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Abstract

Purpose of Review Continuous replanting of land with the same or similar plant species can result in the accumulation of
harmful soil microbes, which can lead to crop failure. In this review, we explore the influence of constant replanting on the
health of short-rotation forestry soil, focusing on the accumulation of deleterious microbes and the decline of beneficial
microbes. We also suggest possible practical solutions to address this problem and consider future research that could be
conducted to better understand and reduce the build-up of deleterious soil microbes in short-rotation forestry soil.

Recent Findings Compelling evidence that continuous replanting of the same tree species in short-rotation plantation for-
estry might contribute to the build-up of deleterious soil microbes is still lacking. However, our assessment of existing soil
microbiome data from global short-rotation plantation environments suggests a high risk of an accumulation of harmful
microbes and a loss of beneficial microbes in plots that were continually replanted with the same tree species. Based on
this evidence, and that from agriculture, we propose further research to acquire a better understanding of the build-up of
harmful soil microbes in short-rotation plantation forestry, and suggest crop rotation and intercropping strategies to avoid
this malady in the future.

Summary The accumulation of microbes detrimental to plantation trees and the decline of microbes beneficial to these trees
are realistic risks when plantations are continually replanted with the same tree species. Extensive research is necessary to
evaluate the impact of short continuous planting rotations on the biodiversity of soil microbes in plantations and to develop

strategies that would alleviate the build-up of detrimental microbes.

Keywords Continuous replanting - Crop rotation - Plantations - Plant pathogens - Soil microbiome

Introduction

Plantation forestry is important to the global economy,
and it is increasingly realised that intensively managed
plantations have a major role to play in the circular
economy by providing sustainable material and replac-
ing fossil-based products [1]. Forests cover about four
billion hectares of the world’s land surface, of which
about 291 million hectares are planted forests [2]. The
commercial forestry sector is continuously expanding
due to an increasing global population and demand for
forest-based products. Since 1990, the global primary
forest area has been steadily decreasing at a rate that is
especially high in low-income countries [3]. To com-
pensate for the loss of natural forest resources, nearly
all countries are in some way engaged in commercial
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forestry, which also provides important sources of
employment and income [2].

It is unlikely that the global demand for forest-based
products will decrease in the future, and this is espe-
cially due to the development of numerous novel applica-
tions, such as microfibers and composite wood products.
Plantation forestry using fast-growing tree species that
produce high yields, especially in temperate, tropical
and subtropical regions is an important source of these
products [4,5]. Hence, forestry companies are continu-
ously seeking sources of rapidly growing genotypes of
commercially important tree species with the fit for pur-
pose wood and tolerance to biotic and abiotic stresses
[6,7]. These genotypes will substantially reduce rota-
tion periods, and consequently, forest land is likely to be
replanted more frequently.

Short-rotation plantation forestry (5-20-year rota-
tion) has the potential to substantially meet the global
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«Fig. 1 Soil health is fostered by the synergistic effect of the physical,
chemical and biological properties of the soil. High plant diversity in
native vegetation promotes good soil health. However, when vegeta-
tion is cleared to set up monoculture plantations, soil health suffers as
a result of the low biodiversity of soil microbes triggered by reduced
plant diversity, harvesting and other silvicultural activities. This poor
soil health in plantations is exacerbated by continuous short rotations
of the same or nearly identical tree genera, which deteriorate soil
health and promote the build-up of deleterious microbes, causing tree
decline

demand for forest-based products because of the faster
accrual of biomass by various species of Eucalyptus,
Pinus, Acacia and Populus [8)]. However, continuous
short rotations of the same or closely related tree spe-
cies or genotypes may have unintentional ecological
consequences (Fig. 1). Competition for plant-derived
nutrients allows a large number of microbes to colonize
the rhizosphere [9,10], collectively referred to as the
rhizobiome, and successive replanting on the same land
can lead to a build-up of detrimental microbes that can
negatively affect long-term productivity [11]. In a newly
established monoclonal plantation, the levels of soil-
borne plant pathogens are typically not problematic.
Successive short rotations of the same tree genotypes
can, however, result in soils with increased loads of
deleterious microbes, which could cause crop failure
[12, 13ee].

In this review, we evaluate the data from soil micro-
biome research conducted on short-rotation forest soils
to assess the impact of continuous replanting, with an
emphasis on detecting evidence for the accumulation of
deleterious microbes and the reduction of beneficial ones.
Based on this evidence, we recommend directions for fur-
ther studies required to gain a better understanding of the
accumulation of deleterious microbes in short-rotation
forestry soils and to minimise the effect of this malady
in the future.

Soil Health in Managed Forest Environments

Soil properties, the chemical composition of the plant
litter and above-ground vegetation significantly influ-
ence the soil microbiome [14e, 15-17]. Monoclonal
plantations of exotic trees often have poor litter qual-
ity and limited diversity in above-ground vegetation.
This, along with changes in land use and management
techniques can negatively impacts the biodiversity of
soil microbes [18-21]. This is especially concerning
because the soil microbiome is responsible for several
nutrient cycles and also improves soil fertility [14,
22, 23]. The poor biodiversity of soil microbes can be

further intensified through harvesting and subsequent
replanting of stands to the same exotic tree species
[24-27] (Fig. 1), ultimately leading to a gradual dete-
rioration of soil health [28, 29]. This, for example, has
been documented in a recent study by Guo et al. [30ee],
in which the authors reported that the transformation of
natural broadleaved forests into Cunninghamia lanceo-
lata monocultures resulted in the degradation of soil
physiological properties as well as lower diversity and
richness of soil microbial communities. Other research
that compared the microbial diversity, soil nutrients,
and structure of short-rotation tree plantations and natu-
ral forests found a comparable pattern [31-33].

Soil microbes serve an essential function in forests by
recycling nutrients and restoring the physical properties of
the soil [9, 11, 34]. Amongst these microbes, fungi act as the
primary decomposers and simultaneously improve the physi-
cal properties of the soil [9, 35, 36]. In addition, plant sym-
biotic fungi such as mycorrhizae facilitate nutrient uptake,
improve plant resistance to pathogens and enhance stress
tolerance [37, 38]. Similarly, soil-inhabiting bacteria such
as nitrifying bacteria, mycorrhization helper bacteria [39]
and plant growth-promoting rhizobacteria [40] enrich the
soil with nutrients, enhance mycorrhizal associations [39]
and stimulate plant growth [41].

Soil Health and Multiple Rotations—Lessons
from Agriculture and Horticulture

Agricultural and horticultural plantings provide alarm-
ing examples of the ‘replanting syndrome’. Two well-
documented cases are the take-all disease of wheat and
apple replant disease (ARD). The soil-borne fungal
pathogen Gaeumannomyces tritici causes take-all dis-
ease, one of the most damaging root diseases of wheat
[42]. This disease is widespread in temperate wheat-
growing regions of the world, causing significant eco-
nomic losses [43, 44]. G. tritici also infects other cereal
crops, including barley, rye and triticale. Usually, this
fungus survives saprophytically within plant debris dur-
ing the intercropping period. Primary infection occurs
when the roots of wheat seedlings come into contact
with the fungal mycelia. The infection begins with the
fungus colonising the root and progresses to the plant’s
vascular tissue [45, 46]. Infected plants have distinctive
white heads caused by premature ripening of the ears,
as well as blackened stem bases [47¢]. The severity of
this disease increases with continuous replanting [48].
A comparable scenario has been documented in horti-
cultural settings in the form of ARD.

ARD has been reported in almost all apple-grow-
ing areas in the world [49, 50, 51]. Symptoms of this
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syndrome include stunted tree growth, discoloured
roots, reduction of the root mass and necrosis of the
root tips. The degree of susceptibility varies greatly
among apple genotypes [52]. Nonetheless, symptoms
appear soon after planting into continuously replanted
soil [50e, 53-55]. Apart from apples, various other
rosaceous crops are also known to be affected by this
disease [56, 57]. ARD is known to be caused by biotic
components since fumigation, and other methods of
disease control can suppress this syndrome [57, 58].
Several different soil-borne necrotrophic fungi and
oomycete pathogens, such as species of Fusarium,
Cylindrocarpon, Phytophthora, Pythium and Rhizoc-
tonia, have been recovered from symptomatic trees.
Therefore, it appears unlikely that it is caused by a
single pathogen, but rather by a pathogen complex
[49, 50e, 55, 59-63]. In addition, certain edaphic
factors can also increase the severity of the disease,
such as soil structure, pH and nutrients [55, 57]. Con-
tinuous replanting, for example, alters soil microbial
interactions and metabolism [64, 65]. Inefficient lit-
ter decomposition can result in the build-up of phe-
nolic compounds such as phlorizin, benzoic acid and
vanillic aldehyde [66]. The combined effect of these
biochemical processes negatively influences essential
soil components such as pH, organic matter, moisture
levels and the availability of N, K and P [67] and can
adversely affect soil microbes, leading to the develop-
ment of ARD.

In both the above-mentioned examples, chemical
control is expensive, usually ineffective and environ-
mentally unsustainable. Various isolates of G. tritici
are known to be resistant to commonly used fungicides
[68], and chemical control for ARD is hazardous to the
environment and is not sustainable due to the scale of
the affected areas [57]. In this regard, disease-resistant
crop varieties are often considered as a solution to the
problem. Various resistant apple rootstocks have thus
been developed, which are partially resistant to ARD
[69], but for take-all disease, no disease-resistant wheat
cultivars are currently available [44]. For both of these
diseases, however, crop rotation is an effective control
strategy [44, 48, 57, 58].

Crop rotation involves cultivating different, unrelated plant
species sequentially on the same land [70, 71], a strategy that
can significantly reduce the build-up of unfavourable microbes
[49, 59, 72]. At the same time, crop rotation increases the
nutrient levels and physical properties of the soil [48, 73-77].
Such a rotation of crops is especially effective in reducing
plant diseases caused by biotrophic pathogens, because these
microbes lack saprotrophic life stages, and cannot survive
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without a living host [78]. The efficacy of crop rotation is sub-
stantially less effective in the case of plant pathogens that have
a broad host range or that produce thick-walled structures such
as sclerotia, chlamydospores or thick-walled oospores, which
can overcome unfavourable conditions [79,80].

The selection of an appropriate rotation programme
is important for this strategy to be effective [74, 81, 82].
For example, alternating between wheat and legumes is
commonly practised to control the take-all disease caused
by G. tritici [48]. The legumes restore soil nitrogen and
minimize the build-up of pathogen propagules resulting
in higher grain yield, while the grains improve the physi-
cal structure of the soil providing niches for the survival
of beneficial microbes [74, 81, 83, 84]. Similarly, rice is
usually rotated with maize and various leguminous crops
to improve soil nutrients and structure [85-87]. Like-
wise, potato, an important cash crop, is often rotated with
buckwheat, oats, ryegrass or clover to reduce the inocu-
lum of Rhizoctonia solani in the soil [88-91] (Table 1).
These are examples where crop rotation is an effective
and sustainable method for improving the health of agri-
cultural soils and, as a result, it is extensively used when
growing annual crops. However, for fruit tree orchards,
the situation is more complex due to the long lifespans
of the plants and the specialized nature of the cropping
system.

Evidence for Accumulation of Detrimental
Soil Microbes in Plantation soils

Short-rotation plantation forestry plots are often
established by clearing land that was previously covered
by other vegetation types (Fig. 1). After clearing the
previous, in some cases native vegetation, a suitable
tree species is selected based on performance under the
prevailing conditions in the region, including climate, soil
and other factors. These plantations are often continuously
replanted to the same genera, every 10-15 years. Recent
investigations comparing the community of soil microbes
in monoclonal planted forests and neighbouring mixed
natural forest areas have revealed that plantation soils
harbour higher levels of microbes that are pathogenic to
the plantation tree species [92ee, 93ee O4ee] In all of
these studies, the community composition of microbes
associated with plantation soils differed significantly from
that of adjacent native forests.

Jimu et al. [92e¢] compared the community composition
of soil fungi associated with exotic Eucalyptus grandis and
adjacent woodlands in Zimbabwe. In that study, the soil
mycobiota of the E. grandis plantation included fungal taxa
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Table 1 (continued)

Comments References

Microbial groups Soil properties

Country

Host plants

Decline in

Accumulation

beneficial

of detrimental
microbes

microbes

[85,231]

Continuous rotation of rice

Reduction of soil properties
nitrogen and carbon

Yes

Unknown

South-east Asia

Rice

negatively impacted the

soil nutrients and microbial
diversity leading to a reduc-

tion in production.

from families such as the Davidiellaceae, Mycosphaerel-
laceae and Teratosphaeriaceae, which include species that
are known as Eucalyptus pathogens. Similarly, continuous
replanting of many other tree species over several genera-
tions has been shown to have deleterious effects on tree
health due to disturbance of soil microbial diversity [13,
O5ee].

Cunninghamia lanceolata is native to China. This tree is
planted due to its rapid growth, high yields and the fact that
it adapts to a wide range of climatic conditions. There have
been reports of replanting problems with the monocultures
of this tree. Continuous replanting with C. lanceolata
reduces soil fertility and negatively affects the soil microbial
community [13ee 30ee 95ee] Xia et al. [12] demonstrated
that soil microbial community compositions differ between
the first and second rotations of C. lanceolata plantings. For
example, an upsurge in Fusarium and Penicillium species
was observed during the second rotation. However, the
authors could not distinguish between pathogenic and non-
pathogenic species of Fusarium. The authors hypothesised
that the deterioration of the soil microbial community
was likely caused by the continual replanting of the plots
(Table 1). To alleviate this problem, C. lanceolata is now
often rotated with P. massoniana [96].

Various Phytophthora species, such as P. alticola,
P. cinnamomi and P. frigida, are important soil-borne
pathogens of plantation trees. Studies in which the
community of Phytophthora species were compared
between plantations, and natural mixed forests indicated
an accumulation of specific Phytophthora species that
are pathogenic to the plantation tree species [94ee, 97,
98]. They also showed that the species composition of
Phytophthora was different from the adjacent mixed
natural forests [94ee, 98]. The species richness of non-
pathogenic Phytophthora species was substantially lower
in the plantation soil and roots of non-native plantations
trees, E. grandis and Acacia mearnsii, but included
those that are known pathogens of these trees [94ee 98]
(Table 1).

There is currently very little compelling experimental evi-
dence that continuous planting of the same or nearly similar
tree species in short-rotation forestry results in the accu-
mulation of detrimental microbes that cause tree decline.
This is due to the lack of long-term research monitoring
the accumulation of soil microbes in short-rotation planta-
tion forest plots. However, the research cited above provides
evidence that some pathogenic microbes can become more
prevalent in short-rotation forest soils. Thus, it cannot be
excluded that continuous replanting of the same tree species
in a plot already loaded with detrimental microbes, as prac-
tised in short-rotation forestry, could allow these pathogens
to become more abundant over time, resulting in tree decline
(Fig. 1; Table 1).
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Evidence for the Reduction of Beneficial Soil
Microbes in Plantation Soils

Reduced presence of beneficial microbes, such as sapro-
phytes, mycorrhizae and rhizobia, in plantation soil can
also have an adverse impact on plant health. As a result, in
short-rotation plantations, the synergistic impact of pathogen
accumulation and the decline of beneficial microbes can lead
to a deterioration of soil and tree health. Beneficial microbes
are fundamentally important in the regulation of soil bio-
geochemical processes because they are the primary drivers
of nutrient cycling and soil quality improvement [99, 100].
Saprophytes, mycorrhizal fungi and rhizobia, for example,
play critical roles in decomposing plant biopolymers, as well
as promoting nutrient uptake, boosting plant metabolism and
increasing disease resistance [9, 101, 102].

Saprotrophic fungi are essential components of the
nutrient cycle in terrestrial environments. They are the
primary decomposers of plant litter, and their hyphal
networks, which spread along the soil-litter interface,
represent active routes through which these nutrients
are efficiently distributed [103, 104]. Xu et al. [105e¢]
reported that continuous replanting of Eucalyptus can
reduce the relative abundance of dominating microbial
groups. The authors reported that switching from P. mas-
soniana (coniferous) to Eucalyptus (broadleaf) improved
soil fungal colonisation in the early phases (first and
second generations). However, subsequent generations
negatively impacted the physiochemical properties of the
soil and the community diversity of soil microbes. Soil
bacterial communities changed from carbon-utilizing
to nitrogen-utilizing, whereas the fungal communities
shifted from saprophytic and pathogenic to symbiotic.
Earlier, Xu et al. [106e] compared the effect of continu-
ous monoculture of Eucalyptus plantations on nutrient
levels and microbial biomass (fungi and bacteria) to that
of inter-planting Eucalyptus with Manglietia glauca.
When compared to monoclonal Eucalyptus plots, inter-
planting Eucalyptus with M. glauca enhanced soil fertil-
ity and increased the number and richness of beneficial
fungi and bacteria (Table 1).

Mycorrhizal fungi mobilise nutrients, such as N and P,
to the host plant and boost the host’s tolerance to abiotic
(drought, salt, heavy metals) and biotic (root pathogens)
stress. Eucalyptus species form associations with both ecto
and endomycorrhizae. Chen et al. [107¢] reported low lev-
els of inoculum of both ectomycorrhizae and endomycor-
rhizae in plantation soil when documenting the mycorrhi-
zal biodiversity associated with short-rotation Eucalyptus
plantations in China over a 2-year period. In contrast, Xu
et al. [105e¢] showed that the relative abundance of myc-
orrhizal fungi was initially low during the early rotational
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phase (first and second generation). Later on, when soil fer-
tility declined (third and fourth generation), the abundance
of mycorrhizal fungi increased. This trend was similar in
a number of other studies conducted on E. grandis [108]
and E. saligna [109] (Table 1). However, during the early
stages of replanting, when mycorrhizal abundance is mini-
mal in the soil, pathogen abundance can be higher [105¢].
As aresult, the presence of soil-borne pathogens may have
an adverse effect on the future colonisation of Eucalyptus
roots by mycorrhizal fungi. For example, as demonstrated
with Eucalyptus gomphocephala, the presence of Phytoph-
thora multivora in the soil lowers fine root biomass, result-
ing in reduced ectomycorrhizal fungal colonisation [110,
111] (Table 1).

Acacia species are important plantation trees in the tropi-
cal regions of the world. As leguminous trees, they form
symbiotic associations with rhizobia that fix atmospheric
nitrogen. de Sao José et al. [112ee] investigated the rhizobial
diversity associated with A. mearnsii at multiple sampling
sites located in Brazil. The authors reported that the genetic
diversity of rhizobial species was higher at sampling sites
that were planted for the first time with A. mearnsii, whereas
sites that were continuously replanted with A. mearnsii had
lower genetic diversity of rhizobial species (Table 1). Thus,
continuous replanting of A. mearnsii in the same plot can
intensify the selection of specific groups of rhizobia, conse-
quently reducing diversity. A similar trend has been recorded
for certain key leguminous cash crops, such as soybeans
[113], cowpeas [114] and peanuts [115, 116], where the loss
of rhizobial diversity led to a decline in plant vigour.

Why Is Crop Rotation Rarely Implemented
in Plantation Forestry?

Even though crop rotation is beneficial to plant health, this
is not a practice commonly implemented in short-rotation
plantation forestry. There are multiple reasons for this. These
include the fact that tree rotations are considerably longer
(roughly 5 to 20 years for Eucalyptus and Pinus species
under moderate climatic conditions) compared to the typical
annual cycles of agronomic crops. Furthermore, compared
to agriculture, fewer plant species are exploited in commer-
cial forestry. The demand for specialised wood products and
the availability of land that can be used for plantations are
major challenges that discourage corporate and small for-
estry enterprises from implementing rotation programmes
for plantation trees. Thus, populations of unfavourable
microbes can be expected to become more abundant over
successive rotations. This is strongly supported by data
from recent soil microbiome studies involving commercially
managed forests, which provide convincing evidence of an
increase in pathogenic microbes in soils of continuously
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replanted forests [92ee, 93ee 107e, 117]. Hence, despite
the considerable challenges faced by commercial forestry,
it is worth considering strategies to reduce or at least mini-
mize the build-up of unfavourable microbes in planted forest
environments.

Alternative Options to Mitigate
the Negative Effect of Successive Replanting
in Short-Rotation Forestry

In commercial forestry environments, two commonly used
post-harvest residue management regimes are burning and
mulching [118-120]. Burning is an economical and effec-
tive way to remove surplus residue, reduce fire hazards and
manage pests and weeds [121-123]. It does, however, have
a number of drawbacks, including the loss of soil nutrients,
organic carbon and plant residues that reduce soil erosion
[123, 124]. In contrast, retaining post-harvest residue and
mulching with these residues can significantly enhance soil
nutrient content, which is lost through continual replanting
[125-127]. Retaining post-harvest residue also allows the
restoration of soil microbes in continually replanted short-
rotation plantations [126, 128, 129ee]. Consequently, these
microbes decompose the residues, allowing soil nutrients to
be recycled as well as improve the physical and water reten-
tion properties of the soil [25, 122, 130].

A majority of studies assessing the efficacy of post-
harvest residue management have focussed on quantifying
the soil nutrients but rarely catalogue the community
composition of microbes. However, Bose et al. [129ee]
recently evaluated the effects of three post-harvest residue
management regimes, where residue was retained, removed,
and removed and fertilized, on soil-associated fungal
diversity in South Africa. This study showed that Eucalyptus
plots where post-harvest residues were retained had a
higher diversity of saprotrophs and symbiotrophs and fewer
pathotrophs, compared to the other two regimes. In contrast,
retention of tree stumps in plantations in the Northern
Hemisphere increases the prevalence of Heterobasidion root
rot among conifers. However, the removal of these stumps
does not affect the biodiversity of beneficial microbes, such
as mycorrhizae and saprotrophs [131, 132]. While these
scenarios in Eucalyptus plantations and conifer forests
are very different in nature, it highlights the potential
that retained post-harvest residue could harbour certain
pathogens. Therefore, further research is needed to verify
the efficacy of various post-harvest residue management
regimes in improving soil health and associated microbial
biodiversity in relevant local scenarios.

Biochar is a carbon-rich, stable organic product
made from the pyrolysis of organic biomasses such as

leaves, sawdust, animal dung and wood [133]. During
carbonization, biochar releases phosphate into the soil
along with other mineral nutrients, improving its fertility
[133,134]. Biochar also improves the physical properties
[133] and microbial biodiversity of the soil, which could
further increase soil nutrient availability and carbon storage
[135-137]. However, the positive impact of biochar on soil
is often contested [138,139]. In comparison to agriculture
[140,141], our understanding of the impacts of biochar
application on plantation forest soils is limited [133,
142e]. Some recent studies from commercial forestry
settings have shown that biochar improved soil nutrients
and microbes and reshapes the microbial community
[142e, 143—145]. Early evidence is thus that biochar has
considerable potential to enhance soil properties, nutrients
and microbes in continuously replanted forests. Further
research, however, is needed to acquire a better knowledge
of its impacts on plantation soil health.

The use of beneficial microorganisms to improve plant
health and sustainability is common in agriculture, but not
in forestry [146—148]. This is due to the difficulty, low
efficacy and cost of applying a microbial supplement to
trees over large areas in forest environments. These treat-
ments, however, can be potentially performed in nurseries
at the seedling stage [149—151]. Mycorrhizal associations,
for example, play an important role in a tree’s long-term
survival in forests [9, 11]. However, the diversity and
abundance of mycorrhizae and nitrogen-fixing bacteria are
significantly lower in continually replanted forests [107e,
112ee]. Treating the seedlings of commercial tree species
in nurseries with mycorrhizae, nitrogen-fixing bacteria and
endosymbiont mixtures could be explored as an option to
promote planting success in commercial forests [149-152].
Diverse communities of these beneficial microbes could
also allow planted seedlings to survive more readily in
continuously replanted forest soil having a low nutrient
content and a high concentration of harmful microbes [11,
153-157].

Adequate silviculture practices, such as crop rotation
and intercropping, can alleviate the possible negative
consequences of continuous replanting in short-rotation
plantation forestry. Rotating between two distantly related
tree species, such as Eucalyptus, Acacia mearnsii and
conifers, can prevent the accumulation of harmful soil
microbes detrimental to these trees (Fig. 2). For example,
in South Africa, Eucalyptus and A. mearnsii are not infected
by the same Phytophthora species. Eucalyptus species are
susceptible to P. alticola, P. frigida and P. cinnamomi,
whereas P. nicotianae infects A. mearnsii [158]. Thus,
cycling between two non-host tree genera would likely
reduce the population of either group of Phytophthora
species to a level that will not cause a decline of either of the
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tree genera planted. Furthermore, rotating nitrogen-fixing
leguminous tree species such as Acacia with mycorrhizal
tree species like Eucalyptus or pines has the potential to
further promote both soil and tree health (Fig. 2). Alternating
between these trees could increase the availability of
nitrogen in the soil through fixation [159] and improve the
quality of plant litter [160], thereby enhancing the diversity
of saprotrophic soil fungi [161], as well as improving
mycorrhizal colonization [162]. Similarly, mycorrhizal
fungi would also help to decompose leaf litter and mobilise
essential nutrients in the soil, such as phosphorus [163, 164],
and promote the sequestration of carbon [165].

Native vegetation

Co

Fig.2 Three potential schemes for minimizing the accumulation
of detrimental microbes in monoculture plantations induced by the
continuous replanting of the land with the same tree genus. Crop
rotation involves alternating between mycorrhizal and rhizobial
tree species such as Eucalyptus, Acacia and conifers. The other two
systems involve intercropping with either two timber-producing
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Future Research Needs and Opportunities

Most evidence for the build-up of soil-borne pathogens in
planted forests emerges from short-term studies using short-
read sequencing platforms. The diversity data from these
studies provide some clues on the build-up of deleterious
soil microbes due to continuous short to medium rotations
of the same or nearly the same tree genotypes, yet they do
not provide conclusive evidence [92ee, 97, 98]. Even though
short-read sequencing platforms are widely used to cata-
logue microbial diversity from various environments, they
have several drawbacks, including limitations in taxonomic

Intercropping

trees or one each of timber and a crop plant such as legumes and
tuber crops. When selecting the two timber schemes, intercropping
a mycorrhizal and a rhizobial tree would be ideal. Intercropping of
plantation trees and agricultural crops can allow agriculture and
plantation to share land resources while also increasing soil carbon
content and land productivity.



Current Forestry Reports

identification, taxonomic bias and amplification of dead
microbes that are not a part of the immediate biodiver-
sity, among others [94ee, 166, 167]. Long-term monitor-
ing programmes using third-generation (long-read) DNA
sequencing platforms that improve taxonomic resolution
and significantly reduce the possibility of amplifying dead
organisms are required to address this shortfall in knowledge
[168-172].

Long-term monitoring programs allow the sampling of
soils from continuously replanted experimental plots at
regular intervals. Microbiome data emerging from such
experimental plots could be used to track the build-up of
unfavourable microbes resulting from continuous replant-
ing. Understanding the origin and perpetuation of disease-
conducive soils in forestry environments will allow for the
development and improvement of strategies to mitigate this
problem. Simultaneously, species-level identification of
these disease-conducive microbes is equally important for
implementing mitigating strategies.

Although crop rotation is one of the most important strat-
egies used in agriculture to mitigate the build-up of delete-
rious microbes, the efficacy of this approach has not been
thoroughly tested in forestry environments, nor would it
be practical for all forestry companies. An ideal approach
to experimentally test the value of crop rotation would be
to use relatively short rotations of Eucalyptus and Acacia
as a model system (Fig. 2). This is because rotation and
intercropping of these two tree species have been shown to
improve the soil’s microbial diversity, nutrients and struc-
ture [162, 173, 174ee, 175, 176]. Species of Pinus and other
gymnosperms could also be included in these experimental
rotations (Fig. 2).

In agroforestry, intercropping of timber-producing trees
with agricultural crops such as legumes, tuber crops and
a few others has also resulted in promising research out-
comes [177-180] (Fig. 2). This approach allows sharing of
land resources between agriculture and plantation forestry,
while also enhancing soil carbon content and land produc-
tivity. Other advantages of this system include reduced soil
erosion, weed management, improved biodiversity of soil
microbes, improved soil quality, improved yield and yield
stability and suppression of pests and pathogens [181,182].
Consequently, further research is needed to examine the
feasibility of this system as a standard operational proce-
dure. Soil microbiome data emerging from such studies at
regular intervals would increase our understanding of the
benefits of crop rotation and intercropping in managed forest
environments. This could also result in environmentally and
economically resilient plantations.

Advances in technologies are substantially influencing
our understanding of the plant microbiome [183,184].
There is a clear shift in focus from issues relating to

diversity towards a deeper understanding of changes in
the functions of the microbial community in response to
various environmental factors and their impact on tree
health [185-187]. New techniques allow synthetic micro-
bial communities (SynCom) to be designed with a defined
set of microbes with known functions, such as improving
plant immunity, nutrient acquisition and stress tolerance
[188,189]. Such synthetic microbiomes make it possible to
understand the effect of these communities on plant health
in response to various environmental stresses, including
plant pathogens [171, 183, 189-191]. For example, in
maize, removing a single strain of Enterobacter cloacae
disrupted a microbial community that was capable of low-
ering the severity of Fusarium verticillioides ear rot [192].
Similarly, in Arabidopsis thaliana, a synthetic microbi-
ome has been utilised to predict plant phenotype [193].
However, the majority of these studies have focussed
on microbes associated with crop plants or with model
plants. Evaluating the influence of SynCom on the health
of commercially important tree species, such as Eucalyp-
tus, would be valuable.

In forest nurseries, fortifying plants with mycorrhizae
and nitrifying bacteria can be explored to increase their
establishment on constantly replanted land that is often
low in biodiversity of beneficial microbes [149-151].
Nonetheless, the use of non-native but beneficial
microbes could have unknown negative impacts, e.g.
non-native strains aggressively competing with the native
microbial population, which can impede the stability of
the ecosystem [194-200]. Beneficial microbes should
ideally be locally sourced strains that may be found in
adjacent native forest patches and plantations because
invasive plants frequently exploit them to colonise these
environments [201-206]. Consequently, research is
needed to identify these native beneficial microbes, such
as ectomycorrhizae, develop strategies for their long-term
establishment in plantations and assess their impact on
the health and vigour of exotic plantation trees in non-
native habitats.

Conclusions

Continuous replanting practised in short-rotation plantation
forests is likely to be accompanied by a high risk of ‘replant-
ing syndrome’ in plantations. While long-term monitoring
programs to document the changes in soil microbiomes
are still lacking and should be urgently initiated, the avail-
able evidence suggests that short-rotation forest plantation
enterprises could be restrictive when successively establish-
ing new plots with the same or nearly the same genotypes.
Furthermore, it is necessary to assess the efficacy of crop
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rotation, inter-cropping, post-harvest residue management
regimens and the inoculation of seedlings with beneficial
microbes in treating this malady in short-rotation forestry
environments.
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