ORIGINAL ARTICLE

A new genus and species of Cryphonectriaceae causing stem cankers on plantation eucalypts in South Africa

Hiroyuki Suzuki^{1,2} | Seonju Marincowitz¹ | Jolanda Roux^{3,4} | Trudy Paap¹ | Brenda D. Wingfield¹ | Michael J. Wingfield¹

¹Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Hatfield, South Africa

²Faculty of Agro-Food Science, Niigata Agro-Food University, Tainai, Japan

³Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Hatfield. South Africa

⁴Sappi Ltd, Sappi Shaw Research Centre, Howick, South Africa

Correspondence

Hiroyuki Suzuki, Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, 0002, South Africa.

Email: hiroyuki-suzuki@nafu.ac.jp

Funding information University of Pretoria; the Tree Protection Co-operative Programme (TPCP) South Africa

Abstract

Fungi in the Cryphonectriaceae are important canker pathogens of woody shrubs and trees in the Melastomataceae and Myrtaceae (Myrtales). During 2021 disease surveys in KwaZulu-Natal (South Africa) plantations, a serious stem canker disease was discovered on species of Eucalyptus and Corymbia. The cankers had structures on their surfaces typical of fungi in the Cryphonectriaceae. The aims of the study were to identify the fungus associated with the disease and to test its pathogenicity. Morphological characteristics of both sexual and asexual structures and phylogenetic analyses based on partial sequences of the conserved nuclear large subunit (LSU) ribosomal DNA, the internal transcribed spacer (ITS) regions including the 5.8S gene of the ribosomal DNA operon, and two β-tubulin (BT1/BT2) regions were used for identification purposes. Phylogenetic analyses of the sequence data and morphological characteristics supported the establishment of a new genus in the Cryphonectriaceae, for which the name Xanthoporthe myrticola gen. et sp. nov. is provided. Pathogenicity trials showed that isolates were pathogenic on tested Eucalyptus grandis and hybrids as well as Corymbia henryi. The results suggest that this is an emerging pathogen that could influence the sustainability of plantation forestry in South Africa.

KEYWORDS

Corymbia, Eucalyptus, taxonomy, Cryphonectriaceae

INTRODUCTION 1

The Cryphonectriaceae accommodates some of the world's most important tree pathogens. The best known of these is Cryphonectria parasitica, the causal agent of chestnut blight, which destroyed native stands of American chestnut (Castanea dentata) and European chestnut (Castanea sativa) in their natural habitats (Anagnostakis & Kranz, 1987). The Cryphonectriaceae accommodates approximately 30 genera, including many species that are pathogens causing blight, die back or canker on stems of trees (Gryzenhout et al., 2009; Jiang et al., 2020; Rauf et al., 2019). An emerging group of these fungi, occurring mostly in the tropics and southern hemisphere, occur on woody shrubs and trees in the Myrtales, especially

the Melastomataceae and Myrtaceae (Ali et al., 2018; Begoude et al., 2010; Beier et al., 2015; Chen et al., 2016, 2018; Crane & Burgess, 2013; Ferreira et al., 2019; Gryzenhout et al., 2009; Huang et al., 2022; Vermeulen et al., 2011). Of these fungi, species in the genus Chrysoporthe, first described to accommodate the Eucalyptus pathogen Cryphonectria cubensis, are best known (Gryzenhout et al., 2004, 2009).

Ten species residing in six genera of the Cryphonectriaceae are known to occur in South Africa. Other than Immersiporthe knoxdaviesiana, which causes a serious canker disease on Rapanea melanophloes (Myrsinaceae) (Chen, Wingfield, Roets, & Roux, 2013), these are all pathogens of trees in the Myrtaceae (Ali et al., 2018; Chen, Wingfield, & Roux, 2013; Gryzenhout et al., 2004; Nakabonge,

2 WILEY- Plant Pathology Memory Research and Contract

Gryzenhout, et al., 2006; Vermeulen et al., 2011, 2013). From a commercial forestry perspective, the most important of these pathogens in South Africa is Chrysoporthe austroafricana, which causes a serious canker disease on Eucalyptus spp. (Gryzenhout et al., 2004; Nakabonge, Roux, et al., 2006; Vermeulen et al., 2013), and Corymbia henryi (Suzuki et al., 2023).

C. austroafricana (as Cryphonectria cubensis) was first discovered in South Africa, causing cankers on Eucalyptus in 1988 (Wingfield et al., 1989). Subsequently, many studies have been conducted on the fungus and the disease that it causes. Early taxonomic studies showed that it resided in a genus distant from Cryphonectria, leading to the establishment of the new genus Chrysoporthe to accommodate it (Gryzenhout et al., 2004). The pathogen was shown to be native to Southern Africa, having undergone a host shift (Slippers et al., 2005) from native Myrtaceae (Nakabonge, Roux, et al., 2006; Vermeulen et al., 2013). Although the disease occasionally appears in plantations, it has been effectively managed through tree breeding and the selection of disease-tolerant Eucalyptus hybrid clones (Van Heerden et al., 2005; Wingfield, 2003; Wingfield et al., 2013).

Recent disease surveys in KwaZulu-Natal plantations revealed cankers on Eucalyptus grandis, Eucalyptus urophylla×E. grandis hybrid trees and C. henryi bearing fruiting bodies of a fungus in the Cryphonectriaceae (Figure 1). The gross morphology of the fungal structures on these cankers was atypical of those caused by C. austroafricana. The aims of this study were to identify the fungus associated with the canker disease and to test its pathogenicity on E. grandis varieties and C. henryi, thus evaluating its relevance to plantation forestry in South Africa.

MATERIALS AND METHODS 2

Sampling and isolations 2.1

Fruiting structures similar to those typical of the Cryphonectriaceae were found on the bark, covering cankers on C. henryi (4 years old) close to the town of KwaNgwanase, KwaZulu-Natal Province of South Africa in mid-2020. Subsequently, similar fruiting structures were found on the stems of E. grandis (1 year old) and E. urophylla × E. grandis (1 year old) hybrid varieties in Mtubatuba, KwaZulu-Natal in mid-2021 and 2022, and from E. grandis and E. urophylla × E. grandis hybrid varieties near the city of Richards Bay in 2022 (Figure 1, Figure S1).

Bark samples bearing fungal fruiting bodies were collected from the stems of infected C. henryi, E. grandis and E. urophylla × E. grandis. These were placed individually in brown paper bags and transported to the laboratories of the Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria for further study. One fruiting structure from each of 12 C. henryi bark samples, eight E. grandis

FIGURE 1 Symptoms associated with infection of young trees (1 year old) of a Eucalyptus urophylla × E. grandis hybrid variety. (a) Trees dying in a plantation. (b-d) Cracking bark and discolouration of the stems at the root collar region with distinct infection of the cambial tissues (arrow).

bark samples, and two E. urophylla \times E. grandis bark samples were used for isolation. Fruiting structures were dissected with a sterile scalpel under a dissection microscope. The exposed spores and inner structures of the fruiting bodies were spread over the surface of 2% malt extract agar (MEA: 20g BioLab malt extract, 20g Difco Bacto agar, 1L deionized water, supplemented with 100 mg/L streptomycin) in Petri dishes. A small block of MEA containing a single hyphal tip was transferred with a sterilized needle to fresh MEA, and pure cultures were allowed to grow at 23°C in the dark. The cultures were deposited in the culture collection (CMW) of FABI, University of Pretoria, Pretoria, South Africa. Isolates representing ex-holotype and ex-paratypes of the novel genus are maintained in the culture collection of Innovation Africa (CMW-IA), University of Pretoria. Dried type specimens have been deposited in the H.G.W.J. Schweickerdt Herbarium (PRU), University of Pretoria, South Africa.

2.2 Phylogenetic analysis

Total genomic DNA was extracted from 7-day-old cultures growing on MEA using PrepMan Ultra Sample preparation reagent (Applied Biosystem) following the manufacturer's protocols. PCRs were performed to amplify the internal transcribed spacer (ITS) regions, including the 5.8S gene of the ribosomal RNA, 28S large subunit (LSU), and partial sequences of the β -tubulin (BT1, BT2) gene region. The primer pairs ITS1/ITS4 (White et al., 1990), LROR/LR7 (Rehner & Samuels, 1994; Vilgalys & Hester, 1990), and BT1a/BT1b and BT2a/ BT2b (Glass & Donaldson, 1995) were used for amplification of the ITS, LSU and BT regions, respectively. The PCRs were conducted as described by Suzuki et al. (2023). After the PCR products were purified using ExoSAP-IT (Affymetrix), the amplicons stained with GelRed (Biotium) were visualized using gel electrophoresis.

A sequencing reaction was conducted with either the forward or reverse primer using the ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction kit v. 3.1 (Applied BioSystems). An ABI PRISM 3100 Autosequencer (Applied BioSystems) was used to generate the sequences. The raw sequences were assembled using MEGA7 (Kumar et al., 2016).

The sequences of 44 isolates representing genera of Cryphonectriaceae closely related to the fungus under investigation were obtained from GenBank (http://www.ncbi.nlm.nih.gov) and combined into datasets for analyses with isolates obtained in this study (Table 1). Each sequenced region was analysed separately. Because sequences for the LSU region of some of the isolates were not available, the sequences of ITS and BT regions were combined and analysed. The datasets were aligned using MAFFT v. 7 with the G-INS-I option (Katoh et al., 2019). The substitution model was selected for each region and combined datasets with the Akaike information criterion (AIC) in jModelTest v. 2.1.5 (Posada, 2008). Maximum-likelihood (ML) analysis was conducted using PhyML with 1000 replicate bootstrap analyses (Guindon et al., 2010). Bayesian inference analyses were performed using MrBayes v. 3.2.1 (Ronquist et al., 2012) to estimate the posterior probabilities

of the tree topologies with Metropolis-coupled Markov chain Monte Carlo searches. The analysis was conducted for 3,000,000 generations with four runs. Trees were sampled every 100 generations, and a 25% burn-in was used to summarize a consensus tree. Amphylogia gyrosa and Chrysomorbus lagerstroemiae, belonging to the Cryphonectriaceae, were chosen as the outgroup taxa.

Morphological observations 2.3

Fungal structures were initially mounted in water that was replaced with 85% lactic acid. Measurements were made, and images were captured using Nikon Eclipse Ni and SMZ18 microscopes mounted with a DS-Ri2 camera. Bark tissues containing fruiting structures were boiled for a few seconds to soften the woody structures. The tissues were cut into small pieces (approx. 5×5mm) and mounted in a tissue-freezing medium (Leica). Vertical sections between 10 and $12 \mu m$ thick were cut from the selected tissue samples to observe the configuration of fruiting structures in the bark. The measurements were presented as minimum-maximum (average \pm SD, n = the number of measurements).

Culture growth characteristics were studied in 90mm Petri dishes containing 2% MEA. To assess growth in culture, 6-day-old mycelial plugs (5mm diameter) were placed at the centres of the Petri dishes. These were incubated at temperatures between 5 and 35°C at 5-degree intervals in the dark. Five replicate plates were prepared for each temperature. Mycelial growth was checked daily until the colonies reached the edges of the plates at the optimal temperature for growth, at which time the experiment was terminated. Two diameter measurements were taken perpendicular to each other for each culture, and the averages were determined. These averages were used to calculate a daily growth rate. Culture characteristics were noted first when the colonies reached the edge of the plate at the optimum growth temperature, and a second observation was made when these cultures were 30 days old.

Pathogenicity tests 2.4

Two isolates (CMW 56597 and CMW 57827) were used to test pathogenicity on 1-year-old E. grandis varieties (GC540, TAG5 and ZG14) and C. henryi saplings grown in potting bags. The stem diameters of the saplings were between 9 and 16 mm. Ten of each Eucalyptus variety and 20 C. henryi saplings were inoculated with discs taken from the actively growing edges of 14-day-old cultures of each of the two isolates. An equal number of each of the E. grandis varieties and 14 C. henryi saplings were treated with discs of water agar (WA; 20g Difco Bacto agar, 1L deionized water) to serve as negative controls.

For inoculation, a disc of bark was removed from the stems of the plants about 30 cm above ground level using a cork borer (5 mm diameter) to expose the cambium. Agar discs containing mycelium of the fungus or sterile agar were placed into the wounds and covered with Parafilm (Bemis) to reduce desiccation and contamination

Ś
SI:
>
e
č
ອ
()
·=
To
č
ē
60
0
~
È
d
_
ō
÷
σ
Ū
S
S
e.
2
5
Ψ.
゠
8
Š
2
F
5
Ť,
σ
0
Š
_
-
Щ.
_
Ξ
1
~

				GenBank accession	number ^b		
Species	lsolate ^a	Location	Host	ITS	BT1	BT2	LSU
Aurapex penicillata	CMW10030 ^c	Colombia	Miconia theaezans	AY214311	AY214239	AY214275	AY194103
	CMW11295	Colombia	M. theaezans	AY214314	AY214242	AY214278	AY194089
Corticimorbus sinomyrti	CERC3634	China	Rhodomyrtus tomentosa	KT167171	KT167191	KT167191	KT167181
	CMW44650 ^c	China	R. tomentosa	KT167169	KT167189	KT167189	NG060424
Cryphonectria decipiens	CMW10484	Italy	Castanea sativa	AF368327	AH011606	AH011606	Ι
	CMW10436	Portugal	Quercus suber	AF452117	AF525703	AF525710	JQ862750
Cryphonectria japonica	CMW10527 ^c	Russia	1	DQ120761	DQ120767	DQ120768	Ι
	CMW10528	Russia	1	DQ120760	DQ120765	DQ120766	AF408340
Cryphonectria macrospora	CMW10463	Japan	1	AF368331	AF368351	AF368350	I
	CMW10914	Japan	1	AY697942	AY697973	AY697974	Ι
Cryphonectria naterciae	C0614	Portugal	Q. suber	EU442651	EU442660	EU442660	I
	C0679	Portugal	Q. suber	EU442652	EU442661	EU442661	I
Cryphonectria nitschkei	CMW10518 ^c	Japan	Quercus grosseserrata	AF452118	AF525706	AF525713	I
	CMW13742	Japan	Q. grosseserrata	AY697936	АҮ697961	AY697962	I
Cryphonectria parasitica	CMW7048	USA	Quercus virginiana	AF368330	AF273076	AF273470	AY194100
	CMW14547	Azores	C. sativa	DQ368749	DQ368751	DQ368752	Ι
Cryphonectria quercicola	CFCC52140	China	Quercus wutaishiansea	MG866026	MG896117	MG896113	I
	CFCC52141	China	Q. wutaishiansea	MG866027	MG896118	MG896114	I
Cryphonectria quercus	CFCC52138	China	Quercus aliena var. acuteserrata	MG866024	MG896111	MG896115	I
	CFCC52139	China	Q. aliena var. acuteserrata	MG866025	MG896112	MG896116	I
Cryphonectria radicalis	CMW10455	Italy	Q. suber	AF452113	AF525705	AF525712	AY194101
	CMW10477	Italy	Q. suber	AF368328	AH011607	AH011607	AY194102
Cryptometrion aestuescens	CMW18790	Indonesia	Eucalyptus grandis	GQ369458	GQ369455	GQ369455	HQ171211
	CMW28535 ^c	Indonesia	E. grandis	GQ369457	GQ369454	GQ369454	HQ171212
Diversimorbus metrosiderotis	CMW37321	South Africa	Metrosideros angustifolia	JQ862870	JQ862911	JQ862952	JQ862827
	CMW37322 ^c	South Africa	M. angustifolia	JQ862871	JQ862912	JQ862953	JQ862828
Holocryphia capensis	CMW37331	South Africa	M. angustifolia	JQ862860	JQ862901	JQ862942	JQ862817
	CMW37887 ^c	South Africa	M. angustifolia	JQ862854	JQ862895	JQ862936	JQ862811
Holocryphia eucalypti	CMW7033	South Africa	E. grandis	JQ862837	JQ862878	JQ862919	JQ862794
	CMW7036 ^c	South Africa	Eucalyptus sp.	AF232878	AF368341	AF368340	JQ862796
Holocryphia gleniana	CMW37334 ^c	South Africa	M. angustifolia	JQ862834	JQ862875	JQ862916	JQ862791
	CMW37335	South Africa	M. angustifolia	JQ862835	JQ862876	JQ862917	JQ862792
Holocryphia mzansi	CMW37337 ^c	South Africa	M. angustifolia	JQ862841	JQ862882	JQ862923	JQ862798
	CMW37338	South Africa	M. angustifolia	JQ862842	JQ862883	JQ862924	JQ862799

4 WILEY- Plant Pathology to be and the second secon

				GenBank accession	า number ^b		
Species	Isolate ^a	Location	Host	ITS	BT1	BT2	LSU
Luteocirthus shearii	CBS130775	Australia	Banksia baxteri	KC197024	KC197015	KC197009	KC197018
	CBS130776 ^c	Australia	B. baxteri	KC197021	KC197012	KC197006	KC197019
Parvomorbus eucalypti	CSF2061 ^c	China	E. urophylla \times E. grandis	MN258788	MN258816	MN258802	MN258844
	CSF2062	China	E. urophylla \times E. grandis	MN258789	MN258817	MN258803	MN258845
Parvomorbus guangdongensis	CSF10438	China	E. urophylla hybrid clone	MN258796	MN258824	MN258810	MN258852
	CSF10460 ^c	China	E. urophylla hybrid clone	MN258799	MN258827	MN258813	MN258855
Xanthoporthe myrticola	CMW56597	South Africa	Corymbia henryi	PP058388	PP061188	PP061188	PP058407
	CMW56598	South Africa	C. henryi	PP058389	PP061189	PP061189	PP058408
	CMW56604	South Africa	C. henryi	PP058390	PP061190	PP061190	PP058409
	CMW56605	South Africa	C. henryi	PP058391	PP061191	PP061191	PP058410
	CMW56611	South Africa	C. henryi	PP058392	PP061192	PP061192	PP058411
	CMW56612	South Africa	C. henryi	PP058393	PP061193	PP061193	PP058412
	CMW56619	South Africa	C. henryi	PP058394	PP061194	PP061194	PP058413
	CMW57819	South Africa	E. grandis	PP058395	PP061195	PP061195	PP058414
	CMW57820	South Africa	E. grandis	PP058396	PP061196	PP061196	PP058415
	CMW57822	South Africa	E. grandis	PP058397	PP061197	PP061197	PP058416
	CMW57823	South Africa	E. grandis	PP058398	PP061198	PP061198	PP058417
	CMW57824	South Africa	E. grandis	PP058399	PP061199	PP061199	PP058418
	CMW57825	South Africa	E. grandis	PP058400	PP061200	PP061200	PP058419
	CMW57826	South Africa	E. grandis	PP058401	PP061201	PP061201	PP058420
	CMW57827	South Africa	E. urophylla × E. grandis	PP058402	PP061202	PP061202	PP058421
	CMW57829	South Africa	C. henryi	PP058403	PP061203	PP061203	PP058422
	CMW57830	South Africa	C. henryi	PP058404	PP061204	PP061204	PP058423
	CMW57831	South Africa	C. henryi	PP058405	PP061205	PP061205	PP058424
	CMW58507 ^c	South Africa	E. urophylla × E. grandis	PP058406	PP061206	PP061206	PP058425
Amphilogia gyrosa	CMW10469 ^c	New Zealand	Elaeocarpus dentatus	AF452111	AF525707	AF525714	AY194107
	CMW10470	New Zealand	E. dentatus	AF452112	AF525708	AF525715	AY194108
Chrysomorbus lagerstroemiae	CERC8810 ^c	China	Lagerstroemia speciosa	КҮ929338	KY929358	KY929358	КҮ929328
	CERC8812	China	L. speciosa	КҮ929339	KY929359	KY929349	КҮ929329
Note: Isolates presented in bold were seque	enced in this study.						

CMW, the culture collection of the Forestry & Agricultural Biotechnology Institution (FABI), University of Pretoria, Pretoria; CERC, China Eucalypt Research Centre, ZhanJiang, GuangDong, China; CFCC, China Forestry Culture Collection Center, Beijing, China; CBS, Centraalbureau voor Schimmelcultures, Utrecht, Netherlands; CSF, Culture Collection from Southern Forestes, ZhanJiang, GuangDong, China.

 $^{\mathrm{b}}$ TS, internal transcribed spacers and intervening 5.8S nrDNA; B71 and B72, partial β -tubulin gene; LSU, 28S rRNA large subunit.

°Ex-type.

TABLE 1 (Continued)

13653059, 0, Downloaded from https://bsppjournals.onlinelibrary.wiley.com/doi/10.1111/ppa.13883 by South African Medical Research, Wiley Online Library on [26022024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

6 WILEY- Plant Pathology **********

of the inoculum. Lesion development was evaluated after 6 weeks by measuring the bark lesions as well as by scraping away the bark to expose the cambium allowing for lesion lengths to be measured. Small pieces of bark and cambium were removed from the edges of the lesions and transferred to 2% MEA plates for reisolation of the inoculated fungus. Where fruiting bodies were visible on the diseased bark, isolations were also made directly from them.

Statistical analyses at a 5% significance level on the lesion length data were performed using R (R Core Team, 2019). The data from the Eucalyptus varieties and C. henryi saplings were analysed separately because inoculation experiments on the Eucalyptus varieties and C. henryi saplings were conducted separately. A Grubbs test was used to detect outliers of the length with the 'outliers' package (Shiffler, 1988). Normality and homogeneity of variance of the data were tested using the Shapiro-Wilk test and Bartlett test. The data from the inoculation test on the Eucalyptus varieties were then subjected to one-way analysis of variance (ANOVA) followed by a Games-Howell post hoc test, while the data from the inoculations on C. henryi were subjected to the Kruskal-Wallis test followed by the Steel-Dwass test with 'PMCMRplus' package (Pohlert, 2020).

3 RESULTS

3.1 Sampling and isolation

Fungal fruiting bodies were visible on the cracked bark on the root collar cankers of dying trees. In some instances, yellow drops of spores, typical of the Cryphonectriaceae, were seen exuding from these fruiting bodies. Black necks were visible for some fruiting bodies, while others were characterized by light yellow to orange stromatic structures immersed in the bark. Nineteen pure cultures having an appearance typical of species in the Cryphonectriaceae were obtained from infected trees. All of the isolates were used in the phylogenetic analysis, and four of these were subjected to morphological analyses.

3.2 DNA sequencing and phylogenetic analysis

All sequences obtained for the 19 isolates collected in this study were deposited in GenBank (Table 1). The aligned sequences for the ITS (615 bp), BT (959 bp) and LSU (491 bp) regions and combined sequences of ITS and BT datasets were deposited in Figshare (doi: 10.6084/m9.figshare.24920829). The dataset of the LSU region consisted of 50 taxa, and the rest included 63 taxa.

The 19 isolates resided in a clade closest to that accommodating the genus Parvomorbus (the corrected orthography of the original name, Parvosmorbus [MB 832455]), in all phylogenetic trees, regardless of the hosts from which they were isolated (Figure 2, Figure S2). The Parvomorbus clade was distinct from the clade accommodating isolates considered in the present study with a high support value (a bootstrap value of 88%-98% and BI of 1.0).

3.3 Taxonomy

Xanthoporthe H. Suzuki, Jol. Roux, M.J. Wingf. & Marinc. gen. nov. Figures 3 and 4.

MycoBank MB 851635.

Type: Xanthoporthe myrticola H. Suzuki, Jol. Roux, M.J. Wingf. & Marinc.

Etymology: Name 'Xantho' refers to the yellow/orange stromatic structures and 'porthe' (killer) the ability of the fungus to kill trees.

Description: Ascostromata semi-immersed, erumpent, pulvinate, consisting of valsoid perithecia. Perithecia single or grouped; bases immersed in the bark; necks emerge at stromatal surface as black ostioles covered with yellow stromatal tissue, papillate or short, above stromatal surface. Asci hyaline, broadly fusiform. Ascospores hyaline, fusoid to oval, with round ends, aseptate, straight, occasionally slightly curved. Conidiomata stromatic, immersed, erumpent, scattered, predominantly solitary, conical to subglobose; locules mostly uniloculate, occasionally multiloculate, convoluted; necks short, stout, mostly single, black, with yellow spore mass or tendril at tip. Stromatic tissues occasionally intermingled with host tissue, at base and side pseudoparenchymatous, textura angularis, around neck pseudoparenchymatous, textura globulosa. Conidiophores hyaline, branched at base, along the length immediately below transverse septa, smooth, septate, cylindrical, straight or irregular. Paraphyses present but scarce. Conidiogenous cells hyaline, phialidic, integrated, determinate, forming conidia from apical or lateral apertures immediately below transverse septa, subulate, lageniform to cylindrical. Conidia hyaline, cylindrical, aseptate, pointed towards base.

Xanthoporthe myrticola H. Suzuki, Jol. Roux, M.J. Wingf. & Marinc. sp. nov. Figures 3 and 4.

MycoBank MB 851636.

Etymology: Name refers to the hosts of the fungus that resides in the Myrtaceae.

Diagnosis: Phylogenetically close to Parvomorbus spp. but differing from species in that genus by having fusoid to oval, aseptate ascospores and cylindrical conidia.

Typus: South Africa, KwaZulu-Natal Province, Mtubatuba, Plantation Trust, compartment E19, Bark of Eucalyptus urophylla × grandis. 31 March 2022. J. Roux. (Holotype PRU(M) 4504; exholotype culture CMW 58507, CMW-IA 163). GenBank: PP058406 (ITS); PP061206 (β-tubulin); PP058425 (LSU).

Description: Ascostromata on host substrate, gregarious, semiimmersed, erumpent, pulvinate, consisting of valsoid perithecia, occasionally intermingled with host tissue, edges pseudoparenchymatous, inner part prosenchymatous, tissues yellow to umber, covering the tops of perithecial base. Perithecia single or grouped; bases immersed in the bark; necks emerge at stromatal surface as black ostioles covered with yellow stromatal tissue, papillate or short, extending up to $469 \mu m \log (197 \pm 88.5 \mu m, n = 25)$ above stromatal surface, periphysate; walls pseudoparenchymatous, composed of layers of 6-12 horizontally flattened cells, outer layers consisting of pale brown to brown, thick-walled cells, inner layers consisting of hyaline, thin-walled cells, walls around necks consisting of brown,

3653059, 0, Dc

inelibrary

y.wiley

/10.1111/ppa.13883 by Sout

Wiley Online

on [26/02/2024]

See

the

to

use; OA

are go

by the

applicable Creati

FIGURE 2 Phylogenetic tree based on maximum-likelihood (ML) analysis of a sequence dataset of combined region (ITS+BT) of the Cryphonectriaceae. The isolates in bold are those obtained during the current study. The bootstrap values >65% for ML and >0.8 for Bayesian inference posterior probabilities (BI PP) are shown as ML/BI PP. The Parvomorbus and Xanthoporthe myrticola clades are highlighted in blue and red, respectively.

FIGURE 3 Micrographs of sexual state of Xanthoporthe myrticola sp. nov. (holotype, PRU(M) 4504; ex-holotype, CMW 58507, CMW-IA 163). (a-e) Ascostromata on the substrate, showing ascomatal necks emerged beyond the stromatal surface (b) and erumpent ascostromata (arrows) with single or multiple black necks (c-e; e, transversely truncated). (f-n) Vertical sections of ascostromata showing stromatic tissue covering the top of the perithecium (f); ascostromata having two necks (g, arrows); perithecial base (h); perithecial neck above the stromatal tissue (i, j); periphysate perithecial neck (k); and perithecial walls (I-n). (o) Stromatal structure where neck is developed. (p) Asci. (q) Ascospores. Scale bars. $a = 1000 \mu m$; $b-e = 500 \mu m$; f-h, $k = 100 \mu m$; i, j, $l-o = 50 \mu m$; p, $q = 10 \mu m$.

FIGURE 4 Micrographs of asexual state of *Xanthoporthe myrticola* sp. nov. on *Eucalytus urophylla* × *E. grandis* (PRU(M) 4504, CMW 58507, CMW-IA 163) (d, g, j) and on *Corymbia henryi* (PRU(M) 4506, CMW 56597, CMW-IA 165) (a–c, e, f, h, i). (a–d) Conidiomata in the substrate (arrows show the length of necks). (e–g). Vertical sections of conidioma showing convoluted locule and protruding neck. (h) Periphysate ostiole. (i) Conidiophores. (j) Conidia. Scale bars: a, $d=500 \mu m$; b, c, $e-g=100 \mu m$; $h=50 \mu m$; i, $j=10 \mu m$.

thick-walled cells. **Asci** hyaline, broadly fusiform, octosporous, $30-48\times5-8$ ($35.7\pm4.91\times6.7\pm0.86\,\mu$ m, n=25). **Ascospores** hyaline, fusoid to oval, with round ends, aseptate, straight, occasionally slightly curved, $7-12\times2-3.5$ ($9.7\pm1.04\times2.6\pm0.29\,\mu$ m, n=50).

Conidiomata on host substrate, stromatic, immersed, erumpent, scattered, predominantly solitary, conical to subglobose, fuscous black, $144-425 \times 109-375$ ($285.1 \pm 71.18 \times 238.9 \pm 72.88 \mu$ m, n=38); *locules* mostly uniloculate, occasionally multiloculate,

-WILFY- Plant Pathology # Press Street

convoluted; necks short, stout (not attenuating), periphysate, mostly single, black, with yellow spore mass or tendril at tip; walls pale brown to dark brown. Stromatic tissues occasionally intermingled with host tissue, at base and side pseudoparenchymatous, textura angularis, mostly consisting of a few layers of compressed cells, pale brown, 3-11 ($6.2 \pm 1.90 \mu m$, n = 50) thick, infrequently outermost layers consisting of thick-walled cells similar to neck tissues 20-45 $(28.7 \pm 7.04 \mu m, n = 16)$ thick; around neck pseudoparenchymatous, textura globulosa, composed of thick-walled, olivaceous black cells, 13-61 ($35.3 \pm 10.8 \mu m$, n=35) thick. **Conidiophores** hyaline, formed along inner locular wall, branched at base, along the length immediately below transverse septa, smooth, septate, cylindrical, straight or irregular. Paraphyses present but scarce. Conidiogenous cells hyaline, phialidic, integrated, determinate, forming conidia from apical or lateral apertures immediately below transverse septa, subulate, lageniform to cylindrical, $4-12 \times 1-2$ (7.2 ± 1.49 × 1.6 ± 0.2 µm, n = 50). Conidia hyaline, cylindrical, aseptate, pointed towards base, oozing in slimy yellow masses, $2-4 \times 1$ ($3.2 \pm 0.26 \times 1.1 \pm 0.08$, n = 50) μ m.

Culture characteristics: On 2% MEA in the dark at 25°C after 28 days showing circular growth with uneven edges, mycelium flat to fluffy, above white with randomly distributed small patches of luteous shade, cottony clumps formed near the edges, orange granularlike conidiomata present when fertile; at 30°C mycelium fluffy to cottony, white above with large patches of luteous shade, often concentrated in centre. Optimum growth at 25°C with growth rate of 5.1 mm/day, followed by 30°C (4.0 mm/day), 20°C (3.1 mm/day), 15°C (1.8 mm/day), 10°C (0.9 mm/day), 35°C (0.4 mm/day), and 5°C (0.4 mm/day).

Host: Eucalyptus urophylla × E. grandis, E. grandis, Corymbia henryi. Distribution: South Africa (KwaZulu-Natal).

Additional materials examined: South Africa, KwaZulu-Natal, Mtubatuba. Bark of *Eucalyptus urophylla* × *E. grandis.* January 2021. J. Roux. (PRU(M) 4505, CMW 57827, CMW-IA 164). GenBank: PP058402 (ITS); PP061202 (β-tubulin); PP058421 (LSU); KwaZulu-Natal, KwaNgwanase. Bark of *Corymbia henryi.* 21 October 2020. *H. Suzuki & M. J. Wingfield.* (PRU(M) 4506; culture CMW 56597, CMW-IA 165). GenBank: PP058388 (ITS); PP061188 (β-tubulin); PP058407 (LSU); (PRU(M) 4507; culture CMW 56611, CMW-IA 166). GenBank: PP058392 (ITS); PP061192 (β-tubulin); PP058411 (LSU).

Notes: Xanthoporthe shows a close affinity to Parvomorbus in multigene phylogenetic analyses, and the two genera are clustered close to seven other genera in the Family, including Aurapex, Corticimorbus, Cryptonectria, Cryptometrion, Diversimorbus, Holocryphia and Luteocirrhus. Morphologically, Xanthoporthe differs from Cryptonectria, Corticimorbus, Crytpmetrion and Diversimorbus in having aseptate ascospores, whereas the others have 1-septate ascospores (Chen et al., 2016; Chen, Wingfield, & Roux, 2013; Gryzenhout et al., 2009, 2010). Holocryphia spp. produce aseptate ascospores similar to X. myrticola but differ in ascospore shape and dimensions. Holocryphia spp. produce cylindrical to fusiform ascospores, while X. myrticola (ascospores: $7-12 \times 2-3.5 \mu$ m) produces fusoid to oval shape ascospores, which are wider than those of Holocryphia spp.:

Among the nine closely clustered genera, Aurapex, Luteocirrhus and Parvomorbus are known only based on an asexual state (Crane & Burgess, 2013; Gryzenhout et al., 2006; Wang et al., 2020). Morphologically, Xanthoporthe differs from Aurapex in having conical to sub-globose conidiomata with short, stout necks, compared to Aurapex which has long, cylindrical to attenuated orange necks (Gryzenhout et al., 2006), and from Luteocirrhus in having periphysate ostiolar necks which are absent in L. shearii (Crane & Burgess, 2013).

Parvomorbus shows the closest affinity to Xanthoporthe as a sister clade. It is a recently established genus, accommodating two species, Parvomorbus eucalypti and P. guangdongensis, isolated from Eucalyptus hybrids in China (Wang et al., 2020). Their conidiomata are slightly immersed or superficial in the substrate, whereas the conidomata of X. myrticola are deeply immersed in the substrate with a stout neck protruding just above the substrate. Wang et al. (2020) described the conidiomata of Parvomorbus spp. as having no necks. Conidiomatal necks of X. myrticola are short, stout and not attenuated, which are well-defined by the presence of periphyses and a well-developed stromatal structure around the necks. Apart from conidiomatal morphology, they also show different growth preferences. X. myrticola grows at 5°C, and optimum growth occurs at 25°C, whereas Parvomorbus spp. do not grow at 5°C and their optimal growth temperature is 30°C.

3.4 | Pathogenicity tests

Six weeks after inoculation, the two isolates produced lesions on the three *E. grandis* varieties (TAG5, GC540, ZG14) and *C. henryi* (Figures 5 and 6). Statistical analyses showed that lesion lengths were significantly different between the inoculated plants and the controls. They were also significantly different between the *E. grandis* varieties, with those on the pure *E. grandis* varieties (TAG5, ZG14) being larger (19.2 \pm 5.2 mm [mean \pm SD] and 19.1 \pm 3.4 mm, respectively), than on the hybrid *E. grandis* × *E. camaldulensis* (GC 540) variety (12.2 \pm 3.8 mm; Figure 7). The lesion lengths on the *C. henryi* saplings were an average of 45.3 \pm 30.6 mm. Wounds made for control inoculations were covered with callus, and stem discolouration was equal in length to the size of the original inoculation wound. Reisolations from the diseased plants, but not the controls, gave rise to the inoculated fungus, the identity of which was confirmed based on culture characteristics.

4 | DISCUSSION

This study resulted in the discovery of a new fungal canker pathogen of *Eucalyptus* and *Corymbia* in South Africa. The fungus resides in the Cryphonectriaceae, well known to accommodate numerous species that cause canker diseases on these trees. Morphological features

Control

CMW 56597

CMW 57827

FIGURE 5 Pathogenicity tests on Eucalyptus grandis varieties (TAG5, GC540, ZG14, left to right in each image) inoculated with agar discs as a control (a), or with discs taken from the actively growing edges of 14-day-old cultures of isolates CMW 56597 (b) and CMW 57827 (c). Scale bars: a-c=10 mm.

FIGURE 6 Pathogenicity tests on stems of Corymbia henryi saplings inoculated with agar discs as a control (a) or with discs taken from the actively growing edges of 14-day-old cultures of isolates CMW 56597 (b) and CMW 57827 (c). Scale bars: a-c=10mm.

of the fungus and phylogenetic analyses based on DNA sequence data led to the conclusion that the fungus is best accommodated in a novel genus and species, for which the name X. myrticola is provided. Pathogenicity tests on Eucalyptus varieties and C. henryi saplings showed that X. myrticola was able to cause disease.

X. myrticola is phylogenetically closely related to species in the genus Parvomorbus, which are known to infect Eucalyptus trees in

China (Wang et al., 2020). Our decision to place the fungus in a discrete genus was guided by differences in morphological features that have been used to distinguish genera in the Cryphonectriaceae and that are distinct from Parvomorbus. Importantly, this decision was strengthened by the fact that species of Parvomorbus are known only in China, and we would not wish to imply a connection to a disease in that country. We do, however, recognize that

FIGURE 7 Boxplots of lesion lengths resulting from pathogenicity trials on *Eucalyptus grandis* varieties TAG5, GC540, and ZG14 (a) and on *Corymbia henryi* (b) inoculated with isolates CMW 56597 and CMW 57827 or agar disc as a control. Different letters indicate significant differences in pathogenicity based on the Games–Howell post hoc test in (a) and Steel–Dwass test in 7(b) (p < 0.05).

genera are taxonomic units of convenience and that a future revision of the genera in the Cryphonectriaceae may lead to a different decision.

The fact that the disease caused by X. myrticola occurs on both Eucalyptus and Corymbia is relevant. Eucalyptus and Corymbia are closely related but also distinct, and this is also true for many of the insect pests and pathogens that infect them. For example, the aggressive leaf and shoot pathogen Teratosphaeria destructans (Aylward et al., 2019; Wingfield et al., 1996) infects many species of Eucalyptus and never those of Corymbia. Similarly, species of Quambalaria differentiate between these hosts, with Quambalaria pitireka infecting Corymbia spp. and Q. eucalypti specific to Eucalyptus (Pegg et al., 2008). In the case of the Cryphonectriaceae, however, the *Eucalyptus* canker pathogen *C. austroafricana* has recently been found for the first time on *Corymbia* (Suzuki et al., 2023). This supports the view that many species of the Cryphonectriaceae have relatively wide host ranges that extend beyond genera, yet within the confines of host ordinal boundaries.

The origin of X. myrticola is unknown, but the disease appears to have emerged relatively recently. We base this view on the fact that disease surveys are regularly conducted in South African eucalypt plantations, and it seems unlikely that it would have gone unnoticed for a long period of time. In the area where the disease became obvious, only a single hybrid variety of *E. urophylla* \times *E. grandis* was infected. This is not uncommon for *Eucalyptus* pathogens that are typically very specific to single genotypes of these host trees (Van Heerden et al., 2005; Wingfield et al., 2013). In the case of *Corymbia*, species in this genus are relatively new to the South African plantation environment, and the disease caused by *X. myrticola* would likewise be new to these trees. A host shift (Slippers et al., 2005) from a native species in the Myrtales to infect the trees reported in this study is a distinct possibility, given the fact that this has occurred for other species in the Cryphonectriaceae (Nakabonge, Roux, et al., 2006; Oliveira et al., 2022; Suzuki et al., 2022).

The relative importance of *X. myrticola* and the disease that it causes has yet to be determined. The fungus has so far been found only in the KwaZulu-Natal region of South Africa and at a relatively limited level. Its known occurrence is restricted to an area that has a subtropical climate, suggesting it is best suited to that environment. This represents a relatively small portion of the *Eucalyptus*-growing area of South Africa. A similar situation is true for *C. austroafricana*, which also only occurs on *Eucalyptus* in the subtropical areas of the country and has been managed through an active programme of breeding and selection (Nakabonge, Roux, et al., 2006; Van Heerden et al., 2005). Future surveys and disease monitoring activities are required to determine the distribution of *X. myrticola* and the relative threat it poses to plantation forestry in South Africa.

ACKNOWLEDGEMENTS

We thank Mxolisi Silinda, who first recognized the disease on *C. henryi* and reported this to us. We are grateful for financial support for this study provided by members of the Tree Protection Co-operative Programme (TPCP) South Africa and a postdoctoral fellowship provided to the first author by the University of Pretoria.

DATA AVAILABILITY STATEMENT

The datasets generated and/or analyses carried out during the current study are available from the corresponding author upon reasonable request.

ORCID

Hiroyuki Suzuki 🔟 https://orcid.org/0000-0002-9301-9207

REFERENCES

- Ali, D.B., Marincowitz, S., Wingfield, M.J., Roux, J., Crous, P.W. & McTaggart, A.R. (2018) Novel Cryphonectriaceae from La Réunion and South Africa, and their pathogenicity on *Eucalyptus*. *Mycological Progress*, 17, 953–966.
- Anagnostakis, S.L. & Kranz, J. (1987) Population dynamics of Cryphonectria parasitica in a mixed-hardwood forest in Connecticut. Phytopathology, 77, 751–754.
- Aylward, J., Roets, F., Dreyer, L.L. & Wingfield, M.J. (2019) *Teratosphaeria* stem canker of *Eucalyptus*: two pathogens, one devastating disease. *Molecular Plant Pathology*, 20, 8–19.
- Begoude, A.D., Gryzenhout, M., Wingfield, M.J. & Roux, J. (2010) Aurifilum, a new fungal genus in the Cryphonectriaceae from Terminalia species in Cameroon. Antonie Van Leeuwenhoek, 98, 263-278.
- Beier, G.L., Hokanson, S.C., Bates, S.T. & Blanchette, R.A. (2015) Aurantioporthe corni gen. et comb. nov., an endophyte and pathogen of Cornus alternifolia. Mycologia, 107, 66–79.

- Chen, S., Liu, Q.L., Li, G.Q., Wingfield, M.J. & Roux, J. (2018) A new genus of Cryphonectriaceae isolated from *Lagerstroemia speciosa* in southern China. *Plant Pathology*, 67, 107–123.
- Chen, S., Wingfield, M.J., Li, G.Q. & Liu, F.F. (2016) Corticimorbus sinomyrti gen. et sp. nov. (Cryphonectriaceae) pathogenic to native Rhodomyrtus tomentosa (Myrtaceae) in South China. Plant Pathology, 65, 1254–1266.
- Chen, S., Wingfield, M.J., Roets, F. & Roux, J. (2013) A serious canker disease caused by *Immersiporthe knoxdaviesiana* gen. et sp. nov. (Cryphonectriaceae) on native *Rapanea melanophloeos* in South Africa. *Plant Pathology*, 62, 667–678.
- Chen, S., Wingfield, M.J. & Roux, J. (2013) Diversimorbus metrosiderotis gen. et sp. nov. and three new species of Holocryphia (Cryphonectriaceae) associated with cankers on native Metrosideros angustifolia trees in South Africa. Fungal Biology, 117, 289–310.
- Crane, C. & Burgess, T.I. (2013) Luteocirrhus shearii gen. sp. nov. (Diaporthales, Cryphonectriaceae) pathogenic to Proteaceae in the South Western Australian floristic region. IMA Fungus, 4, 111-122.
- Ferreira, M.A., Oliveira, M.E.S., Silva, G.A., Mathioni, S.M. & Mafia, R.G. (2019) Capillaureum caryovora gen. sp. nov. (Cryphonectriaceae) pathogenic to pequi (Caryocar brasiliense) in Brazil. Mycological Progress, 18, 385-403.
- Glass, N.L. & Donaldson, G.C. (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. *Applied and Environmental Microbiology*, 61, 1323–1330.
- Gryzenhout, M., Myburg, H., Rodas, C.A., Wingfield, B.D. & Wingfield, M.J. (2006) Aurapex penicillata gen. sp. nov. from native Miconia the aezans and Tibouchina spp. in Colombia. Mycologia, 98, 105–115.
- Gryzenhout, M., Myburg, H., Van der Merwe, N.A., Wingfield, B.D. & Wingfield, M.J. (2004) *Chrysoporthe*, a new genus to accommodate *Cryphonectria cubensis. Studies in Mycology*, 50, 119–142.
- Gryzenhout, M., Tarigan, M., Clegg, P.A. & Wingfield, M.J. (2010) Cryptometrion aestuescens gen. sp. nov. (Cryphonectriaceae) pathogenic to Eucalyptus in Indonesia. Australasian Plant Pathology, 39, 161–169.
- Gryzenhout, M., Wingfield, B.D. & Wingfield, M.J. (2009) Taxonomy, phylogeny, and ecology of bark-inhabiting and tree-pathogenic fungi in the Cryphonectriaceae. St Paul, MN: American Phytopathological Society.
- Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W. & Gascuel, O. (2010) New algorithms and methods to estimate maximum likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology, 59, 307-321.
- Huang, H.Y., Huang, H.H., Zhao, D.Y., Shan, T.J. & Hu, L.L. (2022) Pseudocryphonectria elaeocarpicola gen. et sp. nov. (Cryphonectriaceae, Diaporthales) causing stem blight of Elaeocarpus spp. in China. MycoKeys, 91, 67–84.
- Jiang, N., Fan, X., Tian, C. & Crous, P.W. (2020) Reevaluating Cryphonectriaceae and allied families in Diaporthales. *Mycologia*, 112, 267–292.
- Katoh, K., Rozewicki, J. & Yamada, K.D. (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualisation. *Briefings in Bioinformatics*, 20, 1160–1166.
- Kumar, S., Stecher, G. & Tamura, K. (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. *Molecular Biology and Evolution*, 33, 1870–1874.
- Nakabonge, G., Gryzenhout, M., Roux, J., Wingfield, B.D. & Wingfield, M.J. (2006) Celoporthe dispersa gen. et sp. nov. from native Myrtales in South Africa. Studies in Mycology, 55, 255–267.
- Nakabonge, G., Roux, J., Gryzenhout, M. & Wingfield, M.J. (2006) Distribution of *Chrysoporthe* canker pathogens on *Eucalyptus* and *Syzygium* spp. in eastern and southern Africa. *Plant Disease*, 90, 734–740.

13

-WILEY- Plant Pathology # Plant Pathology

- Oliveira, M.E.S., Kanzi, A.M., Van der Merwe, N.A., Wingfield, M.J., Wingfield, B.D., Silva, G.A.S. et al. (2022) Genetic variability in populations of *Chrysoporthe cubensis* from Brazil. *Australasian Plant Pathology*, 51, 175–191.
- Pegg, G.S., O'Dwyer, C., Carnegie, A.J., Burgess, T.I., Wingfield, M.J. & Drenth, A. (2008) *Quambalaria* species associated with plantation and native eucalypts in Australia. *Plant Pathology*, 57, 702-714.
- Pohlert, T. (2020) PMCMRplus: calculate pairwise multiple comparisons of mean rank sums extended. R package version 1.4.4. Available from: https://cran.r-project.org/web/packages/PMCMRplus/PMCMR plus.pdf [Accessed 7th February 2024].
- Posada, D. (2008) jModelTest: phylogenetic model averaging. *Molecular Biology and Evolution*, 25, 1253–1256.
- R Core Team. (2019) R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Available from: http://www.R-project.org/ [Accessed 7th Februay 2024].
- Rauf, M.R.B.A., McTaggart, A.R., Marincowitz, S., Barnes, I., Japarudin, Y. & Wingfield, M.J. (2019) Pathogenicity of Chrysoporthe deuterocubensis and Myrtoporthe bodenii gen. et sp. nov. on Eucalyptus in Sabah, Malaysia. Australasian Plant Pathology, 49, 53-64.
- Rehner, S.A. & Samuels, G.J. (1994) Taxonomy and phylogeny of *Gliocladium* analysed from nuclear large subunit ribosomal DNA sequences. *Mycological Research*, 98, 625–634.
- Ronquist, F., Teslenko, M., Van der Mark, P., Ayres, D.L., Darling, A., Hohna, S. et al. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. *Systematic Biology*, 61, 539–542.
- Shiffler, R.E. (1988) Maximum Z scores and outlier. The American Statistician, 42, 79–80.
- Slippers, B., Stenlid, J. & Wingfield, M.J. (2005) Emerging pathogens: fungal host jumps following anthropogenic introduction. *Trends in Ecology & Evolution*, 20, 420–421.
- Suzuki, H., Marincowitz, S., Roux, J., Wingfield, B.D. & Wingfield, M.J. (2023) First report of canker caused by *Chrysoporthe austroafricana* on the plantation-grown eucalypt *Corymbia henryi* in South Africa. *Forestry*, 96, 509–517.
- Suzuki, H., Marincowitz, S., Wingfield, B.D. & Wingfield, M.J. (2022) Genetic diversity and population structure of *Chrysoporthe deuterocubensis* isolates from *Melastoma* and *Eucalyptus* in Malaysia and Indonesia. *Forest Pathology*, 52, e12762.
- Van Heerden, S.W., Amerson, H.V., Preisig, O., Wingfield, B.D. & Wingfield, M.J. (2005) Relative pathogenicity of *Cryphonectria cubensis* on *Eucalyptus* clones differing in their resistance to *C. cubensis*. *Plant Disease*, 89, 659–662.

- Vermeulen, M., Gryzenhout, M., Wingfield, M.J. & Roux, J. (2011) New records of the Cryphonectriaceae from southern Africa including *Latruncellus aurorae* gen. sp. nov. *Mycologia*, 103, 554–569.
- Vermeulen, M., Gryzenhout, M., Wingfield, M.J., Roux, J. & Holdenrieder, O. (2013) Population structure of Chrysoporthe austroafricana in Southern Africa determined using vegetative compatibility groups (VCGs). Forest Pathology, 43, 124–131.
- Vilgalys, R. & Hester, M. (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several *Cryptococcus* species. *Journal of Bacteriology*, 172, 4238–4246.
- Wang, W., Li, G.Q., Liu, Q.L. & Chen, S.F. (2020) Cryphonectriaceae on Myrtales in China: phylogeny, host range, and pathogenicity. *Persoonia*, 45, 101–131.
- White, T.J., Bruns, T., Lee, S. & Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M.A., Gelfand, D.H., Sninsky, J.J. & White, T.J. (Eds.) PCR protocols: a guide to methods and applications. New York: Academic Press, pp. 315–322.
- Wingfield, M.J. (2003) Increasing threat of diseases to exotic plantation forests in the Southern Hemisphere: Lessons from *Cryphonectria* canker. *Australasian Plant Pathology*, 32, 133–139.
- Wingfield, M.J., Crous, P.W. & Boden, D. (1996) Kirramyces destructans sp. nov., a serious leaf pathogen of Eucalyptus in Indonesia. South African Journal of Botany, 62, 325–327.
- Wingfield, M.J., Roux, J., Slippers, B., Hurley, B.P., Garnas, J., Myburg, A.A. et al. (2013) Established and new technologies reduce increasing pest and pathogen threats to Eucalypt plantations. *Forest Ecology and Management*, 301, 35–42.
- Wingfield, M.J., Swart, W.J. & Avear, B.J. (1989) First record of Cryphonectria canker of *Eucalyptus* in South Africa. *Phytophylactica*, 21, 311–313.

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Suzuki, H., Marincowitz, S., Roux, J., Paap, T., Wingfield, B.D. & Wingfield, M.J. (2024) A new genus and species of Cryphonectriaceae causing stem cankers on plantation eucalypts in South Africa. *Plant Pathology*, 00, 1–14. Available from: <u>https://doi.org/10.1111/ppa.13883</u>