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Myco-ecological warfare with Meloidogyne species
Ndivhuwo Ramatsitsi a, Alen Manyevere a and Tuelo Motloba a,b

aDepartment of Agronomy, University of Fort Hare, Alice, South Africa; bForestry and Agricultural Biotechnology Institute, 
University of Pretoria, Hatfield, South Africa

ABSTRACT
Root-knot nematodes (RKNs), Meloidogyne, are the most widely distributed plant-parasitic 
nematodes. This group of soil-borne pests represents one of the largest causes of plant biotic 
stress that are challenging to manage, deeming them economically important. Using fungal 
bio-control agents (BCAs) is considered economic and ecologically friendly. This review 
illuminates how fungal BCAs generally decrease the negative impacts of RKNs, i.e. either via 
antagonistic activities or by modifying effects on plant root morphology and physiology. Of 
the 38 reviewed BCAs, the most studied were Arthrobotrys, Aspergillus, Lecanicillium, 
Purpureocillium, Trichoderma, Pochonia and Fusarium endophytes. Of the several studied 
fungal BCAs, approximately 10 are globally marketed. Based on literature, an understanding 
of the intricate interactions between fungal BCAs and Meloidogyne is a prerequisite for 
carrying out an appropriate method for formulation of bio-control products. The major 
challenge in commercialising fungal BCAs has been attributed to inconsistency concerns 
under different conditions, incompatibilities of BCAs species and formulation procedures that 
result in reduced effectiveness.
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Introduction

Nematodes are microscopic multicellular organisms classified within the large phylum, Nematoda, that encom
passes unsegmented roundworms. Plant-parasitic nematodes (PPNs) are major pests of agricultural crops and are 
recognised as a serious threat to worldwide crop production (Kantor et al. 2024), with a projected 215 billion USD 
annual economic losses (Ferreira et al. 2019). Approximately 80% of the food we eat is produced by plants, and 
40% of food crops are lost to agricultural pests including PPNs (Routray 2020). The most damaging PPNs are the 
root-knot nematodes (RKNs), Meloidogyne species (Khan MR and Quintanilla M 2023). Meloidogyne species, 
including M. chitwoodi, M. enterolobii, M. incognita, M. javanica and M. hapla reduce crop yield and quality of 
vegetable crops, field crops and fruit trees (Evlice et al. 2022; Sarir et al. 2022). This group of nematodes has been 
ranked as the most economically and scientifically important genus because of their wide host range, complex 
relationship with their host, level of damage caused by infestation and serious yield losses they cause (Sikora et al.  
2018; Khan MR and Quintanilla M 2023). Nicol et al. (2011) report that Meloidogyne spp. are responsible for 
approximately 10% reduction of global crop production, with estimated economic losses of around 80 billion US 
dollars per year. A decade later, those losses had increased to a projected estimation of 15% annual yield losses of 
the world’s crop production, which translates to around 157 billion US dollars (Sikora Rad and Molendijk 2021). 
Meloidogyne spp. have also been reported to cause 100% crop failure in highly susceptible crops (Onkendi et al.  
2014). The entire degree of global crop losses due to Meloidogyne is likely to be underestimated since farmers are 
sometimes oblivious to their existence. This is primarily because, except for root galls, above ground symptoms 
induced on plants are often non-specific, resembling abiotic stress or other pathogenic pests, making it challen
ging to trace crop losses to Meloidogyne damage (Siddique and Grundler 2018).

Management of RKNs predominately relied on synthetic chemical nematicides that have been established to 
be highly effective (Sikora Rad and Molendijk 2021). However, attention towards environmental safety led to 
market withdrawal and usage restriction of several synthetic organophosphate- and carbamate-based chemical 
nematicides (Chen et al. 2020). Such restrictions resulted in severe crop-related economic losses and left a serious 
void in crop production and protection. Over the past years (Nicolopoulou-Stamati et al. 2016; Singh et al. 2019; 

CONTACT Ndivhuwo Ramatsitsi nramatsitsi@ufh.ac.za Department of Agronomy, University of Fort Hare, Private Bag X1314, Alice 5700, 
South Africa

ARCHIVES OF AGRONOMY AND SOIL SCIENCE    
2025, VOL. 71, NO. 1, 1–15 
https://doi.org/10.1080/03650340.2025.2579892

© 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow 
the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

http://orcid.org/0000-0001-7779-3764
http://orcid.org/0000-0002-4756-0895
http://orcid.org/0000-0003-1135-4704
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/03650340.2025.2579892&domain=pdf&date_stamp=2025-10-30


Forghani and Hajihassani 2020), it has become urgently necessary to manage RKNs in a sustainable and efficient 
approach. Current integrated pest management initiatives against RKNs are mostly restricted to generic strategies 
such crop rotation, soil sanitation and the use of tolerant/resistant cultivars (Mitiku 2018; Fourie and De Waele  
2019; Sarir et al. 2022). These methods, however, can be ineffective, expensive and result in several unexpected 
ecological downsides (Sarir et al. 2022). For instance, crop rotation is not always effective on Meloidogyne infested 
fields as they thrive on a variety of crops (Khan A et al. 2023). Additionally, the use of resistant cultivars is not always 
a feasible option since many commercial cultivars have been established to be susceptible to Meloidogyne species 
(Ramatsitsi et al. 2024; Rusconi et al. 2025) and some Meloidogyne species have been established to break 
resistance in other crops (Ploeg et al. 2023). As a result, research, development and use of sustainable and 
economical sound fungal bio-control agents (BCAs) have been gaining attention for potential use in the manage
ment of RKNs (Molinari and Leonetti 2019; Sayed et al. 2019).

Review methodology

Search protocol

Following the worldwide shift towards conservation and climate-smart agriculture, the purpose of this review is to 
address the following questions: i) What are the mechanisms through which fungal BCAs parasitise Meloidogyne 
nematodes? ii) What are the most suitable fungal BCAs formulation methods to ensure optimum Meloidogyne 
suppression? and iii) How can fungi-nematode interactions be used to equip both researchers and farmers to reach 
the goal of sustainable yet profitable agriculture? The review further outlines challenges, research gaps and 
prospects with regards to implementing fungal BCAs for Meloidogyne management. The search questions were 
designed to access relevant information, after which a search protocol was developed. The objective of our non- 
systematic critical literature evaluation was to highlight the available empirical evidence and knowledge gaps in 
the broader subject matter of fungal BCAs in RKNs management. Addressing the BCAs mechanisms of parasitism, 
commercially available BCAs, formulations methods, the current work examined research conducted on fungal 
BCAs for suppression of Meloidogyne species. Challenges associated with fungal BCAs marketability were also 
examined because it has been demonstrated that the species used to manufacture these products could be 
incompatible with formulation procedures, hence raising concerns of their effectiveness. A thorough list of 
pertinent literature was gathered from Scopus (https://www.elsevier.com/products/scopus) as this is the largest 
database of peer-reviewed literature with the most indexed journals. Literature search was conducted using the 
following keywords: ‘fungal bio-control agents’, ‘root-knot nematodes’ ‘Meloidogyne nematodes’, ‘nematopha
gous fungi’ and ‘integrated pest management interventions’. To gather recent literature on BCAs mode of action 
on Meloidogyne spp., the search string was used, TITLE-ABS-KEY ((‘Meloidogyne’ OR ‘root-knot nematode’) AND 
(‘nematophagous fungi’ OR ‘biocontrol fungi’) AND (‘parasitize’ OR ‘trap’ OR biocontrol OR ‘nematicidal’ OR ‘egg 
parasite’ OR ‘ovicidal’ OR ‘female parasite’ OR ‘juvenile parasite’ OR ‘lytic enzyme’ OR ‘secondary metabolite’ OR 
‘volatile organic compound’ OR ‘toxin’ OR ‘bioactive compound’)) AND PUBYEAR > 2015 AND PUBYEAR < 2026 
AND (EXCLUDE (DOCTYPE, ‘review’) AND EXCLUDE (DOCTYPE, ‘chapter’)). Following that, every source was 
categorised and grouped according to its applicability, and only those that were relevant to the current review 
study were chosen. After reviewing the abstracts, peer-reviewed articles, government publications, and policies 
were selected according to the inclusion criteria (Table 1). Further information was gathered by reviewing other 
sources, such as book chapters, thesis and webpages. The search was done in English, though there are several 
studies that are not published in English, and it is understood that this could have led to misinterpretation and 
a vernacular bias in the literature.

Table 1. The used inclusion and exclusion criteria for literature search and selection for review.
Inclusion criteria Exclusion criteria

English documents Non-English documents
Peer-reviewed literature such as original papers, review papers, book chapters, government 

gazettes and policies, and technical notes
Grey literatures such as magazines, 

bulletins and newsletters
Bio-control agents of focus is fungal species Bio-control agents of focus is not fungal 

species
Nematodes of focus is Meloidogyne species Nematodes of focus is not Meloidogyne 

species
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Results

Author keywords

The bibliometric analysis of keywords taken from the reviewed papers’ titles and abstracts is shown in 
Figure 1. The node size, which represents the frequency of occurrence of the keywords, shows their 
coherence, while the connecting curves show how frequently they appear together. A higher correlation 
between respective terms is shown by shorter distances between nodes. The most common terms found 
were ‘nematophagous fungi’, ‘root-knot nematode’ and ‘lycopersicon esculentum’.

Fungal bio-control agents

The studies covered were limited to fungal BCAs to suppress Meloidogyne species, a group of widely 
distributed pervasive plant-parasitic nematodes. A total of 24 fungal species, from 13 genera, that were 
reviewed are presented in Table 2. The most studied genera were Trichoderma and Arthrobotrys (six species 
each), followed by Aspergillus (four species), Lecanicillium, Pochonia Fusarium endophytes (three species 
each), Fusarium and Purpureocillium (each having two species). The seldom studied fungal BCAs genera were 
Penicillium, Pochonia, Purpureocillium, Acremonia, Daldinia, Macrophomina, Phialemoniopsis endophyte, 
Dactylella and Muscodor. Within the Trichoderma genus, the most common species were T. harzianum and 
T. viride. The Trichoderma genus has been deemed a prominent biocontrol group primarily because of its 
broad-spectrum and multiple parasitism activities (Mukhtar et al. 2018; Molinari and Leonetti 2019). While 
other studies focused on in vitro bioassays (Xu et al. 2021), others such as those by Silveira et al. (2001) and 
Mastan et al. (2019) focused on in vivo with known hosts of Meloidogyne species. According to the observed 
results, fungal BCAs exhibit diverse modes of parasitism including direct parasitism (Naz et al. 2021), 
secretion of nematicidal metabolites such as peroxidase, polyphenol oxidase, phenylalanine and ammonia 
lyase (Annapurna et al. 2018), as well as facilitating plant resistance (Mendoza-Mendoza et al. 2018).

Figure 1. Keywords visualisation on abundance and composition of selected soil microbial species.
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Discussion

Nematophagous fungi mode of parasitism

Antibiosis
Antibiosis in nematophagous fungi involves the production of Meloidogyne-toxic compounds by the fungi 
(Poveda et al. 2020). These toxic compounds include metabolites and enzymes, such as xylanase, pectinase, 
and glucanase (Vos et al. 2012). During antibiosis, hydrolytic enzymes such as chitinase and β-1,3-glucanase 
are activated to degrade the RKNs cuticle (Geraldine et al. 2013). An in vitro study by Molinari and Leonetti 
(2019) showed that such enzymes can degrade nematode eggshell and cuticle, allowing the BCAs to 
subsequently absorb nematode nutrients. Trichoderma species secrete cellular enzymes such as cellulase, 
xylanase, pectinase, lipase, amylase, arabinase and protease, volatile metabolites such as 6-n-pentyl-2  
H-pyran-2-one (6-PAP), trichodermin, trichodermol, gliovirin, gliotoxin, viridin, herzianolide, pyrones, peptai
bols to degrade nematode cell walls (Aminuzzaman et al. 2013; Bansal et al. 2021). Meloidogyne 
incognita second-stage juvenile (J2) was killed by the filtrates of Paecilomyces lilacinum, Fusarium moniliforme 
and F. oxysporum endophyte, whereas the nematode egg hatching was restricted by A. flavus, Cylindrocarpon 
magnusianum and Mortierella species (Aminuzzaman et al. 2013). Aspergillus and Pochonia are two more of 
the fungi genera that produce Meloidogyne-toxic metabolites, such as cyclosporin A, Glio-toxin and 
1,5-Dimethyl Citrate hydrochloride ester (He et al. 2020; Naz et al. 2021).

Parasitism
Meloidogyne parasitism by nematophagous fungi involves the fungal BCAs making physical contact with the 
nematode eggs or J2 (Poveda et al. 2020). Successful parasitism is facilitated by physical penetration of the 
nematophagous fungi into the body of the host via development of specialised organs such as haustoria and 
appressoria and secretion of various enzymes such as proteases, chitinases and lipases (Sayed et al. 2019; Naz 
et al. 2021). Parasitism by fungal BCAs has been classified into three groups, (i) nematode-trapping/pre
dators, (ii) opportunistic or ovicidal and (iii) endoparasites (Liu et al. 2009; Soares et al. 2018). For example, 
Aspergillus genus consists of nematode-trapping fungal species. The nature of parasitism of Aspergillus 
species could be explained by the various nematode hunting strategies used by different genera. 
Aspergillus flavus is a constricting ring-forming fungus that is known to construct conidial traps (Naz et al.  
2021). When a nematode enters the constricting ring, the ring cells begin to constrict it by raising cell volume 
up to three times its usual size, rendering the J2 immobile (Xu et al. 2021). Another adhesive network- 
forming fungus, P. lilacinum, functions as a facultative nematode catcher that only captures sources of 
nitrogen and it breaks down organic materials to produce carbon and energy (Xu et al. 2021). Using traps/ 
enzymes, egg-parasitic fungi prey and feed on RKNs, thereby preventing eggs from hatching. Acremonium 
implicatum is an endophytic fungus with bio-control potential against M. incognita due to its opportunistic 
egg parasitism capacity. In a study by Yao et al. (2015), findings demonstrated that A. implicatum hyphae 
colonised M. incognita eggs by destroying the integrity of the eggs through penetration of the eggshells. 
Conidia stuck to the eggshells, encircled the infected eggs and evolved into trophic hyphae. Likewise, T. 
harzianum hyphae successfully penetrated egg mass matrix of M. incognita and significantly decreased egg 
hatching (Mukhtar et al. 2018).

Systemic resistance
Plants have an inherent ability to avert pathogens, also referred to as resistance. This is formed by genes that 
detect and initiate immune responses against the invading pathogen (Birkenbihl et al. 2017). While some 
plants have evolved to efficiently utilise this ability and even amplify their resistance, other plants lack these 
genes against particular pathogens and therefore display susceptibility (Lorang et al. 2007). Apart from direct 
mechanisms of attack on RKNs, fungal BCAs have plant-modifying effects that indirectly affect RKNs. 
Colonisation of plant roots by beneficial endophytic and mycorrhizal fungi can protect plants against 
a wide range of RKNs through inducing host resistance. Two different types of systemic resistance can be 
conferred to host plants by beneficial fungal species, namely induced systemic resistance (ISR) and systemic 
acquired resistance (SAR) (Birkenbihl et al. 2017). The two are distinguished according to the biochemical 
pathways involved. The ISR is salicylic acid (SA) -independent, whereas SAR is a salicylic acid-dependent 
pathway. For example, T. harzianum fungus can induce jasmonic acid (JA)- and SA-regulated defence 
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pathways in tomato (Solanum lycopersicum L.) plants, causing resistance to the RKNs. Other studies have 
shown that, by colonising the plant roots, Trichoderma stimulates their defence mechanisms against 
numerous plant-pathogenic micro-organisms, including Meloidogyne nematodes (Leonetti et al. 2014; 
Mendoza-Mendoza et al. 2018). Sahebani and Hadavi (2008) reported that under greenhouse conditions, 
the inoculation of tomato seeds with T. harzianum caused resistance-related enzymes, such as peroxidase, 
polyphenol oxidase and phenylalanine ammonia lyase, to rise dramatically. In addition to inducing systemic 
resistance to M. javanica, ISR induced by T. atroviride has been shown to become heritable to subsequent 
generations (Contreras-Cornejo et al. 2016).

Chemoreception disruption of nematode chemotaxis
The ability of Meloidogyne spp. to detect the presence of a host and locate it depends on their sensory organs 
positioned around the mouth area of the head (Eisenback and Hunt 2009). The two organs in particular are 
the amphids and inner labial papillae (Jansson 1994). These enable J2 to hatch from the egg after perceiving 
environmental cues such as soil temperature, moisture, pH and carbon dioxide (Lu et al. 2022). In the same 
manner that olfactory organs allow other organisms to have direction, RKNs would not be able to navigate 
a host without these organs.

Chemoreception takes place when messenger signals from the host bind to RKNs sensory organs. Jansson 
and Lopez-Llorca (2004) showed that carbohydrate moieties in these organs are primarily responsible for 
reception. These glycoproteins bind to volatile and water-soluble substances such as exudates from the host 
promoting variable-distance chemotaxis to the host or other food sources (Halloran and Burnell 2006). 
Conidia from the nematophagous fungus Drechmeria coniospora has been shown to adhere to these sensory 
organs (Jansson 1993, 1994). Proteins on the conidia sticky buds bind to the glycoproteins of PPNs sensory 
organs which block reception, ultimately decreasing PPNs chemotaxis (Jansson 1993). A dual mechanism by 
this fungus is shown in its ability to not only block reception but also further parasitise the nematode 
(Jansson and Lopez-Llorca 2004). This mechanism of nematode confusion has been tested on other species 
such as the free-living nematode, Caenorhabditis elegans and not yet on Meloidogyne species. To date, 
studies on nematode chemoreception disruption have largely used C. elegans as a model organism. This is 
because C. elegans is genetically well characterised, has a short life cycle, and is amenable to laboratory 
manipulation, making it an ideal system for fundamental neurobiological and sensory research (Halloran and 
Burnell 2006). In contrast, equivalent studies on Meloidogyne species are lacking. This discrepancy likely 
reflects both the technical difficulties of maintaining obligate PPNs in vitro and the relative scarcity of genetic 
tools available for Meloidogyne. As such, while the nematode confusion mechanism has been demonstrated 
in C. elegans, further research is required to determine whether this strategy is effective in disrupting host- 
finding behaviour in RKNs under realistic agricultural conditions.

Formulation methods of bio-control fungi products

Liquid-based substrates
The components of liquid formulations include stabilisers, colourants, surfactants, and supplementary 
nutrients in combination with whole cultures or cell suspensions that optimise the longevity of the product 
(Bejarano and Puopolo 2020) and boost the BCAs adhesion, surfactant, and dispersion capabilities. 
Combining processed cultures with emulsifiers, surfactants, and/or mineral or vegetable oils that facilitate 
their subsequent dispersion in water is what constitutes an oil-based formulation. Liquid-based formulated 
bionematicides may be water- or oil-soluble polymer structures to keep the encapsulated BCAs propagules 
hydrated (Martinez et al. 2023). For such products, animals, humans, plants, or microorganisms should not 
become poisoned by the oils or gels that are utilised. Oil- or gel-based formulations have been suggested to 
be ideal for foliar sprays under dry ambient settings due to their protective properties, which are meant to 
supplement the BCAs (Brar et al. 2006). The increased water activity in liquid-based formulations, as 
compared to dry formulations, makes it considerably more challenging to prolong product shelf life because 
of imbibition damage over time brought on by extended exposure to water or spontaneous germination 
(Gervais et al. 1988).

Items in the liquid or gel condition are more vulnerable to bacterial contamination, necessitating a higher 
level of sterile processing. For these reasons, dry formulations tend to dominate the market for currently 
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available marketed items. Nevertheless, despite these drawbacks, liquid and gel-based formulations are 
quickly gaining traction for industrial use due to improved manufacturing processes and the straightforward 
administration of such formulations. This has resulted in studies (Swarnakumari et al. 2020) concentrating on 
methods and modification procedures for creating formulations that support propagule viability during 
extended storage times. Biocontrol propagules in oil, either alone or in combination with water, make up oil- 
based products. Mineral-based oil, which is produced from crude oil, or vegetable-based oil, which is 
extracted from plant seeds, can be used (Peng and Xia 2011). (Mbarga et al. 2014). developed oil dispersion 
including conidia of T. asperellum, soybean oil, an emulsifying-dispersing agent, a structural agent and 
glucose.

Solid-based substrates
Different solid-based substrates including grains, organic matter and agricultural waste have been success
fully used to culture and store fungal BCAs (Mulatu et al. 2021; Bulgari et al. 2023). Solid-based substrates 
may be powdered or grain formulations made with soil, organic or inorganic carriers. The two primarily differ 
from one another by their particle sizes. Powdered formulations have a few hundred mm particle size, on the 
other hand, grain formulations have particle sizes ranging from 0.1 to 2.5 mm (microgranules, 100–600 µm, 
fine granules, 0.3–2.5 mm). Larger grains (up to 6 mm) might, however, be manufactured (Bejarano and 
Puopolo 2020). To manufacture powdered formulations, either the granules themselves are crushed into 
a fine powder, or the bio-agents are mechanically blended with a milled carrier and adjuvants until 
a homogeneous combination is obtained. Using milling equipment, manufacturing can be accomplished 
mechanically or manually. Furthermore, lyophilisation and spray drying can be used to create powders 
(Stephan et al. 2016).

In what is regarded as a significantly moderate dehydration process, cells are first embedded in a matrix 
that shields them from destruction throughout the freezing and drying processes. In spray-drying, a liquid 
matrix is atomised into a drying chamber with hot air flow, causing the water to evaporate quickly and 
forming dry particles (Yánez‐Mendizábal et al. 2012). Naeimi et al. (2020) established that mass production of 
T. harzianum AS12-2 on solid substrates, vis. rice straw, rice husk, and broom sorghum grain, preserved 
viability and efficacy of the strain’s spores for a year. Furthermore, the outcomes of the greenhouse assay 
demonstrated that no discernible variations existed among the substrates and that all bioformulations were 
successful in managing the pathogen. In a study by Mulatu et al. (2021), it was feasible to sustain conidial 
viability for wettable powder formulations of T. longibrachiatum and T. asperellum for eight months at room 
temperature (25 °C) on organic substrates. Ideally, the best growth media would be one that does not 
diminish the productivity/viability and virulence of the cultured fungi (Martinez et al. 2023). Table 3 shows 
current commercial fungal BCAs of Meloidogyne nematodes.

Overall, both liquid- and solid-based substrates provide distinct advantages and limitations for formulat
ing fungal bio-control products. Liquid formulations are advantageous for their ease of application, uniform 
distribution, and compatibility with spray equipment; however, they often face challenges related to 
contamination, storage stability, and reduced shelf life. In contrast, solid-based formulations offer longer 
persistence, greater stability during storage, and in some cases enhanced protection of fungal propagules 
under field conditions, though they may be more labour-intensive to produce and slower to disperse. The 
choice between the two therefore depends on the intended application environment, the target cropping 
system, and the balance between production costs and field performance.

Challenges, research gaps and prospects

The use of fungal BCAs in managing RKNs is continuously becoming adopted across the world. Even 
though some of these fungal BCAs have been successfully commercialised, such as A. niger, 
P. chlamydosporia, P. lilacinus and T. harzianum, their application is not without challenges (Tranier 
et al. 2014; Askary 2015). Fungal BCAs might be incompatible with the formulation and application 
process or have reduced effectiveness in the environment where they would be applied. The same is 
true for mass production of microbial agents, storage, conservation, and potential negative effects on 
non-target organisms (Bamisile et al. 2021). Despite numerous studies to identify effective RKNs antago
nists, challenges related to scaling up production and formulation studies have prevented several 
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promising fungi from progressing through further research and commercialising (Ganeshan et al. 2021; 
Lahlali et al. 2022). Many factors can influence the efficacy of a specific fungal BCAs against RKNs, 
including environmental factors, time of treatment, season, method and frequency of application. The 
same fungal BCAs may perform differently in vitro and in vivo, i.e. under laboratory, greenhouse, glass 
house, shade/net house and field conditions. There have been reports on the inconsistency of these 
products in managing RKNs (Agbenin and Agbenin NO 2012; Huang et al. 2016). Such inconsistencies 
could be due to both biotic and abiotic factors across different exposure conditions. In a study by Jaffee 
(Jaffee et al. 1992), fungal nematode-parasitism was 100% under in vitro conditions but dropped to 
almost 0% with the same nematode population densities under in vivo conditions. Martinelli et al. (2012) 
studied the survival ability of five nematophagous fungi, A. robusta, A. oligospora, A. musiformis, 
D. leptospora and M. eudermatum, after their field application. Six months after application, only 
D. leptospora was still active, while the rest were no longer active.

Nematophagous fungi of the genera Aspergillus, Talaromyces and Trichoderma are promising BCAs that 
have demonstrated effective antagonistic effects against a wide range of PPNs (Abd-Elgawad and Askary  
2018). Recent findings further confirm this potential, as A. terreus, T. minioluteus, T. sayulitensis, T. ghanense 
and T. viride exhibited strong ovicidal and nematicidal activity against M. enterolobii under both in vitro and 
in vivo conditions (Ramatsitsi et al. 2025). However, because soil is a dynamic matrix, the extent of RKNs 
mitigation can be influenced by a variety of circumstances. The efficacy of fungal BCAs in vivo may be 
affected by temperature, moisture, soil texture and structure, nematode density, and proliferation. As 
a result, the BCAs is deemed ineffective since it is incapable of adapting to rapidly changing environmental 
conditions. Indigenous fungal species, on the other hand, would have significant advantages over intro
duced/exotic ones because they may be more virulent against local nematode populations, compete more 
successfully with indigenous microflora, and be more adapted to environmental conditions. Further studies 
should be carried out to establish the types and proportions of metabolites/enzymes produced by isolates 
from a certain location, particularly how they differ from those secreted by foreign/introduced species, to 
achieve better nematode control. Given the high economic impact that RKNs continue to impose, a better 
and detailed understanding of the rhizosphere interactions serves as prerequisites to appropriately improve 
the efficacy of fungal BCAs in sustainable agriculture. Further research on identifying more fungal species 
with the potential to parasitise RKNs is also important since their threat to agricultural production is an 
ongoing worldwide crisis.

Since BCAs would become part of the ecosystem and directly affect the environment (Akter et al. 2025), 
we must be ready for, or at least envisage, any possible risks that may arise from their use. Therefore, before 

Table 3. Environmental Protection Agency approved commercial fungal biocontrol agents for Meloidogyne nematodes.
Fungal biocontrol agents Commercial name Formulation References

Paecilomyces lilacinus strain 251 BioAct(r) Water-dispersible granule, BioAct(r)/ 
MeloCon can be applied through the 
irrigation system.

Brand et al. 
(2010)

Beauveria bassiana Botanigard(r) ES or 
Botanigard(r)22WP

Liquid-formulated Liu et al. 
(2008)

Purpureocillium lilacinum BIOSTAT(r)

Consortium of Ascophyllum nodosum, Bacillus 
amyloliquefaciens, and Trichoderma harzianum

GA sol+ Granules Krif et al. 
(2022)

Verticillium lecanii MYCOTAL(r) Wettable powder Meyer (1999)
T. harzianum T-22 TRIANUM® González 

et al. 
(2012)

Consortium of Bacillus subtilis, Trichoderma spp., 
Paecilomyces spp.

Nemaxxion Biol(r) Liquid-formulated large-spectra Tranier et al. 
(2014)

Consortium of Arthrobotrys spp, Dactyllela spp., 
Paecilomyces spp., Mycorrhiza (Glomus spp.), and 
bacteria (B. spp., Pseudomonas spp.)

REM G(r) Liquid-formulated Tranier et al. 
(2014)

Pochonia 
Chlamydosporia

RIZO-TURBO or PC- 
ATTACK or 
PC-GUARD or RIZOTEC

Liquid-formulated and granules Machado 
(2022)

Paecilomyces 
lilacinus

Purpureonyd 
FR 25 or Nettus* or 
BN40.001/19* or 
Nemat or ATIALY

Liquid-formulated and granules Machado 
(2022)
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using BCAs, a comprehensive analysis of the advantages and potential hazards should be conducted in order 
to give stakeholders the knowledge they need for effective, secure, and long-term pest management and 
optimum production (Ehlers 2011). Higher population of BCAs with a declining population of pests, means 
shortage of food for the BCAs, thus potential for BCAs to turn into pests. This means that coupled with 
ensuring effectiveness, BCAs conservation practices should also be implemented. It is also imperative to test 
each nematophagous fungi because species from the same genera may be both parasitic and beneficial. For 
instance, while A. tubingensis is an endophytic nematophagous fungus (Sikandar et al. 2023), A. flavus is 
nematophagous and pathogenic to plants (Lohmar et al. 2019). Another study by Ramatsitsi et al. (2023) 
elucidated that though A. terreus resulted in enhanced seed germination, A. flavus caused seed rot and poor 
germination of different commercial seeds. Before becoming available on the market, BCAs and biopesti
cides must successfully complete and pass an approval procedure. This procedure ensures that the product 
that is brought to the market is safe for both people and the environment (Chaudhary et al. 2024). 
Government authorities across countries oversee establishing guidelines for the use of these agro products 
that interact with the food chain. Organisations including Organic Materials Review Institute, the United 
States Environmental Protection Agency, Canada Pest Management Regulatory Agency, Southern Africa 
Biopesticides Project and French Ministry of Agriculture & Fishing are in charge of evaluating the dangers 
associated with the products used in food crops (Tranier et al. 2014). While all these procedures are rightfully 
necessary, it takes a long time and money, which could prove unaffordable, especially in developing 
countries, resulting in a prolonged shift from agro synthetic to biochemical. This is evidenced by continued 
use of synthetic chemicals in crop production (Pathak et al. 2022).

Furthermore, the multi-step process from initial identification of potential BCAs, in vitro and in vivo 
evaluation, mass liquid or solid-based production and registration of BCAs present several challenges that 
call for substantial collaboration from governmental organisations, the business community and academia. 
This is also evidenced by the marked disproportion between the number of nematophagous fungi studied 
experimentally and those that have successfully reached commercialisation, highlighting the gap between 
research potential and market realisation. The disparities in registration requirements across three continents 
(Europe, North and South America) (Huang et al. 2016) highlight the real-world challenges in evaluating and 
promoting novel BCAs marketable products. Selling BCAs products is a challenging endeavour since 
significant evidence must be given to regulators and farmers alike to reassure them that the new product 
can offer the same level of effectiveness, if not more, than current products in a way that is both economic 
and safe. The molecular foundations of nematode-microbe relationships have come into more prominence 
over the years. Studying biochemical processes behind these relationships is fundamental to understanding 
how nematodes respond to BCAs and vice versa, as well as how the host plant responds to this relationship. 
To completely understand the scope of these interactions and take advantage of nematophagous fungi, 
biological control should thus constantly take an evolutionary viewpoint, considering the inherent genetic, 
phenotypic, and behavioural variety of BCAs and their targets.
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