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Abstract: Oomycetes form a distinct phylogenetic lineage of fungus-like eukaryotic microorganisms,
of which several hundred organisms are considered among the most devastating plant pathogens—
especially members of the genus Phytophthora. Phytophthora spp. have a large repertoire of effectors
that aid in eliciting a susceptible response in host plants. What is of increasing interest is the
involvement of Phytophthora effectors in regulating programed cell death (PCD)—in particular, the
hypersensitive response. There have been numerous functional characterization studies, which
demonstrate Phytophthora effectors either inducing or suppressing host cell death, which may play
a crucial role in Phytophthora’s ability to regulate their hemi-biotrophic lifestyle. Despite several
advances in techniques used to identify and characterize Phytophthora effectors, knowledge is still
lacking for some important species, including Phytophthora cinnamomi. This review discusses what the
term PCD means and the gap in knowledge between pathogenic and developmental forms of PCD in
plants. We also discuss the role cell death plays in the virulence of Phytophthora spp. and the effectors
that have so far been identified as playing a role in cell death manipulation. Finally, we touch on the
different techniques available to study effector functions, such as cell death induction/suppression.
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1. Introduction

Pathogens within the oomycete genus Phytophthora are among some of the most
destructive plant pathogens globally, causing disease and significant losses in important
agricultural and forestry crops, damaging the environment, as well as impeding attempts
to mitigate climate change [1–4]. One of the more well-known incidences of Phytophthora
disease is the Irish Potato Famine in 1845. This incident was caused by Phytophthora
infestans—the causal agent of late blight of potatoes. The disease resulted in the death of
half of the potato crop that year and about three-quarters of the crop over the next seven
years [3,5]. Other Phytophthora spp., which cause significant impact worldwide, include the
causal agents of sudden oak death in California (Phytophthora ramorum), stem rot of soybean
(Phytophthora sojae), black shank of tobacco Phytophthora nicotianae), phytophthora root rot
of avocado and jarrah dieback of trees in the Jarrah Forest, both caused by Phytophthora
cinnamomi [3,6,7]. Despite the economic and ecological relevance of P. cinnamomi, the
mechanisms this pathogen utilizes to infect and successfully colonize its hosts are still
largely unknown. P. cinnamomi is known to infect plants that are important for agriculture
and forestry, with the most significant food losses occurring in avocados. There is little to
no knowledge on how P. cinnamomi, a hemi-biotrophic pathogen, maintains a biotrophic
lifestyle early in the infection and a necrotrophic lifestyle later in the infection.

Pathogenic lifestyles are centered around feeding on host tissue, where success is
dependent on the pathogen’s ability to overcome host defenses. One host defense strategy
Phytophthora spp. must evade to sustain their biotrophic phase is the hypersensitive
response (HR). The HR is a form of programed cell death (PCD) and is generally the last
resort in a host plant’s defense response against a pathogen. The response involves the

Microorganisms 2022, 10, 1139. https://doi.org/10.3390/microorganisms10061139 https://www.mdpi.com/journal/microorganisms

https://doi.org/10.3390/microorganisms10061139
https://doi.org/10.3390/microorganisms10061139
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com
https://orcid.org/0000-0001-7896-5150
https://orcid.org/0000-0001-9574-7331
https://doi.org/10.3390/microorganisms10061139
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com/article/10.3390/microorganisms10061139?type=check_update&version=2


Microorganisms 2022, 10, 1139 2 of 20

localized death of cells surrounding the initial site of infection to inhibit the spread of the
pathogen. Later in the infection, the HR is favored during the necrotrophic phase. Studies
have shown that Phytophthora spp. manipulate the host plant’s cell death machinery to
elicit a susceptible outcome [8,9].

Phytophthora spp. harbor a distinct set of genes involved in moderating host–pathogen
interactions [10]. These genes encode effectors—small, secreted proteins—that interfere
with host defense processes. There are two groups of effectors, cytoplasmic and apoplastic
effectors, which are classified by where in the host cell they act. The most well-studied
classes of Phytophthora cytoplasmic effectors are Crinklers (CRNs) and RxLRs (Arg-x-Leu-
Arg, where x is any amino acid) [4]. Research into Phytophthora effectors has greatly
expanded due to the availability of genomic and transcriptomic data, allowing for the
prediction of putative effector homologs in Phytophthora spp. [11]. These valuable tools—
followed by functional characterization techniques, such as transient transformation in
model plants—allow for the identification of effectors that may play crucial roles during
infection. However, little genomic research has been conducted on P. cinnamomi, which
leaves a gap in knowledge on the mechanisms employed by this pathogen to successfully
infect and cause disease in economically and ecologically important plants.

Due to their economic impact, Phytophthora spp. are some of the most studied among
oomycetes [4,12]. There is, however, still limited knowledge on the mechanisms utilized to
regulate cell death in host plants. It is likely these processes are determined by the delivery
of functionally distinct pathogen effectors into the host cell [13]. In this review, the role of
Phytophthora effectors in host cell death induction and suppression is discussed by reporting
on forms of cell death, recent studies of Phytophthora effectors involved in host cell death
and technological advances, which have aided in the identification and characterization of
effectors.

2. Programed Cell Death in Host Plants

Plants are immobile organisms and have had to develop morphological, biochemical
and physiological adaptations to survive in their environment. PCD is an important
mechanism for plant development or defense and can be triggered by both abiotic and
biotic stressors [9,14,15]. PCD is described as a genetically controlled process where selected
cells are eliminated through a coordinated multi-step fashion [15]. This phenomenon is of
considerable importance in agriculture because PCD can significantly affect plant health
and subsequent yield [16,17]. Therefore, it is important to understand both the triggers and
the pathways through which PCD is elucidated.

2.1. Classification of PCD

There has been some confusion regarding how different forms of PCD should be
classified and how terminology should be standardized. Cell death is classified based on
the morphological characteristics and, as a result, two major classes of PCD are proposed to
occur in plant biology [14]. Class one is vacuolar cell death, which involves the engulfment
of the cytoplasm by lytic vacuoles, uptake and degradation of portions of the cytoplasm
in the vacuolar lumen and, finally, rupture of the tonoplast followed by a massive release
of vacuolar hydrolases. This results in the rapid destruction of the entire protoplast—a
cell whose cell wall has been removed by enzymes—or, in some cases, even the entire cell,
including the cell wall (Figure 1A). Class two is necrotic cell death, which is distinguished
from vacuolar cell death by mitochondrial swelling, absence of the growing lytic vacuoles
and early rupture of the plasma membrane, resulting in shrinkage of the protoplast (Fig-
ure 1B). Necrosis is regarded as an acute death response, which develops rapidly, taking
anywhere from several minutes to a day to complete [14]. The use of morphology to
classify PCD has allowed a better understanding of how cell death manifests. Although one
limitation in this is that a well-known form of PCD, known as the HR, cannot be ascribed
to either class, as its development displays characteristics of both vacuolar and necrotic cell
death [14,18–20].
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Figure 1. Classes of cell death. (A) Vacuolar cell death. Electron micrographs of programed cell 
death (PCD) in Arabidopsis tracheary elements. cw, cell wall; lv, lytic vacuole; n, nucleus; scw, sec-
ondary cell wall; t, tonoplast. Scale bars, 500 nm (tracheary elements). Manifests by a gradual de-
crease in cytoplasm volume and an increase in lytic vacuole volume. (B) Necrotic cell death. Electron 
micrographs of Yariv-reagent-induced death in the Arabidopsis cell culture. Asterisks denote the de-
tachment of plasma membrane form the cell wall during early stages of cell death. c, chloroplast; 
cw, cell wall; pm, plasma membrane; t, tonoplast; v, vacuole. Scale bars, 2 µm. There is an absence 
of a growing lytic vacuole, and there is early rupture of the plasma membrane, which results in 
shrinkage of the protoplast. Pictures of Arabidopsis treachery elements were republished with au-
thors’ permission from Avci, U.; Petzold, E.; Ismail, I.O.; Beers, E.P.; Haigler, C.H. Cysteine prote-
ases XCP1 and XCP2 aid micro-autolysis within the intact central vacuole during xylogenesis in 
Arabidopsis roots. Plant J. 2008, 56, 303–315, https://doi.org/10.1111/j.1365-313X.2008.03592.x [21] and 
those of the Yariv-reagent-induced cell death were republished with authors’ permission from Gao, 
M.; Showalter, A.M.; Yariv reagent treatment induces PCD in Arabidopsis cell cultures and implicates 
arabinogalactan protein involvement. Plant J. 1999, 19, 321–331, https://doi.org/10.1046/j.1365-
313X.1999.00544.x [22]. 

The HR is a special form of PCD, involving rapid localized cell death at the point of 
pathogen penetration [16,23]. The host plant utilizes HR to limit biotrophic pathogen 
growth and generates long-range signals for systemic acquired resistance (SAR) [24]. Thus, 
another PCD classification system was developed to accommodate the placement of the HR. 
This system classifies forms of PCD based on what functions they play in the host plant, 
rather than by their morphology or pathways. Two classes were described: developmentally 
controlled PCD (dPCD) and pathogen-triggered PCD (pPCD). During vegetative and re-
productive development, dPCD occurs and is often a final differentiation step for specific 
cell types [25]. Conversely, pPCD is elicited in the host plant by invading agents and can 
benefit either the plant or pathogen, depending on the studied plant–pathogen interaction 
[26]. An additional class has also been proposed to describe PCD resulting from environ-
mental stress, termed ePCD [25]. The ePCD classification includes stresses, such as 

Figure 1. Classes of cell death. (A) Vacuolar cell death. Electron micrographs of programed cell death
(PCD) in Arabidopsis tracheary elements. cw, cell wall; lv, lytic vacuole; n, nucleus; scw, secondary
cell wall; t, tonoplast. Scale bars, 500 nm (tracheary elements). Manifests by a gradual decrease
in cytoplasm volume and an increase in lytic vacuole volume. (B) Necrotic cell death. Electron
micrographs of Yariv-reagent-induced death in the Arabidopsis cell culture. Asterisks denote the
detachment of plasma membrane form the cell wall during early stages of cell death. c, chloroplast;
cw, cell wall; pm, plasma membrane; t, tonoplast; v, vacuole. Scale bars, 2 µm. There is an absence
of a growing lytic vacuole, and there is early rupture of the plasma membrane, which results in
shrinkage of the protoplast. Pictures of Arabidopsis treachery elements were republished with authors’
permission from Avci, U.; Petzold, E.; Ismail, I.O.; Beers, E.P.; Haigler, C.H. Cysteine proteases XCP1
and XCP2 aid micro-autolysis within the intact central vacuole during xylogenesis in Arabidopsis
roots. Plant J. 2008, 56, 303–315, https://doi.org/10.1111/j.1365-313X.2008.03592.x [21] and those
of the Yariv-reagent-induced cell death were republished with authors’ permission from Gao, M.;
Showalter, A.M.; Yariv reagent treatment induces PCD in Arabidopsis cell cultures and implicates
arabinogalactan protein involvement. Plant J. 1999, 19, 321–331, https://doi.org/10.1046/j.1365-313
X.1999.00544.x [22].

The HR is a special form of PCD, involving rapid localized cell death at the point
of pathogen penetration [16,23]. The host plant utilizes HR to limit biotrophic pathogen
growth and generates long-range signals for systemic acquired resistance (SAR) [24]. Thus,
another PCD classification system was developed to accommodate the placement of the
HR. This system classifies forms of PCD based on what functions they play in the host
plant, rather than by their morphology or pathways. Two classes were described: develop-
mentally controlled PCD (dPCD) and pathogen-triggered PCD (pPCD). During vegetative
and reproductive development, dPCD occurs and is often a final differentiation step for
specific cell types [25]. Conversely, pPCD is elicited in the host plant by invading agents
and can benefit either the plant or pathogen, depending on the studied plant–pathogen
interaction [26]. An additional class has also been proposed to describe PCD resulting
from environmental stress, termed ePCD [25]. The ePCD classification includes stresses,
such as temperature or irradiation, or biotic aggressors, such as pathogens [15]. pPCD
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is specific to pathogen-triggered cell death, whereas ePCD includes all external stressors
as PCD triggers. The use of ePCD as a classification may, however, be problematic, since
different PCD pathways may be in play during both abiotic and biotic-triggered PCD.

2.2. Programed Cell Death in Host Plants

Plant PCD pathways are not as well understood as animal cell death. Animals have
a core PCD machinery that is mainly regulated post-translationally [17,27], whereas it is
not known whether the different forms of plant PCD share the same core machinery or
whether the similarities they share were independently adopted to fulfill analogous roles
for different pathways [9]. When looking at the two main plant PCD forms—dPCD and
pPCD—there are marked differences as well as commonalities in their proposed pathways.
For one, a vacuolar type of cell death is associated with dPCD, and features of both necrosis
and vacuolar PCD are seen in pPCD [9]. There is also evidence of transcriptional regulation
and signaling in both forms of plant PCD, but in different contexts. Unfortunately, there
are still gaps in our knowledge regarding pPCD. This is largely due to predominance of
previous dPCD-centered investigations. In addition, variability has been seen in pPCD
responses to a multitude of different abiotic and biotic factors, whereas dPCD is a relatively
conserved process across all plant species. This section serves to summarize our current
knowledge on the transcriptional regulation, hormonal signaling and triggers involved in
pPCD.

2.2.1. Transcriptional Regulation of pPCD

The stimulation and repression of cell death pathways by transcription regulators has
been seen in animal PCD [28,29], and recent evidence indicates that some level of tran-
scriptional control of PCD is also likely in plants [30–34]. Different classes of transcription
factors (TFs), including members of NAC, ethylene-responsive element-binding factors
(ERFs) and WRKY families, have been shown to play roles in cell fate regulation in response
to different stresses. NAC TFs have been linked to the regulation of PCD triggered by both
abiotic and biotic stresses [34]. One example is that of OsNAC4, which has been shown to
be a key positive regulator of the HR by modulating the expression of almost 150 genes in
rice, such as Copper Zinc Superoxide Dismutase 1 (CSD1) gene and BAX Inhibitor 1(BI-1)
gene [35]. ERF TFs also play a role in the regulation of the HR, where the conditional
expression of NbCD1—from Nicotiana benthamiana—in response to multiple HR elicitors is
sufficient to induce the HR [30]. Numerous WRKY TFs are involved in the regulation of
cell death, and they may play a role in the suppression of the HR during initial infection
of the necrotrophic fungus, Botrytis cinerea, in Arabidopsis [36], through the activation or
suppression of antagonistic signaling pathways, such as salicylic acid (SA), ethylene (ET)
and jasmonic acid (JA) mediated pathways. Although there is a large body of research on
TFs and their role in pPCD, there is still a lack of knowledge on Phytophthora pathogens
and the involvement of TFs in eliciting or suppressing PCD during Phytophthora infection.

2.2.2. Phytohormone Signaling Pathways Involved in pPCD

Different phytohormones play a role in dPCD, such as JA, auxin, strigolactones and
ET—ET being the most characterized dPCD hormone [37–39]. Phytohormones control
the dPCD processes via transcriptional regulation of genes, such as proteases and nu-
cleases, to gradually build up dPCD competence during cellular differentiation. This
contrasts with pPCD, where no preparation is required, and the cells are always ready to
initiate an immune response upon pathogen attack [9]. The infection strategy of a plant
pathogen—whether the pathogen adopts a biotrophic, necrotrophic or hemi-biotrophic
lifestyle—determines the underlying mechanism for phytohormone-regulated pPCD in the
host during plant–pathogen interactions [40,41]. It has been shown that SA plays an essen-
tial role in host defense response against biotrophic and the early stages of hemi-biotrophic
pathogens, whereas JA and ET play an important role in the host defense response against
necrotrophic and the later stages of hemi-biotrophic pathogens [41]. SA is the only phyto-



Microorganisms 2022, 10, 1139 5 of 20

hormone shown to play an essential role in the establishment of pPCD, allowing immunity
toward biotrophic pathogens and susceptibility to necrotrophic pathogens. [42,43]. It
has been found that some pathogens interfere with cellular SA biosynthesis or signaling
through the delivery of effector proteins. [26]. For example, penetration-specific effector 1
(PSE1) from Phytophthora parasitica inhibits SA-mediated cell death and increased pathogen
growth by promoting auxin accumulation at infection sites [44]. Due to the importance
of phytohormones in the different trophic interactions, it would be of value to investigate
their roles in the maintenance and switch from the biotrophic to necrotrophic stage in
hemi-biotrophic pathogens, such as Phytophthora. This will shed light on how Phytophthora
is able to successfully infect a host plant and avoid the hosts’ defense responses.

2.2.3. Triggers of pPCD

dPCD requires preparation before PCD can be triggered/executed. Several cyto-
plasmic signals are implicated in dPCD triggering, such as calcium fluxes, accumula-
tion of reactive oxygen species (ROS) and cytoplasmic acidification [45]. During the self-
incompatibility (SI) response—the inability of a plant with functional pollen to set seeds
when self-pollinated—in Papaver rhoeas, calcium influx triggers a signaling cascade, which
results in rapid PCD of the incompatible pollen tubes [46]. In contrast, pPCD requires no
preparation and is only triggered upon pathogen attack. The main pPCD trigger is cyto-
plasmic immune receptor-mediated recognition at the site of attack [47]. Calcium influxes,
as well as accumulation of SA, ROS and nitric oxides (NO), are triggered upon pathogen
perception during pPCD. SA signaling subsequently amplifies the ROS burst in a positive
feedback loop, creating a toxic environment [48]. Some necrotrophic pathogens have been
known to ‘hijack’ PCD machinery, where pathogens, such as Cochliobolus victoriae, secrete
PCD triggering toxins [49,50]. Common triggers that are recognized by host receptors are
effectors. Different Phytophthora effectors and their role in host PCD will be discussed in a
later section.

3. Cell Death and Phytophthora Virulence

Different forms of pPCD will benefit either the plant or pathogen, depending on the
type of plant–pathogen interaction and the trophic lifestyle of the pathogen [4,9,25]. Most
Phytophthora spp. are hemi-biotrophic pathogens, meaning they feature a biotrophic life
stage during early infection followed by a switch to necrotrophy during the later stages of
host tissue colonization [4,51]. As the HR is generally considered most effective against
biotrophic pathogens, while potentially benefiting necrotrophic pathogens, hemi-biotrophic
pathogens—such as Phytophthora—are at a distinct advantage [52,53]. This response is a
race between the host and pathogen, where the pathogen attempts to tip the balance toward
suppression of host defense, and the host tries to launch an effective defense response to
prevent infection [4].

Phytophthora spp. may have developed a strategy to ‘hijack’ a plant’s HR machinery,
suppressing the HR during the biotrophic stage and inducing it during the necrotrophic
stage [24,54,55]. This ‘hijack’ strategy is further supported by the production of haustoria
that deliver defense-controlling pathogenicity factors and effectors, which function in
keeping the host cell alive [56,57]. Conversely, the switch to necrotrophy, which involves
the upregulation of specialized effector genes—such as Nep1-like proteins (NLPs)—aims to
deliberately kill the host cell [58]. This is further supported by the similarities in metabolic
enzyme expression between P. infestans during the necrotrophic stage and the necrotrophic
pathogen Pythium ultimum [59]. This strategy increases the virulence of Phytophthora spp.
through the differential expression and delivery of effectors at different stages of host plant
infection and colonization [13,54,55,60–62].
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4. Phytophthora Effectors That Induce or Suppress Cell Death

Phytophthora has a large repertoire of effector proteins that serve different functions
during infection. These effectors produce metabolic or structural changes in host cells,
aiding in the growth of the pathogen and disease development [63]. Effectors can be divided
into two main groups, namely apoplastic and cytoplastic effectors. Cytoplastic effectors
are translocated to the cell cytoplasm where they interact with host targets. Apoplastic
effectors are secreted into the extracellular space between cells and interact with targets
within the extracellular space, as well as on the host cell surface [4,57,63,64].

Cell death plays an important role in plant–pathogen interactions, which has driven a
long-standing interest in the characterization of effectors that are able to induce/suppress
plant cell death [65]. Genomic resources and methods for characterizing effector functions
have allowed for a better understanding of their evolution and role in disease progression.
Our understanding of the effector repertoire and their roles in infection in Phytophthora spp.
with a broad host range, such as P. cinnamomi, remains limited [66].

4.1. Apoplastic Effectors

Apoplastic effectors are known to act on host targets outside of the host plant cells or
on plant cell surface receptors. There has been significant progress in the identification of
apoplastic effectors, which induce cell death in host plants. To date, 61 cell-death-inducing
apoplastic proteins have been identified in 15 Phytophthora spp. (Table 1). A number of
these proteins belong to the pectate lyase (PL), glycoside hydrolase (GH) and PcF toxin
families. The majority of the apoplastic effectors identified are, however, elicitins and
Nep1-like protein (NLPs), which will be discussed in further detail below.

Table 1. Apoplastic cell-death-inducing proteins identified in Phytophthora spp.

Protein
Family

Plant Cell
Surface Receptor Co-Receptor Protein Phytophthora spp. Function References

ND - - PB90 Phytophthora
boehmeriae Induces cell death [67–69]

Elicitin ELR

BAK1, HSP70,
HSP90,
NbLRK1, SGT1,
SRC2-1

Cacto Phytophthora cactorum Induces cell death [70]
PcELL1 Induces cell death [71]
PcINF1 Induces cell death [72]

Capsicein Phytophthora capsici

Induces cell death
and increases
defense against P.
nicotianae in
Nicotiana
benthamiana

[73]

PcINF1
Induces cell death
and pepper defense
response

[74,75]

Cinnamomin Phytophthora
cinnamomi

Induces cell death
and protects N.
benthamiana against
pathogens

[76,77]

15-kDa
glycoprotein

Phytophthora
colocasiae

Induces cell death
and SAR [78]

Cryptogein Phytophthora
cryptogea

Induces cell death,
SAR and defense of
N. benthamiana
against P. nicotianae

[73,79–85]
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Table 1. Cont.

Protein
Family

Plant Cell
Surface Receptor Co-Receptor Protein Phytophthora spp. Function References

Dreα, Dreβ Phytophthora
drechsleri Induces cell death [86]

Hibernalin1 Phytophthora
hibernalis Induces cell death [87]

INF1 Phytophthora infestans

Triggers HR
dependent on
HSP70, HSP90 and
SGT1

[88–93]

INF2A, INF2B
INF2A-induced
necrosis dependent
on SGT1

[92]

MgMα, MgMβ
Phytophthora
megasperma Induces cell death [94]

α-
megaspermin,
β-
megaspermin,
γ-
megaspermin/32
kDa
glycoprotein

Induces cell death,
PR gene expression
and SAR

[95,96]

Palmivorein Phytophthora
palmivora Induces cell death [97]

Parasiticein/
parA1/elicitin
310/elicitin 172

Phytophthora
parasitica Induces cell death [98–101]

Syringicin Phytophthora syringae
Induces HR and
electrolyte leakage
in N. benthamiana

[102]

NLP RLP23
BAK1, COI1,
HSP90, MEK2,
NPR1, SGT1,
SOBIR1 and
TGA2.2

PcNLP1 P. cactorum Induces cell death [71]
Pc11951,
Pc107869,
Pc109174,
Pc118548

P. capsici Induces cell death [103]

PcNLP1 to 3, 6
to 10, 13 to 15 Induces cell death [104]

PiNPP1.1 P. infestans
Induces HR
dependent on SGT1
and HSP90

[105]

PpNLP/NLPPp P. parasitica Induces cell death [106–110]

PsojNIP Phytophthora sojae
Induces cell death
dependent on SGT1
and HSP90

[105,111]

PaNie213/
NLPPya

Phytophthora
aphanidermatum Induces cell death [107,108,

112]

CBM - - CBEL P. parasitica

Induces cell death;
activates defense
responses via SA,
JA and ET
signaling pathways

[113,114]
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Table 1. Cont.

Protein
Family

Plant Cell
Surface Receptor Co-Receptor Protein Phytophthora spp. Function References

PL - - PcPL1, PcPL15,
PcPL16, PcPL20 P. capsici Induces cell death [115]

GH12 RXEG1 BAK1, SOBIR1 XEG1 P. sojae

Induces cell death;
associates with
SOBIR1 and BAK1
complex to trigger
immune responses

[116,117]

GH16 - - OPEL P. parasitica Induces cell death [118]

PcF
toxin - - PcF P. cactorum

Induces cell death
and PR gene
expression in N.
benthamiana

[119]

SCR96, SCR99,
SCR121 Induces cell death [120]

SCR113 Induces cell death [72]

ND, not determined; NLP, Nep1-like protein; pectate lyase (PL); CBM, carbohydrate binding module; GH,
glycoside hydrolase; SAR, systemic acquired resistance.

4.1.1. Elicitins

Elicitins are a conserved class of apoplastic proteins produced by oomycetes—in par-
ticular Phytophthora and some Pythium spp. [121,122]. Elicitins are involved in binding
to sterols, which is believed to serve an essential role in Phytophthora development and
pathogenicity [123,124]. The majority of elicitins possess a signal peptide, a highly con-
served 98-amino-acid domain (Pfam PF00964), and a C-terminal domain of variable length
(17–291), which is usually rich in threonine, serine and proline residues (Figure 2) [122,125].
Elicitins may elicit a cell death response by their recognition as microbe-associated molec-
ular patterns (MAMPs), resulting in triggering the HR rather than a specific necrotizing
activity of the protein itself [126,127].
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Pc11951, Pc107869, 
Pc109174, Pc118548 

P. capsici Induces cell death [103] 

   
PcNLP1 to 3, 6 to 
10, 13 to 15 

  Induces cell death [104] 

   PiNPP1.1 P. infestans 
Induces HR dependent on SGT1 
and HSP90 

[105] 
   PpNLP/NLPPp P. parasitica Induces cell death [106–110] 
   PsojNIP Phytophthora sojae 

Induces cell death dependent on 
SGT1 and HSP90 

[105,111] 

   PaNie213/NLPPya 
Phytophthora apha-
nidermatum 

Induces cell death 
[107,108,112
] 

CBM - - CBEL P. parasitica 
Induces cell death; activates de-
fense responses via SA, JA and 
ET signaling pathways 

[113,114] 

PL - - 
PcPL1, PcPL15, 
PcPL16, PcPL20 

P. capsici Induces cell death [115] 

GH12 RXEG1 
BAK1, 
SOBIR1 

XEG1 P. sojae 
Induces cell death; associates 
with SOBIR1 and BAK1 complex 
to trigger immune responses 

[116,117] 

GH16 - - OPEL P. parasitica Induces cell death [118] 
PcF 
toxin - - PcF P. cactorum 

Induces cell death and PR gene 
expression in N. benthamiana 

[119] 

     
SCR96, SCR99, 
SCR121 

  Induces cell death [120] 
     SCR113   Induces cell death [72] 

ND, not determined; NLP, Nep1-like protein; pectate lyase (PL); CBM, carbohydrate binding mod-
ule; GH, glycoside hydrolase; SAR, systemic acquired resistance. 
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Figure 2. Structure of a Phytophthora elicitin. The conserved elicitin domain generally consists of
98 amino acids and contains 6 cysteine residues at conserved positions that form three disulphide
bridges. The variable C-terminal tends to be rich in threonine, serine and proline residues.

It was originally believed that elicitins induced cell death via the disruption of plasma
membrane integrity upon sterol binding, but Phytophthora mutants producing elicitins
unable to bind to plant sterols still elicited cell death responses [123,128]. Studies have
shown that the elicitin-induced HR involves a ROS burst. It has been proposed that
mitogen-activated protein kinases (MAPKs) phosphorylate WRKY7/8/9/11 TFs, resulting
in a sustained ROS burst that leads to cell death upon elicitin perception [129]. Oomycete
plant pathogens, such as Phytophthora, are believed to have evolved an effector toolbox to
modulate host responses triggered by their elicitins [126]. This is evident when considering
Avr3a-KI from P. infestans, which suppresses the HR triggered by INF1 [130]. Additional
screens have also revealed that over 30 effectors from different oomycete species suppress
INF1-triggered responses [126].
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4.1.2. Nep1-like Protein (NLPs)

NLPs are apoplastic effector proteins, which contain an N-terminal secretion signal
peptide and a common necrosis-inducing Phytophthora protein 1 (NPP1) domain (Fig-
ure 3) [65]. This family of effector proteins has been found in bacteria, fungi and oomycete
plant pathogens—with the genus Phytophthora possessing the largest NLP gene family,
which is highly conserved among species [58,65,131]. NLP effectors have been shown to
induce cell death and elicit strong immune responses in dicotyledonous plants [65,111,132].
NLPs can be separated into two functional classes: cytolytic (cNLPs) and noncytolytic
(ncNLPs), where the specific activity of cNLPs is to cause cell death [133–136].
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Figure 3. Structure of Phytophthora cNLPs. A signal peptide is present followed by a necrosis-inducing
Phytophthora protein 1 (NPP1) domain containing a 30–45 proline rich region and a Hepta-peptide
GHRHDWE motif at around 110–130 aa. In cNLPs, there are two conserved cysteines present between
the Pro-rich region and Hepta-peptide motif—ncNLPs have four conserved cysteines in this region.

It has been suggested that cNLPs may play an important role in the transition of Phy-
tophthora spp. from the biotrophic to necrotrophic phase [58]. This is evident by the increase
in expression of PsojNIP and PiNPP1—from P. sojae and P. infestans, respectively—during
the infection stages, coinciding with the transition from biotrophy to necrotrophy [105,111].
Further evidence of this role is seen in P. capsici, where NLP2, NLP6 and NLP14 contribute
greatly to the induction of necrosis during infection—like that of PsojNIP [137]. Contrast-
ingly, there have been studies reporting that ncNLP genes from P. infestans, P. megakarya, P.
capsici and P. cactorum were expressed during developmental stages and the early biotrophic
infection phase [71,131,137,138]. This may suggest that NLPs play additional roles in viru-
lence, but the exact functions have yet to be resolved [4].

A P. cinnamomi NPP1 has been reported in a study where the authors investigated
the expression of the gene using RT-qPCR, both in vitro, using different carbon sources,
and in vivo, during infection of Castanea sativa roots [139]. A decrease in NPP1 expression
was noted between 12 and 24 h post-inoculation (hpi) with a significant increase at 36
hpi, suggesting a complex host–pathogen interaction. Although this study shed light on
the function of this effector during P. cinnamomi infection, further research is required to
fully understand the mechanisms underlying the defense mechanisms against P. cinnamomi
necrosis-inducing proteins.

4.2. Cytoplasmic Effectors
4.2.1. RxLRs

Phytophthora RxLRs are cytoplasmic effectors with a modular architecture, including
an N-terminal signal peptide for protein secretion, a conserved RxLR motif to facilitate
translocation into host cells and a diverse C-terminal domain executing virulence activity
(Figure 4) [64,140–142]. The RxLR effector family is the largest class of translocated effectors
and is specific to Phytophthora spp., with there being 560, 370, 390 and 238 RxLR-containing
protein coding genes in the genomes of P. infestans, P. ramorum, P. sojae and P. cinnamomi, re-
spectively [12,64,143]. These effectors localize to many subcellular organelles and structures,
where they target a wide range of pathways throughout the plant cell [4,144]. A key role of
RxLRs is the suppression of PAMP-triggered immunity (PTI) and effector-triggered immu-
nity (ETI), where multiple Phytophthora RxLRs from different species have been reported to
suppress plant cell death triggered by elicitins or other effectors [130,141,145,146].
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RxLR effector PsAvh238 from P. sojae was found to either induce cell death in planta or
suppress elicitin-induced plant cell death, depending on the different regions of Avh238
and distinct subcellular localizations [145]. The N-terminal of PsAvh238 and nuclear local-
ization are critical to induce cell death, while the C-terminal and cytoplasmic localization
are sufficient for INF1-induced cell death suppression. This illustrates how different lo-
calization can convey different RxLR functions. Interestingly, it has also been found that
some RxLR effectors may alter the localization of host targets [4,146]. Another example
is P. sojae RxLR (PsAvh52), which suppresses cell death and defense mechanisms in the
early stages of infection by ‘hijacking’ a transacetylase enzyme (GmTAP1) [146]. PsAvh52
relocates GmTAP1 to the cell nucleus where it chemically modifies the host DNA’s packag-
ing, resulting in the activation of nearby susceptibility genes, suppressing the host plant’s
defense system.

Some Phytophthora RxLRs may also contribute to the establishment of the pathogen’s
necrotrophic life stage. This is seen in P. capsici RxLR effector PcAvh1, which triggers cell
death when expressed in N. benthamiana, tomato and bell pepper leaves. This effector is
rapidly induced during early infection stages and then exhibits a decline in expression
through 3 to 24 hpi but is upregulated again at 36 and 72 hpi [147]. It has previously been
proposed that P. capsici switches from the biotrophic to necrotrophic lifestyle sometime
between 18 and 42 hpi, suggesting that PcAvh1 may help facilitate this switch. PcAvh1 may
still play a role during initial infection during the biotrophic stage, but other effectors may
inhibit its necrotic activity during early infection.

There have not been any functional characterization studies performed on suspected
P. cinnamomi RxLRs. There has, however, been a study reporting to have identified and
characterized the Avr3a gene from online genomic P. cinnamomi sequences by using in
silico approaches alone [148]. The authors report that the gene encodes a recognized 209
amino acid protein in the host cytoplasm, where it triggers cell death. However, it should
be noted that in silico analysis is not sufficient to definitively assign the function of an
effector. It can be used to identify putative effectors; in vivo functional characterization is
still required to confirm in silico inferences. Therefore, further in vivo techniques, such as
transient transformation via Agrobacterium, should be used to confirm this study’s findings.

4.2.2. Crinklers

CRNs are modular proteins that were first identified in P. infestans and classified as
genes causing crinkling and necrosis [149]. These effector proteins possess a conserved
N-terminal containing an LXFLAK, HVLVXXP and DWL motif, which functions in translo-
cation of the CRN proteins from the apoplast into the plant cytoplasm (Figure 5) [150,151].
This is followed by a variable C-terminal, which conveys different functions, including
subcellular localization required for the effector function [8,54,60,152]. Phytophthora spp.
examined thus far have large multigene families of CRN genes, with 196 in P. infestans, 100
in P. sojae and 49 in both P. ramorum and P. cinnamomi [11,130]. Unlike RxLR effectors, CRN
effectors arose early in oomycete evolution and then later diverged across plant pathogenic
species, suggesting CRN effectors play an essential role in oomycete pathogenesis in
plants [99,153–157].
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CRNs do not always possess a signal peptide, as there are other secretion pathways.

Although CRN effectors were first noted to induce crinkling and necrosis in plant
tissue, recent studies have shown that the majority of CRNs act in suppressing host cell
defenses [131,138,151]. Functional characterization of Phytophthora CRNs has provided
substantial evidence for the involvement of this class of effectors in the modulation of PCD
during infection [24,54,55,60,158].

Some Phytophthora spp. have been shown to have at least two CRNs with contradicting
functions—where one suppresses cell death, and the other induces cell death—with both
required for virulence [26,54,55]. One example is that of CRN63 and CRN115 from P.
sojae, which induce contrasting and apparently opposite responses when expressed in N.
benthamiana [24,54]. CRN63 induces cell death, and CRN115 suppresses cell death induced
by PsojNIP or CRN63; both CRNs act on catalases to alter H2O2 accumulation (Figure 6).
The stability of catalase proteins is reduced by CRN63, which in turn enhances H2O2
accumulation and results in the triggering of PCD. Conversely, CRN115 suppresses PCD
by inhibiting H2O2 accumulation induced by CRN63. This mechanism is also employed
by P. parasitica, where CRN7 and CRN20 function analogously to P. sojae CRN63 and
CRN115, respectively [54]. These observations are further supported by the differential
expression of CRNs at different pathogen life stages; for example, CRN63 shows a 2.8-times-
increased expression during late stages of infection [43]. Together, these findings indicate
that different CRNs have distinct functions during either the biotrophic or necrotrophic
Phytophthora spp. life stages.
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Figure 6. Schematic of how CRN63/115 modulates PCD in Nicotiana benthamiana. (a) During the early
stages of infection (biotrophic stage), CRN115 inhibits the activity of CRN63, preventing the relocation
and scavenging of NbCAT1. NbCAT1 is then able to convert H2O2 into water and oxygen. Inhibiting
H2O2 accumulation induced by CRN63. (b) CRN63 is slightly induced during the late stages of
infection (necrotrophic stage) and relocates NbCAT1 to the nucleus where NbCAT1 is destabilized
and therefore unable to convert H2O2 into water and oxygen. This results in an accumulation of
H2O2 in the cytoplasm, resulting in PCD.
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Unfortunately, there has yet to be any functional characterization studies on P. cin-
namomi CRNs. Studies such as these are of great interest, since it is suggested that these
effectors play an essential role in early infection and regulating PCD [149]. Recently, there
have been analyses of expression data for 49 putative P. cinnamomi CRNs, and it was found
that 11 CRNs were significantly expressed, with 1 CRN being upregulated compared to
mycelia at 120 hpi in avocado, and the remaining 10 demonstrating downregulation at the
same time point [11]. This suggests that the majority of P. cinnamomi CRNs may function in
suppressing the host defenses during the earlier stages of infection, although further ex-
pression data at earlier time points and characterization studies are required to definitively
conclude the function of P. cinnamomi CRNs.

5. Techniques Used in the Functional Characterization of Phytophthora Effectors

A method commonly used in determining the function of Phytophthora effectors is
agroinfiltration. Agroinfiltration is an Agrobacterium tumefaciens-based method for transient
expression of genes of interest in planta [66]. This assay is efficient in numerous dicot
plant species and is therefore broadly applied in screenings and research in molecular
plant–pathogen interactions [159–162]. Agroinfiltration is also a well-established method
to use for the functional characterization of pathogen effectors when that pathogen cannot
be regularly transformed, as in the case of P. cinnamomi. This approach has been utilized
in multiple studies to determine the cell death induction or suppression abilities of Phy-
tophthora effectors [8,24,150,151,163]. The use of agroinfiltration coincides with the use
of model plants, in particular N. benthamiana, which is widely used to study a variety of
plant pathogens [164]. This is because N. benthamiana expressed sequence tags (ESTs) share
similarities with important agricultural Solanaceous crops. Therefore, functional genomics
research of host–pathogen interactions conducted in N. benthamiana will most likely reveal
genes, which play similar roles in agronomically important crops.

The available genome sequences of Phytophthora spp. have allowed for a better under-
standing of the repertoire of effectors utilized by these pathogens, as well as their possible
mechanisms to promote pathogen success [10,165]. Genomic and transcriptomic data allow
for the prediction of putative effector homologs in Phytophthora spp. Tools such as RNA
sequencing (RNA-Seq) are useful for gene expression profiling, which aids in identify-
ing pathogenicity genes and predicting what functions they may have. Genome data for
Phytophthora spp. are accumulating and have been utilized in large-scale transcriptome
analyses. This will aid future research to identify key effectors, which may play a role in
infection and disease development.

P. cinnamomi genomic data have been lacking. This is surprising due to the economic
and ecological relevance of P. cinnamomi [11]. A recent study has generated a high-quality
reference genome for P. cinnamomi using a combination of Nanopore and Illumina sequenc-
ing platforms, opening up future research on P. cinnamomi effectors and their functions [11].
This is an improvement on the five existing, highly fragmented draft genome sequences
currently available for P. cinnamomi [166,167]. The assembly of the P. cinnamomi genome indi-
cated that P. cinnamomi has a much larger genome size than what was previously estimated
and has allowed better identification and characterization of various pathogenicity-related
genes. Therefore, this genome serves as an important foundation for future studies.

Dual RNA-seq has enabled investigations of both host and pathogen transcriptomics
simultaneously [156]. This technology allows for the detection of minute amounts of pathogen
RNA, and it is more sensitive than either microarrays or northern blotting [168–170]. This
tool also provides more information, as it provides a picture of global gene expression.
RNA-seq data have also allowed for the identification of over 1300 putative pathogenicity
genes from cyst and germinating cyst phases of P. cinnamomi, of which several encoded
for effector proteins that served as candidates for further research [145,171]. An analysis
of P. cinnamomi dual RNA-seq data from Eucalyptus nitens—5 days following inoculation
with P. cinnamomi—revealed that a putative P. cinnamomi CRN effector was highly upregu-
lated, and a pathogenicity-related (PR-9) gene was downregulated [156]. This and other
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evidence in the study demonstrate that a P. cinnamomi CRN and a E. nitens PR-9 gene
may play essential roles in causing a susceptible host–pathogen interaction. RNA-seq data
have also been used in a separate study to assign possible functions to three P. cinnamomi
RxLRs [143]. However, further functional characterization is required to conclusively as-
sign functions to any putative effector identified using gene expression data. Research
aimed at characterizing effectors from different Phytophthora spp. has become essential to
understanding the mechanisms these pathogens utilize to invoke a susceptible response
in host plants. The transformation of Phytophthora spp. has been one method used to
deduce the function of effectors; however, some species—such as P. cinnamomi—have had
limited success in transformation [66,172,173]. The speculated reasons for these limita-
tions are the identification of oomycete promotors and selectable markers to select for
transformants [66,172]. Transformation protocols for Phytophthora spp., such as P. capsici, P.
parasitica [174] and P. infestans, [175] have been successfully produced, but these protocols
will not necessarily work for all Phytophthora spp.; notably, these protocols have not been
successful in P. cinnamomi [66]. Although, recently, a proposed protocol has been developed
using a PEG/CaCl2-mediated protoplast transformation method, where three P. cinnamomi
transformants were successfully produced in a single isolate [172]. These results have
been reproduced in the same P. cinnamomi isolate in two separate laboratories (Nanjing
Forestry University and Oregon State University). Nonetheless, this protocol still needs to
be reproduced in different laboratories and using different strains before it can be validated
as a standard protocol for P. cinnamomi transformation.

The development of efficient transformation protocols for various Phytophthora spp.
will enable future research aimed at characterizing the effectors implicated in PCD. This, in
turn, will provide some insight into how different Phytophthora spp. are able to maintain
the biotrophic and necrotrophic stages during infection in order to achieve a susceptible
outcome in host plants. Further work can also be conducted to understand the cell death
pathways that may be involved and the host targets, allowing for improved screening for
susceptible rootstocks to be used in agricultural practices.

6. Conclusions

PCD in plants is a complicated process with no one single mechanism, and the HR is
of particular interest during the plant pathogen–host interaction. The HR can either benefit
or be detrimental to host plants, depending on when it is triggered and what infection
strategy is employed by the pathogen. There is evidence that Phytophthora effectors either
directly or indirectly induce/suppress cell death, which ultimately aids in the virulence
of the pathogen. This indicates that a possible infection strategy involves the ‘hijacking’
of the HR machinery to benefit the specific life stages of the pathogen. CRNs and NLPs
may play a key role during the maintenance of the biotrophic and necrotrophic life stages
and therefore require further investigation. Other Phytophthora spp., such as P. cinnamomic,
which are detrimental to numerous economically important agricultural crops, should
be investigated to identify effectors that may be involved in regulating host plant cell
death. This will entail the development of P. cinnamomi transformation approaches, which
will allow for better analysis of specific effectors and their functions. Until this can be
performed, agroinfiltration serves as an efficient method to study effector proteins’ ability
to induce/suppress cell death in Phytophthora spp.
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β-cryptogein’s activity in tomato is mediated by jasmonic acid and ethylene signalling pathways independently of elicitin-sterol
interactions. Planta 2019, 249, 739–749. [CrossRef] [PubMed]

86. Huet, J.-C.; Nespoulous, C.; Pernollet, J.-C. Structures of elicitin isoforms secreted by Phytophthora drechsleri. Phytochemistry 1992,
31, 1471–1476. [CrossRef]

87. Capasso, R.; Di Maro, A.; Cristinzio, G.; De Martino, A.; Chambery, A.; Daniele, A.; Sannino, F.; Testa, A.; Parente, A. Isolation,
characterization and structure-elicitor activity relationships of hibernalin and its two oxidized forms from Phytophthora hibernalis.
Carne 1925. J. Biochem. 2008, 143, 131–141. [CrossRef]

88. Huet, J.; Sallé-Tourne, M.; Pernollet, J. Amino acid sequence and toxicity of the alpha elicitin secreted with ubiquitin by
Phytophthora infestans. Mol. Plant Microbe Interact. 1994, 7, 302–304. [CrossRef] [PubMed]

89. Kamoun, S.; van West, P.; de Jong, A.J.; de Groot, K.E.; Vleeshouwers, V.G.A.A.; Govers, F. A gene encoding a protein elicitor of
Phytophthora infestans is down-regulated during infection of potato. Mol. Plant Microbe Interact. 1997, 10, 13–20. [CrossRef]

90. Kamoun, S.; Van West, P.; Vleeshouwers, V.G.A.A.; De Groot, K.E.; Govers, F. Resistance of Nicotiana benthamiana to Phytophthora
infestans is mediated by the recognition of the elicitor protein INF1. Plant Cell 1998, 10, 1413–1425. [CrossRef]

91. Kanzaki, H.; Saitoh, H.; Ito, A.; Fujisawa, S.; Kamoun, S.; Katou, S.; Yoshioka, H.; Terauchi, R. Cytosolic HSP90 and HSP70 are
essential components of INF1-mediated hypersensitive response and non-host resistance to Pseudomonas cichorii in Nicotiana
benthamiana. Mol. Plant Pathol. 2003, 4, 383–391. [CrossRef]

92. Huitema, E.; Vleeshouwers, V.G.; Cakir, C.; Kamoun, S.; Govers, F. Differences in intensity and specificity of hypersensitive
response induction in Nicotiana spp. by INF1, INF2A, and INF2B of Phytophthora infestans. Mol. Plant Microbe Interact. 2005, 18,
183–193. [CrossRef]

93. Du, J.; Verzaux, E.; Chaparro-Garcia, A.; Bijsterbosch, G.; Keizer, L.C.P.; Zhou, J.; Liebrand, T.W.H.; Xie, C.; Govers, F.; Robatzek,
S.; et al. Elicitin recognition confers enhanced resistance to Phytophthora infestans in potato. Nat. Plants 2015, 1, 15034. [CrossRef]

94. Huet, J.-C.; Pernollet, J.-C. Sequences of acidic and basic elicitin isoforms secreted by Phytophthora megasperma. Phytochemistry
1993, 33, 797–805. [CrossRef]

95. Baillieul, F.; de Ruffray, P.; Kauffmann, S. Molecular cloning and biological activity of α-, β-, and γ-megaspermin, three elicitins
secreted by Phytophthora megasperma H20. Plant Physiol. 2003, 131, 155–166. [CrossRef] [PubMed]

96. Baillieul, F.; Genetet, I.; Kopp, M.; Saindrenan, P.; Fritig, B.; Kauffmann, S. A new elicitor of the hypersensitive response in tobacco:
A fungal glycoprotein elicits cell death, expression of defence genes, production of salicylic acid, and induction of systemic
acquired resistance. Plant J. 1995, 8, 551–560. [CrossRef] [PubMed]

97. Churngchow, N.; Rattarasarn, M. The elicitin secreted by Phytophthora palmivora, a rubber tree pathogen. Phytochemistry 2000, 54,
33–38. [CrossRef]

98. Nespoulous, C.; Huet, J.-C.; Pernollet, J.-C. Structure-function relationships of α and β elicitins, signal proteins involved in the
plant-Phytophthora interaction. Planta 1992, 186, 551–557. [CrossRef]

99. Kamoun, S.; Klucher, K.M.; Coffey, M.D.; Tyler, B.M. A gene encoding a host-specific elicitor protein of Phytophthora parasitica.
Mol. Plant Microbe Interact. 1993, 6, 573. [CrossRef]

100. Mouton-Perronnet, F.; Bruneteau, M.; Denoroy, L.; Bouliteau, P.; Ricci, P.; Bonnet, P.; Michel, G. Elicitin produced by an isolate of
Phytophthora parasitica pathogenic to tobacco. Phytochemistry 1995, 38, 41–44. [CrossRef]

101. Capasso, R.; Cristinzio, G.; Evidente, A.; Visca, C.; Ferranti, P.; Blanco, F.D.V.; Parente, A. Elicitin 172 from an isolate of Phytophthora
nicotianae pathogenic to tomato. Phytochemistry 1999, 50, 703–709. [CrossRef]

102. Capasso, R.; Cristinzio, G.; Di Maro, A.; Ferranti, P.; Parente, A. Syringicin, a new α-elicitin from an isolate of Phytophthora
syringae, pathogenic to citrus fruit. Phytochemistry 2001, 58, 257–262. [CrossRef]

103. Chen, X.-R.; Huang, S.-X.; Zhang, Y.; Sheng, G.-L.; Li, Y.-P.; Zhu, F. Identification and functional analysis of the NLP-encoding
genes from the phytopathogenic oomycete Phytophthora capsici. Mol. Genet. Genom. 2018, 293, 931–943. [CrossRef]

104. Feng, B.-Z.; Zhu, X.-P.; Fu, L.; Lv, R.-F.; Storey, D.; Tooley, P.; Zhang, X.-G. Characterization of necrosis-inducing NLP proteins in
Phytophthora capsici. BMC Plant Biol. 2014, 14, 126. [CrossRef]

105. Kanneganti, T.-D.; Huitema, E.; Cakir, C.; Kamoun, S. Synergistic interactions of the plant cell death pathways induced by
Phytophthora infestans Nep1-like protein PiNPP1.1 and INF1 elicitin. Mol. Plant Microbe Interact. 2006, 19, 854–863. [CrossRef]
[PubMed]

106. Fellbrich, G.; Romanski, A.; Varet, A.; Blume, B.; Brunner, F.; Engelhardt, S.; Felix, G.; Kemmerling, B.; Krzymowska, M.;
Nürnberger, T. NPP1, a Phytophthora-associated trigger of plant defense in parsley and Arabidopsis. Plant J. 2002, 32, 375–390.
[CrossRef]

http://doi.org/10.1111/pce.12295
http://doi.org/10.1016/j.plaphy.2015.09.009
http://doi.org/10.1007/s00425-018-3036-1
http://www.ncbi.nlm.nih.gov/pubmed/30374914
http://doi.org/10.1016/0031-9422(92)83089-H
http://doi.org/10.1093/jb/mvm201
http://doi.org/10.1094/MPMI-7-0302
http://www.ncbi.nlm.nih.gov/pubmed/8012047
http://doi.org/10.1094/MPMI.1997.10.1.13
http://doi.org/10.1105/tpc.10.9.1413
http://doi.org/10.1046/j.1364-3703.2003.00186.x
http://doi.org/10.1094/MPMI-18-0183
http://doi.org/10.1038/nplants.2015.34
http://doi.org/10.1016/0031-9422(93)85277-X
http://doi.org/10.1104/pp.012658
http://www.ncbi.nlm.nih.gov/pubmed/12529524
http://doi.org/10.1046/j.1365-313X.1995.8040551.x
http://www.ncbi.nlm.nih.gov/pubmed/7496401
http://doi.org/10.1016/S0031-9422(99)00530-0
http://doi.org/10.1007/BF00198035
http://doi.org/10.1094/MPMI-6-573
http://doi.org/10.1016/0031-9422(94)0058X-A
http://doi.org/10.1016/S0031-9422(98)00539-1
http://doi.org/10.1016/S0031-9422(01)00201-1
http://doi.org/10.1007/s00438-018-1432-7
http://doi.org/10.1186/1471-2229-14-126
http://doi.org/10.1094/MPMI-19-0854
http://www.ncbi.nlm.nih.gov/pubmed/16903351
http://doi.org/10.1046/j.1365-313X.2002.01454.x


Microorganisms 2022, 10, 1139 18 of 20

107. Qutob, D.; Kemmerling, B.; Brunner, F.; Kufner, I.; Engelhardt, S.; Gust, A.A.; Luberacki, B.; Seitz, H.U.; Stahl, D.; Rauhut, T.; et al.
Phytotoxicity and innate immune responses induced by Nep1-like proteins. Plant Cell 2006, 18, 3721–3744. [CrossRef] [PubMed]

108. Ottmann, C.; Luberacki, B.; Küfner, I.; Koch, W.; Brunner, F.; Weyand, M.; Mattinen, L.; Pirhonen, M.; Anderluh, G.; Seitz, H.U.;
et al. A common toxin fold mediates microbial attack and plant defense. Proc. Natl. Acad. Sci. USA 2009, 106, 10359–10364.
[CrossRef] [PubMed]

109. Böhm, H.; Albert, I.; Oome, S.; Raaymakers, T.M.; Van Den Ackerveken, G.; Nürnberger, T. A conserved peptide pattern from
a widespread microbial virulence factor triggers pattern-induced immunity in Arabidopsis. PLoS Pathog. 2014, 10, e1004491.
[CrossRef] [PubMed]

110. Albert, I.; Böhm, H.; Albert, M.; Feiler, C.E.; Imkampe, J.; Wallmeroth, N.; Brancato, C.; Raaymakers, T.M.; Oome, S.; Zhang, H.;
et al. An RLP23-SOBIR1-BAK1 complex mediates NLP triggered immunity. Nat. Plants. 2015, 1, 15140. [CrossRef]

111. Qutob, D.; Kamoun, S.; Gijzen, M. Expression of a Phytophthora sojae necrosis-inducing protein occurs during transition from
biotrophy to necrotrophy. Plant J. 2002, 32, 361–373. [CrossRef]

112. Veit, S.; Wörle, J.M.; Nürnberger, T.; Koch, W.; Seitz, H.U. A novel protein elicitor (PaNie) from Pythium aphanidermatum induces
multiple defense responses in carrot, Arabidopsis, and tobacco. Plant Physiol. 2001, 127, 832–841. [CrossRef]

113. Mateos, F.V.; Rickauer, M.; Esquerré-Tugayé, M.-T. Cloning and characterization of a cDNA encoding an elicitor of Phytophthora
parasitica var. nicotianae that shows cellulose-binding and lectin-like activities. Mol. Plant Microbe Interact. 1997, 10, 1045–1053.
[CrossRef]

114. Khatib, M.; Lafitte, C.; Esquerré-Tugayé, M.; Bottin, A.; Rickauer, M. The CBEL elicitor of Phytophthora parasitica var. nicotianae
activates defence in Arabidopsis thaliana via three different signalling pathways. New Phytol. 2004, 162, 501–510. [CrossRef]

115. Fu, L.; Zhu, C.; Ding, X.; Yang, X.; Morris, P.F.; Tyler, B.M.; Zhang, X. Characterization of cell-death-inducing members of the
pectate lyase gene family in Phytophthora capsici and their contributions to infection of pepper. Mol. Plant Microbe Interact. 2015,
28, 766–775. [CrossRef] [PubMed]

116. Ma, Z.; Song, T.; Zhu, L.; Ye, W.; Wang, Y.; Shao, Y.; Dong, S.; Zhang, Z.; Dou, D.; Zheng, X.; et al. A Phytophthora sojae glycoside
hydrolase 12 protein is a major virulence factor during soybean infection and is recognized as a PAMP. Plant Cell 2015, 27,
2057–2072. [CrossRef]

117. Wang, Y.; Xu, Y.; Sun, Y.; Wang, H.; Qi, J.; Wan, B.; Ye, W.; Lin, Y.; Shao, Y.; Dong, S.; et al. Leucine rich repeat receptor-like gene
screen reveals that Nicotiana RXEG1 regulates glycoside hydrolase 12 MAMP detection. Nat. Commun. 2018, 9, 594. [CrossRef]
[PubMed]

118. Chang, Y.-H.; Yan, H.-Z.; Liou, R.-F. A novel elicitor protein from Phytophthora parasitica induces plant basal immunity and
systemic acquired resistance. Mol. Plant Pathol. 2015, 16, 123–136. [CrossRef] [PubMed]

119. Orsomando, G.; Lorenzi, M.; Raffaelli, N.; Rizza, M.D.; Mezzetti, B.; Ruggieri, S. Phytotoxic protein PcF, purification, characteri-
zation, and cDNA sequencing of a novel hydroxyproline-containing factor secreted by the strawberry pathogen Phytophthora
cactorum. J. Biol. Chem. 2001, 276, 21578–21584. [CrossRef]

120. Chen, X.-R.; Li, Y.-P.; Li, Q.-Y.; Xing, Y.-P.; Liu, B.-B.; Tong, Y.-H.; Xu, J.-Y. SCR96, a small cysteine-rich secretory protein of
Phytophthora cactorum, can trigger cell death in the Solanaceae and is important for pathogenicity and oxidative stress tolerance.
Mol. Plant Pathol. 2016, 17, 577–587. [CrossRef]

121. Duclos, J.; Fauconnier, A.; Coelho, A.-C.; Bollen, A.; Cravador, A.; Godfroid, E. Identification of an elicitin gene cluster in
Phytophthora cinnamomi. DNA Seq. 1998, 9, 231–237. [CrossRef]

122. Jiang, R.H.Y.; Tyler, B.M.; Whisson, S.C.; Hardham, A.R.; Govers, F. Ancient origin of elicitin gene clusters in Phytophthora
genomes. Mol. Biol. Evol. 2006, 23, 338–351. [CrossRef]

123. Osman, H.; Vauthrin, S.; Mikes, V.; Milat, M.-L.; Panabières, F.; Marais, A.; Brunie, S.; Maume, B.; Ponchet, M.; Blein, J.-P.
Mediation of elicitin activity on tobacco is assumed by elicitin-sterol complexes. Mol. Biol. Cell 2001, 12, 2825–2834. [CrossRef]

124. Rodrigues, M.L.; Archer, M.; Martel, P.; Miranda, S.; Thomaz, M.; Enguita, F.J.; Baptista, R.P.; e Melo, E.P.; Sousa, N.; Cravador, A.;
et al. Crystal structures of the free and sterol-bound forms of β-cinnamomin. Biochim. Biophys. Acta Proteins Proteom. 2006, 1764,
110–121. [CrossRef] [PubMed]

125. Boissy, G.; de La Fortelle, E.; Kahn, R.; Huet, J.-C.; Bricogne, G.; Pernollet, J.-C.; Brunie, S. Crystal structure of a fungal elicitor
secreted by Phytophthora cryptogea, a member of a novel class of plant necrotic proteins. Structure 1996, 4, 1429–1439. [CrossRef]

126. Derevnina, L.; Dagdas, Y.F.; De la Concepcion, J.C.; Białas, A.; Kellner, R.; Petre, B.; Domazakis, E.; Du, J.; Wu, C.-H.; Lin, X.; et al.
Nine things to know about elicitins. New Phytol. 2016, 212, 888–895. [CrossRef]

127. Nie, J.; Yin, Z.; Li, Z.; Wu, Y.; Huang, L. A small cysteine-rich protein from two kingdoms of microbes is recognized as a novel
pathogen-associated molecular pattern. New Phytol. 2019, 222, 995–1011. [CrossRef]
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