheromone component that was yet to 
be identified (Phillips et al. 1989; Chambers et al. 1996). 
The inclusion of a positive control (i.e. live weevils) can 
facilitate quantification of how much the sex ratio is skewed 
with synthetic attractants (Mitchell and Hardee 1974; Hallett 
et al. 1993).

Some compounds are sensitive to environmental 
conditions and may degrade during trials. Researchers 
have developed several strategies to prevent this from 
happening. For example, inverted green plastic cups 
were used to protect grandisoic acid in plum curculio, C. 
nenuphar, pheromone lures from UV radiation and rain 
(Piñero and Prokopy 2003). Similarly, the use of white, 
rather than non-attractive low-density polyethylene vials as 
lure dispensers for trapping of plum curculios, C. nenuphar, 
have been reported to minimise the UV radiation and 
polymerisation of benzaldehyde (Piñero et al. 2001; 2003). 
Antioxidant UV absorbers like TinuvinTM and SongsorbTM are 
also used in commercial insect traps to protect pheromones 
from degradation, although we are not aware of examples 
where these or similar products have been used in research 

or operational trials targeting non-Scolytinae Curculionidae. 
Pheromone components within a blend may also interfere 
with the stability of other components. Strawberry blossom 
weevil, A. rubi, pheromone lures contain aldehyde 
components which cause formation of alcohol breakdown 
products that can alter the pheromone blend (Innocenzi et 
al. 2001). These scenarios have to be considered when 
choosing the appropriate pheromone release device for 
field-based pest management applications. 

Pheromones in weevil IPM

Several pheromone-based tactics exist and these 
are integrated into IPM strategies, often with other 
non-pheromone tactics. Pheromone-mediated tactics can 
be grouped based on how they affect pest populations. 
Direct pheromone-based management tactics directly 
affect weevil population levels. Indirect tactics do not 
impact population levels, rather they are used to synchro-
nise the timing and/or necessity for other tactics that do 
impact population levels (e.g. insecticide applications). 
Direct pheromone-based tactics include mass-trapping, 
mating-disruption or lure-and-kill/infect, whereas the use 
of pheromones for survey and detection is an indirect 
application.

Mass-trapping and monitoring are the most common 
applications of pheromones in weevil IPM programmes. 
Pheromone monitoring tactics are often used to inform 
insecticide applications (Blight and Wadhams 1987; 
Phillips et al. 1989; Palanichamy et al. 2011) (Figure 2, 
left). Lure-and-infect applications are more common in 
recent literature, and involve a pheromone-baited lure to 

Figure 2: Development of pheromone-based pest management tactics for non-Scolytinae Curculionidae pests for which pheromones have 
been described (n = 43, Supplementary Table 1). Integrated pest management (IPM) methods imply that pheromones are used together with 
insecticide or biocontrol. ‘Unknown’: studies where pheromone communication has been proven, but pheromones have not been reported as 
successful attractants in field trials. Mass-trapping implies effective capture and control with only pheromone-baited traps without a reported 
necessity of using other control mechanisms. Studies were classified as ‘Research’ if they did not mention current application of pheromone 
traps in commercial plots
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attract insects to a capture and release trap where they 
are inoculated with an infectious biocontrol agent (Padilla-
Cubas et al. 2010; Lapointe et al. 2012) (Figure 2, left).

Mass-trapping,lure-and-kill, and lure-and-infect
Pest management tactics such as mass trapping, lure-and-
kill, and lure-and-infect use attractants (often from more 
than one modality) to increase the density of a target pest 
in an area to facilitate control (e.g. in a trap) (Cork 2016). 
Olfactory attractants are by far the most widely used and 
among these, host volatiles and pheromones are the 
most common. Pheromones have the advantages of high 
specificity, low dose requirements to attract target species, 
and being non-toxic to nontarget organisms (Cork 2016). 
The main difference between these three tactics is how the 
target pest is controlled (killed). Mass trapping kills target 
insects by confining them in a trap where they are either 
exposed to a toxin, drowned, or expire from heat exhaus-
tion or dehydration. Lure-and-infect techniques attract 
insects to a location (often a trap) where they are inoculated 
with a pathogen and subsequently released or allowed 
to escape. Ideally after release or escape these insects 
spread inoculum to conspecifics and initiate an epizootic. 
The lure-and-kill tactic differs in that it does not require a 
trap and insects are attracted to a substrate that contains 
a traditional killing agent (e.g. a synthetic insecticide in 
studies on R. ferrugineus and R. palmarum (Oehlschlager 
et al. 2002; El-Shafie and Faleiro 2017) or another chemical 
such as anti-freeze (Silva et al. 2018)). As with other tactics, 
these techniques can be successful without killing attracted 
insects if they prevent or delay mating (Cork 2016).

Pheromone-based mass-trapping aims to capture as 
many individuals as possible to reduce total pest population 
levels. Capture of females is preferred because in most 
insects, males are able to mate multiple times. When 
pheromone lures only attract males, trapping efforts may 
have no effect on population levels in the next generation 
despite the capture of large numbers of males, especially 
when males mate more than once and fertilise multiple 
females and females lay large clutches of eggs (Innocenzi 
et al. 2001; Kamiya et al. 2015). For example, the female 
sex pheromone of the sweet potato weevil, C. formicarius, 
can attract many males (Yasuda 1999), but this does 
not reduce population levels in subsequent generations 
(Yasuda 1995). In cases such as this, pheromone-trapping 
would be more successful as an indirect monitoring 
strategy.

The lure-and-infect tactic was attempted for the banana 
weevil, C. sordidus (Tinzaara et al. 2007) in a study in 
which two treatments were compared. The blank treatment 
involved manual application of an entomopathogenic 
fungus, Beauveria bassiana, onto field-collected weevils 
which were later released in the infested plot. This fungus 
was previously shown as an effective killing agent of 
weevils in a lure-and-kill trial (Tinzaara et al. 2005). For 
the other treatment, weevils were lured with pheromone 
into specialised infection traps, which were laced with 
the same fungus. Infected C. sordidus weevils were then 
allowed to escape from these traps in order to spread the 
entomopathogen among other banana weevils. The number 
of dead and living weevils with and without mycosis were 

counted two weeks later from surrounding areas. Results 
showed that manual fungus applications were significantly 
less effective than pheromone-baited infection traps at 
infecting and ultimately killing weevils (Tinzaara et al. 2007). 
Similar traps were also developed for sweet potato weevils, 
C. formicarius (Yasuda 1999) and citrus root weevils, D. 
abbreviatus (Rivera et al. 2017).

Mass-trapping has been used in individual weevil infested 
plots (Alpizar et al. 2002; Oehlschlager et al. 2002). 
However, area-wide efforts are preferred for maximal effect 
because they minimise the risk of re-infestation from nearby 
crops where trapping has not been implemented (Haney et 
al. 2009; Reddy et al. 2012; Drmić et al. 2017). As many as 
1 800 acres of surrounding crops were identified as being 
at risk if one plot remained untreated in an area-wide study 
of the boll weevil (Haney et al. 2009). Mass-trapping can be 
improved when kairomones that synergise the response to 
pheromone are used in conjunction with pheromone traps 
(Perez et al. 1997; Marques et al. 2011; Vera et al. 2016).

Due to the considerable investment of resources involved 
in pheromone-based mass trapping this tactic is not used 
as a preventative tactic. Rather its use is usually triggered 
by monitoring and in conjunction with other tactics. For 
example, high weevil population densities indicated 
by pheromone-baited traps initiated mass-trapping for 
R. obscurus (Reddy et al. 2011; 2012). Similarly, after 
treatment of A. grandis infestations with insecticides, 
pheromone-based mass trapping has been used to try to 
remove any remaining females (Haney et al. 2009).

Mating disruption
Mating disruption is the most widely used pheromone-
based direct control tactic for insects. In the majority of 
cases, mating disruption is used in conjunction with other 
tactics as part of an IPM programme (Witzgall et al. 2010). 
The most successful applications of this tactic typically 
involve systems where the mechanisms of how mating 
disruption occurs (i.e. how mating is disrupted) have been 
identified and are then exploited (Miller et al. 2006a; Miller 
and Gut 2015). Multiple mechanisms exist and probably act 
together to disrupt mating (Cardé and Minks 1995; Cardé 
2007). Factors that influence the prevalence of particular 
mechanisms include pheromone formulation, the method of 
pheromone release, and the biology and behaviour of the 
target pest (Evenden 2016).

Mating disruption can occur through either competitive 
(false-trail following) or non-competitive (camouflage 
or sensory imbalance) mechanisms. Models of mating 
disruption make different predictions depending on 
the mechanisms involved (Evenden 2016). In general, 
models predict that under competitive attraction (false-trail 
following), mating disruption will increase non-linearly 
with dispenser density and that complete interruption 
of mate-finding is not possible (Miller et al. 2006b). They 
also predict that mating disruption by competitive attraction 
is affected by target pest population density, and that 
the effect is stronger the less competitive lures are with 
live insects (Barclay and Judd 1995; Miller et al. 2006b; 
Byers 2007). Conversely, models of mating disruption by 
non-competitive mechanisms predict that mating disruption 
is independent of target pest population density. When 
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camouflage is the non-competitive mechanism, mating 
disruption is hypothesised to be optimised by pheromone 
blends that most closely resemble the pheromone blend 
released by conspecifics (Cardé 1990). When sensory 
imbalance is the mechanism, models predict that the 
efficacy of mating disruption will increase with pheromone 
release rate from dispensers (Barclay and Judd 1995; Miller 
et al. 2006a). Miller et al. (2006b) tested model assumptions 
with available literature and suggested that competitive 
attraction is the primary mechanism of mating-disruption for 
moths.

The available literature on mating-disruption in weevils 
is limited. Rhizome weevil males, O. longicollis, displayed 
confused behaviour (i.e. males exhibited courtship among 
themselves, not towards females) when they were exposed 
to high doses of the sex pheromone (Ravi and Palaniswami 
2002). This suggests that the sensory imbalance 
mechanism may contribute to mating-disruption of rhizome 
weevils. In contrast, host-synergised pheromone traps for 
S. oryzae (Trematerra and Girgenti 1989) and A. eugenii 
weevils (Eller et al. 1994) showed superior attractive power 
compared to wild calling conspecifics. We hypothesise 
that these traps may be able to disrupt mating in a 
competitive mating disruption mechanism, but this requires 
investigation. 

Monitoring
The most common application of pheromones in IPM 
is for survey and detection. These applications include 
seasonal phenology and population estimation, decision 
support and early detection and delimitation of invasive 
species (Suckling 2016). Decision support applications 
require thresholds for decisions on management interven-
tions and often these are not available. The plum curculio, 
C. nenuphar, has been monitored in apple (Piñero and 
Prokopy 2003) and peach (Johnson et al. 2002; Leskey 
and Wright 2004; Akotsen-Mensah et al. 2010) orchards, 
where the optimal blend of synergistic host and pheromone 
volatiles, best trap type as well as economic thresholds 
were investigated. Optimal sensitivity is essential due to the 
high risk of large infestations resulting from even a small 
number of emerged adults. For example, the pepper weevil, 
E. eugenii, can lay up to 300 eggs in its lifetime of up to 3.5 
weeks (Capinera 2014), and the citrus root weevil female, 
D. abbreviatus, can lay up to 29 000 eggs in its lifetime of 
three to four months (Mannion et al. 2003).

As in mass trapping, lure-and-kill, lure-and-infect and 
mating disruption (depending on the mechanism), lure 
efficacy is critical to programme success. Typically, the 
optimal blend mirrors the ratio of components released by 
the insect (Tewari et al. 2014). Due to differences in the 
molecular weight and polarity of pheromone components, 
the ratio found inside the insect does not always reflect 
that which is released. Additionally, some species 
store compound precursors in the gland which undergo 
conversion to bioactive compounds as they are released 
(Teal and Tumlinson 1986). As mentioned previously, 
trap design can also influence the capture and retention 
of insects (Allison and Redak 2017) and must also be 
optimised.

Conclusions

Pheromones have significant potential for use in the IPM 
of weevil pests. When pheromone-based lures are used 
correctly, superior pest management can be achieved, even 
if adult weevils are only exposed to the environment during 
brief intervals in their life cycles. The process of pheromone 
development is, however, difficult and requires in-depth 
knowledge of the chemical ecology of a target pest. This 
paper considered the available literature and identified 
several factors that can influence the identification and 
implementation of pheromones in weevil IPM programmes, 
including the unique factors that influence production and 
responsiveness toward correctly identified pheromone 
constituents, presented in the correct ratio to individual 
weevil species. The outlined procedures in this review could 
guide future investigations to facilitate faster identification 
and development of pheromone-based pest management 
practices.
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