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Abstract
Purpose of Review  Continuous replanting of land with the same or similar plant species can result in the accumulation of 
harmful soil microbes, which can lead to crop failure. In this review, we explore the influence of constant replanting on the 
health of short-rotation forestry soil, focusing on the accumulation of deleterious microbes and the decline of beneficial 
microbes. We also suggest possible practical solutions to address this problem and consider future research that could be 
conducted to better understand and reduce the build-up of deleterious soil microbes in short-rotation forestry soil.
Recent Findings  Compelling evidence that continuous replanting of the same tree species in short-rotation plantation for-
estry might contribute to the build-up of deleterious soil microbes is still lacking. However, our assessment of existing soil 
microbiome data from global short-rotation plantation environments suggests a high risk of an accumulation of harmful 
microbes and a loss of beneficial microbes in plots that were continually replanted with the same tree species. Based on 
this evidence, and that from agriculture, we propose further research to acquire a better understanding of the build-up of 
harmful soil microbes in short-rotation plantation forestry, and suggest crop rotation and intercropping strategies to avoid 
this malady in the future.
Summary  The accumulation of microbes detrimental to plantation trees and the decline of microbes beneficial to these trees 
are realistic risks when plantations are continually replanted with the same tree species. Extensive research is necessary to 
evaluate the impact of short continuous planting rotations on the biodiversity of soil microbes in plantations and to develop 
strategies that would alleviate the build-up of detrimental microbes.

Keywords  Continuous replanting · Crop rotation · Plantations · Plant pathogens · Soil microbiome

Introduction

Plantation forestry is important to the global economy, 
and it is increasingly realised that intensively managed 
plantations have a major role to play in the circular 
economy by providing sustainable material and replac-
ing fossil-based products [1]. Forests cover about four 
billion hectares of the world’s land surface, of which 
about 291 million hectares are planted forests [2]. The 
commercial forestry sector is continuously expanding 
due to an increasing global population and demand for 
forest-based products. Since 1990, the global primary 
forest area has been steadily decreasing at a rate that is 
especially high in low-income countries [3]. To com-
pensate for the loss of natural forest resources, nearly 
all countries are in some way engaged in commercial 

forestry, which also provides important sources of 
employment and income [2].

It is unlikely that the global demand for forest-based 
products will decrease in the future, and this is espe-
cially due to the development of numerous novel applica-
tions, such as microfibers and composite wood products. 
Plantation forestry using fast-growing tree species that 
produce high yields, especially in temperate, tropical 
and subtropical regions is an important source of these 
products [4,5]. Hence, forestry companies are continu-
ously seeking sources of rapidly growing genotypes of 
commercially important tree species with the fit for pur-
pose wood and tolerance to biotic and abiotic stresses 
[6,7]. These genotypes will substantially reduce rota-
tion periods, and consequently, forest land is likely to be 
replanted more frequently.

Short-rotation plantation forestry (5–20-year rota-
tion) has the potential to substantially meet the global 
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demand for forest-based products because of the faster 
accrual of biomass by various species of Eucalyptus, 
Pinus, Acacia and Populus [8]. However, continuous 
short rotations of the same or closely related tree spe-
cies or genotypes may have unintentional ecological 
consequences (Fig. 1). Competition for plant-derived 
nutrients allows a large number of microbes to colonize 
the rhizosphere [9,10], collectively referred to as the 
rhizobiome, and successive replanting on the same land 
can lead to a build-up of detrimental microbes that can 
negatively affect long-term productivity [11]. In a newly 
established monoclonal plantation, the levels of soil-
borne plant pathogens are typically not problematic. 
Successive short rotations of the same tree genotypes 
can, however, result in soils with increased loads of 
deleterious microbes, which could cause crop failure 
[12, 13••]. 

In this review, we evaluate the data from soil micro-
biome research conducted on short-rotation forest soils 
to assess the impact of continuous replanting, with an 
emphasis on detecting evidence for the accumulation of 
deleterious microbes and the reduction of beneficial ones. 
Based on this evidence, we recommend directions for fur-
ther studies required to gain a better understanding of the 
accumulation of deleterious microbes in short-rotation 
forestry soils and to minimise the effect of this malady 
in the future.

Soil Health in Managed Forest Environments

Soil properties, the chemical composition of the plant 
litter and above-ground vegetation significantly influ-
ence the soil microbiome [14•, 15–17]. Monoclonal 
plantations of exotic trees often have poor litter qual-
ity and limited diversity in above-ground vegetation. 
This, along with changes in land use and management 
techniques can negatively impacts the biodiversity of 
soil microbes [18–21]. This is especially concerning 
because the soil microbiome is responsible for several 
nutrient cycles and also improves soil fertility [14, 
22, 23]. The poor biodiversity of soil microbes can be 

further intensified through harvesting and subsequent 
replanting of stands to the same exotic tree species 
[24–27] (Fig. 1), ultimately leading to a gradual dete-
rioration of soil health [28, 29]. This, for example, has 
been documented in a recent study by Guo et al. [30••], 
in which the authors reported that the transformation of 
natural broadleaved forests into Cunninghamia lanceo-
lata monocultures resulted in the degradation of soil 
physiological properties as well as lower diversity and 
richness of soil microbial communities. Other research 
that compared the microbial diversity, soil nutrients, 
and structure of short-rotation tree plantations and natu-
ral forests found a comparable pattern [31–33].

Soil microbes serve an essential function in forests by 
recycling nutrients and restoring the physical properties of 
the soil [9, 11, 34]. Amongst these microbes, fungi act as the 
primary decomposers and simultaneously improve the physi-
cal properties of the soil [9, 35, 36]. In addition, plant sym-
biotic fungi such as mycorrhizae facilitate nutrient uptake, 
improve plant resistance to pathogens and enhance stress 
tolerance [37, 38]. Similarly, soil-inhabiting bacteria such 
as nitrifying bacteria, mycorrhization helper bacteria [39] 
and plant growth-promoting rhizobacteria [40] enrich the 
soil with nutrients, enhance mycorrhizal associations [39] 
and stimulate plant growth [41].

Soil Health and Multiple Rotations—Lessons 
from Agriculture and Horticulture

Agricultural and horticultural plantings provide alarm-
ing examples of the ‘replanting syndrome’. Two well-
documented cases are the take-all disease of wheat and 
apple replant disease (ARD). The soil-borne fungal 
pathogen Gaeumannomyces tritici causes take-all dis-
ease, one of the most damaging root diseases of wheat 
[42]. This disease is widespread in temperate wheat-
growing regions of the world, causing significant eco-
nomic losses [43, 44]. G. tritici also infects other cereal 
crops, including barley, rye and triticale. Usually, this 
fungus survives saprophytically within plant debris dur-
ing the intercropping period. Primary infection occurs 
when the roots of wheat seedlings come into contact 
with the fungal mycelia. The infection begins with the 
fungus colonising the root and progresses to the plant’s 
vascular tissue [45, 46]. Infected plants have distinctive 
white heads caused by premature ripening of the ears, 
as well as blackened stem bases [47•]. The severity of 
this disease increases with continuous replanting [48]. 
A comparable scenario has been documented in horti-
cultural settings in the form of ARD.

ARD has been reported in almost all apple-grow-
ing areas in the world [49, 50•, 51]. Symptoms of this 

Fig. 1   Soil health is fostered by the synergistic effect of the physical, 
chemical and biological properties of the soil. High plant diversity in 
native vegetation promotes good soil health. However, when vegeta-
tion is cleared to set up monoculture plantations, soil health suffers as 
a result of the low biodiversity of soil microbes triggered by reduced 
plant diversity, harvesting and other silvicultural activities. This poor 
soil health in plantations is exacerbated by continuous short rotations 
of the same or nearly identical tree genera, which deteriorate soil 
health and promote the build-up of deleterious microbes, causing tree 
decline

◂
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syndrome include stunted tree growth, discoloured 
roots, reduction of the root mass and necrosis of the 
root tips. The degree of susceptibility varies greatly 
among apple genotypes [52]. Nonetheless, symptoms 
appear soon after planting into continuously replanted 
soil [50•, 53–55]. Apart from apples, various other 
rosaceous crops are also known to be affected by this 
disease [56, 57]. ARD is known to be caused by biotic 
components since fumigation, and other methods of 
disease control can suppress this syndrome [57, 58]. 
Several different soil-borne necrotrophic fungi and 
oomycete pathogens, such as species of Fusarium, 
Cylindrocarpon, Phytophthora, Pythium and Rhizoc-
tonia, have been recovered from symptomatic trees. 
Therefore, it appears unlikely that it is caused by a 
single pathogen, but rather by a pathogen complex 
[49, 50•, 55, 59–63]. In addition, certain edaphic 
factors can also increase the severity of the disease, 
such as soil structure, pH and nutrients [55, 57]. Con-
tinuous replanting, for example, alters soil microbial 
interactions and metabolism [64, 65]. Inefficient lit-
ter decomposition can result in the build-up of phe-
nolic compounds such as phlorizin, benzoic acid and 
vanillic aldehyde [66]. The combined effect of these 
biochemical processes negatively influences essential 
soil components such as pH, organic matter, moisture 
levels and the availability of N, K and P [67] and can 
adversely affect soil microbes, leading to the develop-
ment of ARD.

In both the above-mentioned examples, chemical 
control is expensive, usually ineffective and environ-
mentally unsustainable. Various isolates of G. tritici 
are known to be resistant to commonly used fungicides 
[68], and chemical control for ARD is hazardous to the 
environment and is not sustainable due to the scale of 
the affected areas [57]. In this regard, disease-resistant 
crop varieties are often considered as a solution to the 
problem. Various resistant apple rootstocks have thus 
been developed, which are partially resistant to ARD 
[69], but for take-all disease, no disease-resistant wheat 
cultivars are currently available [44]. For both of these 
diseases, however, crop rotation is an effective control 
strategy [44, 48, 57, 58].

Crop rotation involves cultivating different, unrelated plant 
species sequentially on the same land [70, 71], a strategy that 
can significantly reduce the build-up of unfavourable microbes 
[49, 59, 72]. At the same time, crop rotation increases the 
nutrient levels and physical properties of the soil [48, 73–77]. 
Such a rotation of crops is especially effective in reducing 
plant diseases caused by biotrophic pathogens, because these 
microbes lack saprotrophic life stages, and cannot survive 

without a living host [78]. The efficacy of crop rotation is sub-
stantially less effective in the case of plant pathogens that have 
a broad host range or that produce thick-walled structures such 
as sclerotia, chlamydospores or thick-walled oospores, which 
can overcome unfavourable conditions [79,80].

The selection of an appropriate rotation programme 
is important for this strategy to be effective [74, 81, 82]. 
For example, alternating between wheat and legumes is 
commonly practised to control the take-all disease caused 
by G. tritici [48]. The legumes restore soil nitrogen and 
minimize the build-up of pathogen propagules resulting 
in higher grain yield, while the grains improve the physi-
cal structure of the soil providing niches for the survival 
of beneficial microbes [74, 81, 83, 84]. Similarly, rice is 
usually rotated with maize and various leguminous crops 
to improve soil nutrients and structure [85–87]. Like-
wise, potato, an important cash crop, is often rotated with 
buckwheat, oats, ryegrass or clover to reduce the inocu-
lum of Rhizoctonia solani in the soil [88–91] (Table 1). 
These are examples where crop rotation is an effective 
and sustainable method for improving the health of agri-
cultural soils and, as a result, it is extensively used when 
growing annual crops. However, for fruit tree orchards, 
the situation is more complex due to the long lifespans 
of the plants and the specialized nature of the cropping 
system.

Evidence for Accumulation of Detrimental 
Soil Microbes in Plantation soils

Short-rotation plantation forestry plots are often 
established by clearing land that was previously covered 
by other vegetation types (Fig.  1). After clearing the 
previous, in some cases native vegetation, a suitable 
tree species is selected based on performance under the 
prevailing conditions in the region, including climate, soil 
and other factors. These plantations are often continuously 
replanted to the same genera, every 10–15 years. Recent 
investigations comparing the community of soil microbes 
in monoclonal planted forests and neighbouring mixed 
natural forest areas have revealed that plantation soils 
harbour higher levels of microbes that are pathogenic to 
the plantation tree species [92••, 93••, 94••]. In all of 
these studies, the community composition of microbes 
associated with plantation soils differed significantly from 
that of adjacent native forests.

Jimu et al. [92••] compared the community composition 
of soil fungi associated with exotic Eucalyptus grandis and 
adjacent woodlands in Zimbabwe. In that study, the soil 
mycobiota of the E. grandis plantation included fungal taxa 
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from families such as the Davidiellaceae, Mycosphaerel-
laceae and Teratosphaeriaceae, which include species that 
are known as Eucalyptus pathogens. Similarly, continuous 
replanting of many other tree species over several genera-
tions has been shown to have deleterious effects on tree 
health due to disturbance of soil microbial diversity [13, 
95••].

Cunninghamia lanceolata is native to China. This tree is 
planted due to its rapid growth, high yields and the fact that 
it adapts to a wide range of climatic conditions. There have 
been reports of replanting problems with the monocultures 
of this tree. Continuous replanting with C. lanceolata 
reduces soil fertility and negatively affects the soil microbial 
community [13••, 30••, 95••]. Xia et al. [12] demonstrated 
that soil microbial community compositions differ between 
the first and second rotations of C. lanceolata plantings. For 
example, an upsurge in Fusarium and Penicillium species 
was observed during the second rotation. However, the 
authors could not distinguish between pathogenic and non-
pathogenic species of Fusarium. The authors hypothesised 
that the deterioration of the soil microbial community 
was likely caused by the continual replanting of the plots 
(Table 1). To alleviate this problem, C. lanceolata is now 
often rotated with P. massoniana [96].

Various Phytophthora species, such as P. alticola, 
P. cinnamomi and P. frigida, are important soil-borne 
pathogens of plantation trees. Studies in which the 
community of Phytophthora species were compared 
between plantations, and natural mixed forests indicated 
an accumulation of specific Phytophthora species that 
are pathogenic to the plantation tree species [94••, 97, 
98]. They also showed that the species composition of 
Phytophthora was different from the adjacent mixed 
natural forests [94••, 98]. The species richness of non-
pathogenic Phytophthora species was substantially lower 
in the plantation soil and roots of non-native plantations 
trees, E. grandis and Acacia mearnsii, but included 
those that are known pathogens of these trees [94••, 98] 
(Table 1).

There is currently very little compelling experimental evi-
dence that continuous planting of the same or nearly similar 
tree species in short-rotation forestry results in the accu-
mulation of detrimental microbes that cause tree decline. 
This is due to the lack of long-term research monitoring 
the accumulation of soil microbes in short-rotation planta-
tion forest plots. However, the research cited above provides 
evidence that some pathogenic microbes can become more 
prevalent in short-rotation forest soils. Thus, it cannot be 
excluded that continuous replanting of the same tree species 
in a plot already loaded with detrimental microbes, as prac-
tised in short-rotation forestry, could allow these pathogens 
to become more abundant over time, resulting in tree decline 
(Fig. 1; Table 1).Ta
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Evidence for the Reduction of Beneficial Soil 
Microbes in Plantation Soils

Reduced presence of beneficial microbes, such as sapro-
phytes, mycorrhizae and rhizobia, in plantation soil can 
also have an adverse impact on plant health. As a result, in 
short-rotation plantations, the synergistic impact of pathogen 
accumulation and the decline of beneficial microbes can lead 
to a deterioration of soil and tree health. Beneficial microbes 
are fundamentally important in the regulation of soil bio-
geochemical processes because they are the primary drivers 
of nutrient cycling and soil quality improvement [99, 100]. 
Saprophytes, mycorrhizal fungi and rhizobia, for example, 
play critical roles in decomposing plant biopolymers, as well 
as promoting nutrient uptake, boosting plant metabolism and 
increasing disease resistance [9, 101, 102].

Saprotrophic fungi are essential components of the 
nutrient cycle in terrestrial environments. They are the 
primary decomposers of plant litter, and their hyphal 
networks, which spread along the soil-litter interface, 
represent active routes through which these nutrients 
are efficiently distributed [103, 104]. Xu et al. [105••] 
reported that continuous replanting of Eucalyptus can 
reduce the relative abundance of dominating microbial 
groups. The authors reported that switching from P. mas-
soniana (coniferous) to Eucalyptus (broadleaf) improved 
soil fungal colonisation in the early phases (first and 
second generations). However, subsequent generations 
negatively impacted the physiochemical properties of the 
soil and the community diversity of soil microbes. Soil 
bacterial communities changed from carbon-utilizing 
to nitrogen-utilizing, whereas the fungal communities 
shifted from saprophytic and pathogenic to symbiotic. 
Earlier, Xu et al. [106•] compared the effect of continu-
ous monoculture of Eucalyptus plantations on nutrient 
levels and microbial biomass (fungi and bacteria) to that 
of inter-planting Eucalyptus with Manglietia glauca. 
When compared to monoclonal Eucalyptus plots, inter-
planting Eucalyptus with M. glauca enhanced soil fertil-
ity and increased the number and richness of beneficial 
fungi and bacteria (Table 1).

Mycorrhizal fungi mobilise nutrients, such as N and P, 
to the host plant and boost the host’s tolerance to abiotic 
(drought, salt, heavy metals) and biotic (root pathogens) 
stress. Eucalyptus species form associations with both ecto 
and endomycorrhizae. Chen et al. [107•] reported low lev-
els of inoculum of both ectomycorrhizae and endomycor-
rhizae in plantation soil when documenting the mycorrhi-
zal biodiversity associated with short-rotation Eucalyptus 
plantations in China over a 2-year period. In contrast, Xu 
et al. [105••] showed that the relative abundance of myc-
orrhizal fungi was initially low during the early rotational 

phase (first and second generation). Later on, when soil fer-
tility declined (third and fourth generation), the abundance 
of mycorrhizal fungi increased. This trend was similar in 
a number of other studies conducted on E. grandis [108] 
and E. saligna [109] (Table 1). However, during the early 
stages of replanting, when mycorrhizal abundance is mini-
mal in the soil, pathogen abundance can be higher [105•]. 
As a result, the presence of soil-borne pathogens may have 
an adverse effect on the future colonisation of Eucalyptus 
roots by mycorrhizal fungi. For example, as demonstrated 
with Eucalyptus gomphocephala, the presence of Phytoph-
thora multivora in the soil lowers fine root biomass, result-
ing in reduced ectomycorrhizal fungal colonisation [110, 
111] (Table 1).

Acacia species are important plantation trees in the tropi-
cal regions of the world. As leguminous trees, they form 
symbiotic associations with rhizobia that fix atmospheric 
nitrogen. de São José et al. [112••] investigated the rhizobial 
diversity associated with A. mearnsii at multiple sampling 
sites located in Brazil. The authors reported that the genetic 
diversity of rhizobial species was higher at sampling sites 
that were planted for the first time with A. mearnsii, whereas 
sites that were continuously replanted with A. mearnsii had 
lower genetic diversity of rhizobial species (Table 1). Thus, 
continuous replanting of A. mearnsii in the same plot can 
intensify the selection of specific groups of rhizobia, conse-
quently reducing diversity. A similar trend has been recorded 
for certain key leguminous cash crops, such as soybeans 
[113], cowpeas [114] and peanuts [115, 116], where the loss 
of rhizobial diversity led to a decline in plant vigour.

Why Is Crop Rotation Rarely Implemented 
in Plantation Forestry?

Even though crop rotation is beneficial to plant health, this 
is not a practice commonly implemented in short-rotation 
plantation forestry. There are multiple reasons for this. These 
include the fact that tree rotations are considerably longer 
(roughly 5 to 20 years for Eucalyptus and Pinus species 
under moderate climatic conditions) compared to the typical 
annual cycles of agronomic crops. Furthermore, compared 
to agriculture, fewer plant species are exploited in commer-
cial forestry. The demand for specialised wood products and 
the availability of land that can be used for plantations are 
major challenges that discourage corporate and small for-
estry enterprises from implementing rotation programmes 
for plantation trees. Thus, populations of unfavourable 
microbes can be expected to become more abundant over 
successive rotations. This is strongly supported by data 
from recent soil microbiome studies involving commercially 
managed forests, which provide convincing evidence of an 
increase in pathogenic microbes in soils of continuously 
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replanted forests [92••, 93••, 107•, 117]. Hence, despite 
the considerable challenges faced by commercial forestry, 
it is worth considering strategies to reduce or at least mini-
mize the build-up of unfavourable microbes in planted forest 
environments.

Alternative Options to Mitigate 
the Negative Effect of Successive Replanting 
in Short‑Rotation Forestry

In commercial forestry environments, two commonly used 
post-harvest residue management regimes are burning and 
mulching [118–120]. Burning is an economical and effec-
tive way to remove surplus residue, reduce fire hazards and 
manage pests and weeds [121–123]. It does, however, have 
a number of drawbacks, including the loss of soil nutrients, 
organic carbon and plant residues that reduce soil erosion 
[123, 124]. In contrast, retaining post-harvest residue and 
mulching with these residues can significantly enhance soil 
nutrient content, which is lost through continual replanting 
[125–127]. Retaining post-harvest residue also allows the 
restoration of soil microbes in continually replanted short-
rotation plantations [126, 128, 129••]. Consequently, these 
microbes decompose the residues, allowing soil nutrients to 
be recycled as well as improve the physical and water reten-
tion properties of the soil [25, 122, 130].

A majority of studies assessing the efficacy of post-
harvest residue management have focussed on quantifying 
the soil nutrients but rarely catalogue the community 
composition of microbes. However, Bose et al. [129••] 
recently evaluated the effects of three post-harvest residue 
management regimes, where residue was retained, removed, 
and removed and fertilized, on soil-associated fungal 
diversity in South Africa. This study showed that Eucalyptus 
plots where post-harvest residues were retained had a 
higher diversity of saprotrophs and symbiotrophs and fewer 
pathotrophs, compared to the other two regimes. In contrast, 
retention of tree stumps in plantations in the Northern 
Hemisphere increases the prevalence of Heterobasidion root 
rot among conifers. However, the removal of these stumps 
does not affect the biodiversity of beneficial microbes, such 
as mycorrhizae and saprotrophs [131, 132]. While these 
scenarios in Eucalyptus plantations and conifer forests 
are very different in nature, it highlights the potential 
that retained post-harvest residue could harbour certain 
pathogens. Therefore, further research is needed to verify 
the efficacy of various post-harvest residue management 
regimes in improving soil health and associated microbial 
biodiversity in relevant local scenarios.

Biochar is a carbon-rich, stable organic product 
made from the pyrolysis of organic biomasses such as 

leaves, sawdust, animal dung and wood [133]. During 
carbonization, biochar releases phosphate into the soil 
along with other mineral nutrients, improving its fertility 
[133,134]. Biochar also improves the physical properties 
[133] and microbial biodiversity of the soil, which could 
further increase soil nutrient availability and carbon storage 
[135–137]. However, the positive impact of biochar on soil 
is often contested [138,139]. In comparison to agriculture 
[140,141], our understanding of the impacts of biochar 
application on plantation forest soils is limited [133, 
142•]. Some recent studies from commercial forestry 
settings have shown that biochar improved soil nutrients 
and microbes and reshapes the microbial community 
[142•, 143–145]. Early evidence is thus that biochar has 
considerable potential to enhance soil properties, nutrients 
and microbes in continuously replanted forests. Further 
research, however, is needed to acquire a better knowledge 
of its impacts on plantation soil health.

The use of beneficial microorganisms to improve plant 
health and sustainability is common in agriculture, but not 
in forestry [146–148]. This is due to the difficulty, low 
efficacy and cost of applying a microbial supplement to 
trees over large areas in forest environments. These treat-
ments, however, can be potentially performed in nurseries 
at the seedling stage [149–151]. Mycorrhizal associations, 
for example, play an important role in a tree’s long-term 
survival in forests [9, 11]. However, the diversity and 
abundance of mycorrhizae and nitrogen-fixing bacteria are 
significantly lower in continually replanted forests [107•, 
112••]. Treating the seedlings of commercial tree species 
in nurseries with mycorrhizae, nitrogen-fixing bacteria and 
endosymbiont mixtures could be explored as an option to 
promote planting success in commercial forests [149–152]. 
Diverse communities of these beneficial microbes could 
also allow planted seedlings to survive more readily in 
continuously replanted forest soil having a low nutrient 
content and a high concentration of harmful microbes [11, 
153–157].

Adequate silviculture practices, such as crop rotation 
and intercropping, can alleviate the possible negative 
consequences of continuous replanting in short-rotation 
plantation forestry. Rotating between two distantly related 
tree species, such as Eucalyptus, Acacia mearnsii and 
conifers, can prevent the accumulation of harmful soil 
microbes detrimental to these trees (Fig. 2). For example, 
in South Africa, Eucalyptus and A. mearnsii are not infected 
by the same Phytophthora species. Eucalyptus species are 
susceptible to P. alticola, P. frigida and P. cinnamomi, 
whereas P. nicotianae infects A. mearnsii [158]. Thus, 
cycling between two non-host tree genera would likely 
reduce the population of either group of Phytophthora 
species to a level that will not cause a decline of either of the 
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tree genera planted. Furthermore, rotating nitrogen-fixing 
leguminous tree species such as Acacia with mycorrhizal 
tree species like Eucalyptus or pines has the potential to 
further promote both soil and tree health (Fig. 2). Alternating 
between these trees could increase the availability of 
nitrogen in the soil through fixation [159] and improve the 
quality of plant litter [160], thereby enhancing the diversity 
of saprotrophic soil fungi [161], as well as improving 
mycorrhizal colonization [162]. Similarly, mycorrhizal 
fungi would also help to decompose leaf litter and mobilise 
essential nutrients in the soil, such as phosphorus [163, 164], 
and promote the sequestration of carbon [165].

Future Research Needs and Opportunities

Most evidence for the build-up of soil-borne pathogens in 
planted forests emerges from short-term studies using short-
read sequencing platforms. The diversity data from these 
studies provide some clues on the build-up of deleterious 
soil microbes due to continuous short to medium rotations 
of the same or nearly the same tree genotypes, yet they do 
not provide conclusive evidence [92••, 97, 98]. Even though 
short-read sequencing platforms are widely used to cata-
logue microbial diversity from various environments, they 
have several drawbacks, including limitations in taxonomic 
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Fig. 2   Three potential schemes for minimizing the accumulation 
of detrimental microbes in monoculture plantations induced by the 
continuous replanting of the land with the same tree genus. Crop 
rotation involves alternating between mycorrhizal and rhizobial 
tree species such as Eucalyptus, Acacia and conifers. The other two 
systems involve intercropping with either two timber-producing 

trees or one each of timber and a crop plant such as legumes and 
tuber crops. When selecting the two timber schemes, intercropping 
a mycorrhizal and a rhizobial tree would be ideal. Intercropping of 
plantation trees and agricultural crops can allow agriculture and 
plantation to share land resources while also increasing soil carbon 
content and land productivity.
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identification, taxonomic bias and amplification of dead 
microbes that are not a part of the immediate biodiver-
sity, among others [94••, 166, 167]. Long-term monitor-
ing programmes using third-generation (long-read) DNA 
sequencing platforms that improve taxonomic resolution 
and significantly reduce the possibility of amplifying dead 
organisms are required to address this shortfall in knowledge 
[168–172].

Long-term monitoring programs allow the sampling of 
soils from continuously replanted experimental plots at 
regular intervals. Microbiome data emerging from such 
experimental plots could be used to track the build-up of 
unfavourable microbes resulting from continuous replant-
ing. Understanding the origin and perpetuation of disease-
conducive soils in forestry environments will allow for the 
development and improvement of strategies to mitigate this 
problem. Simultaneously, species-level identification of 
these disease-conducive microbes is equally important for 
implementing mitigating strategies.

Although crop rotation is one of the most important strat-
egies used in agriculture to mitigate the build-up of delete-
rious microbes, the efficacy of this approach has not been 
thoroughly tested in forestry environments, nor would it 
be practical for all forestry companies. An ideal approach 
to experimentally test the value of crop rotation would be 
to use relatively short rotations of Eucalyptus and Acacia 
as a model system (Fig. 2). This is because rotation and 
intercropping of these two tree species have been shown to 
improve the soil’s microbial diversity, nutrients and struc-
ture [162, 173, 174••, 175, 176]. Species of Pinus and other 
gymnosperms could also be included in these experimental 
rotations (Fig. 2).

In agroforestry, intercropping of timber-producing trees 
with agricultural crops such as legumes, tuber crops and 
a few others has also resulted in promising research out-
comes [177–180] (Fig. 2). This approach allows sharing of 
land resources between agriculture and plantation forestry, 
while also enhancing soil carbon content and land produc-
tivity. Other advantages of this system include reduced soil 
erosion, weed management, improved biodiversity of soil 
microbes, improved soil quality, improved yield and yield 
stability and suppression of pests and pathogens [181,182]. 
Consequently, further research is needed to examine the 
feasibility of this system as a standard operational proce-
dure. Soil microbiome data emerging from such studies at 
regular intervals would increase our understanding of the 
benefits of crop rotation and intercropping in managed forest 
environments. This could also result in environmentally and 
economically resilient plantations.

Advances in technologies are substantially influencing 
our understanding of the plant microbiome [183,184]. 
There is a clear shift in focus from issues relating to 

diversity towards a deeper understanding of changes in 
the functions of the microbial community in response to 
various environmental factors and their impact on tree 
health [185–187]. New techniques allow synthetic micro-
bial communities (SynCom) to be designed with a defined 
set of microbes with known functions, such as improving 
plant immunity, nutrient acquisition and stress tolerance 
[188,189]. Such synthetic microbiomes make it possible to 
understand the effect of these communities on plant health 
in response to various environmental stresses, including 
plant pathogens [171, 183, 189–191]. For example, in 
maize, removing a single strain of Enterobacter cloacae 
disrupted a microbial community that was capable of low-
ering the severity of Fusarium verticillioides ear rot [192]. 
Similarly, in Arabidopsis thaliana, a synthetic microbi-
ome has been utilised to predict plant phenotype [193]. 
However, the majority of these studies have focussed 
on microbes associated with crop plants or with model 
plants. Evaluating the influence of SynCom on the health 
of commercially important tree species, such as Eucalyp-
tus, would be valuable.

In forest nurseries, fortifying plants with mycorrhizae 
and nitrifying bacteria can be explored to increase their 
establishment on constantly replanted land that is often 
low in biodiversity of beneficial microbes [149–151]. 
Nonetheless, the use of non-native but beneficial 
microbes could have unknown negative impacts, e.g. 
non-native strains aggressively competing with the native 
microbial population, which can impede the stability of 
the ecosystem [194–200]. Beneficial microbes should 
ideally be locally sourced strains that may be found in 
adjacent native forest patches and plantations because 
invasive plants frequently exploit them to colonise these 
environments [201–206]. Consequently, research is 
needed to identify these native beneficial microbes, such 
as ectomycorrhizae, develop strategies for their long-term 
establishment in plantations and assess their impact on 
the health and vigour of exotic plantation trees in non-
native habitats.

Conclusions

Continuous replanting practised in short-rotation plantation 
forests is likely to be accompanied by a high risk of ‘replant-
ing syndrome’ in plantations. While long-term monitoring 
programs to document the changes in soil microbiomes 
are still lacking and should be urgently initiated, the avail-
able evidence suggests that short-rotation forest plantation 
enterprises could be restrictive when successively establish-
ing new plots with the same or nearly the same genotypes. 
Furthermore, it is necessary to assess the efficacy of crop 
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rotation, inter-cropping, post-harvest residue management 
regimens and the inoculation of seedlings with beneficial 
microbes in treating this malady in short-rotation forestry 
environments.
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