Ophiostoma Polonicum is a Species of Ceratocystis sensu stricto

CHRISTA VISSER¹, MICHAEL J. WINGFIELD¹, BRENDA D. WINGFIELD¹, and YUICHI YAMAOKA²

¹ Department of Microbiology and Biochemistry, University of the Orange Free State, P.O. Box 339, Bloemfontein, 9300, South Africa

² Institute of Agriculture and Forestry, University of Tsukuba, Tennodai, Tsukuba, Ibaraki 305, Japan

Received June 1, 1995

Summary

Ophiostoma polonicum was first isolated in Poland and described in 1939 by Siemaszko. The fungus is a serious pathogen of spruce and is vectored by the bark beetle Ips typographus. Ophiostoma polonicum was described as producing a Leptographium anamorph similar to that of Ophiostoma penicillatum. The fungus was later transferred to Ceratocystis penicillata but is currently treated as a species of Ophiostoma. Examination of the culture collected by Siemaszko and also from recent collections from spruce in Europe and Japan have shown the presence of a Chalara state. Cell polysaccharide analysis revealed the absence of rhamose in the cells of O. polonicum which is more typical of Ceratocystis species. The fungus was also found to be sensitive to cycloheximide, which is characteristic of species of Ceratocystis sensu stricto. Comparisons of partial sequence data of the ribosomal DNA operon have also revealed that isolates of O. polonicum group together with Ceratocystis laricicola, which is a well defined species of Ceratocystis sensu stricto. We, therefore, conclude from this study that O. polonicum is a typical species of Ceratocystis sensu stricto; s.str. and also that the species is very likely conspecific with C. laricicola.

Key words: rRNA - Ophiostoma polonicum - Phylogeny - Ceratocystis - Ips typographus

Introduction

The ophiostomatoid fungi include the genera Ceratocystis Ell. & Halst. and Ophiostoma Sydow and have been known since the early part of this Century. Most species in these genera have ascomata with elongate necks and they are generally considered to be vectored by insects (Wingfield et al. 1993). Numerous species of these fungi also include serious pathogens of trees of which Ophiostoma ulmi Buismann and Ophiostoma novo-ulmi Brasier (Brasier, 1993) and Ceratocystis fagacearum Bretz (Kile, 1993) are perhaps best known.

The taxonomy of Ophiostoma and Ceratocystis has had a confused history. These genera have been regarded as synonyms or as separate entities by various authors in the past. In the most recent and comprehensive treatment of the group, Upadhyay (1981) treated the genera as synonyms but included the new genus Ceratocystiopsis Upadhyay and Kendrick to accommodate species with falcate ascospores. Convincing evidence based on cell wall composition (Rosinski and Campana, 1964; Spencer and Go-

27 System, Appl. Microbiol, Vol. 18/3

rin, 1971; Jewell, 1974; Weijman and De Hoog, 1975) has, however, been presented to support the notion that Ceratocystis and Ophiostoma are distinct. Species of Ceratocystis also produce conidia by ring wall building and have Chalara anamorphs (Minter et al. 1982) as opposed to apical wall building (Graphium Corda, Leptographium Lagerberg & Melin, Sporothrix Hektoen & Perkins, Hyalorhinocladiella Upadhyay & Kendrick) in Ophiostoma anamorphs (Mouton et al. 1994). Unlike Ceratocystis, species of Ophiostoma are also resistant to high concentrations of the antibiotic cycloheximide (Harrington, 1981).

Recent studies at the molecular level have provided additional evidence for the fact that *Ceratocystis* and *Ophiostoma* are distinct. These studies have been based on analysis of the 18S ribosomal RNA gene and have shown that the genera are distantly related (*Hausner* et al. 1992, 1993a, 1993b, 1993c; *Spatafora* and *Blackwell*, 1994). Morphological similarities in teleomorph struc-

C. Visser, M. J. Wingfield, B. D. Wingfield, and Y. Yamaoka

tures in these phylogenetically distinct groups have apparently developed as an adaptation to an insect-associated habitat.

Ophiostoma polonicum Siemaszko was first described in 1939 associated with the bark beetle (Coleoptera: Scolytidae) Ips typographus L. that infests spruce, Picea abies (L.) Karst. in Europe (Siemaszko, 1938). The fungus was described as having a Leptographium anamorph. Moreau (1952) later treated this fungus in the genus Ceratocystis as Ceratocystis polonica. No type material exists for O. polonicum but, based on the Leptographium state described by Siemaszko (1939), Upadhyay (1981) reduced this species to synonymy with Ceratocystis penicillata (Grosm.) Moreau (= Ophiostoma penicillatum (Grosm.) Siemaszko). Later, Solheim (1986) considered O. penicillatum and O. polonicum to be distinct species of varving pathogenicity (Solheim, 1991, 1993; Christiansen, 1985). Solheim (1986) was, however, unable to detect the Leptographium state of any other anamorph in O. polonicum.

Considerable confusion surrounds the generic placement of the fungus that Siemaszko (1939) named O. polonicum. During a recent survey of fungi associated with Ips typographus japonicus infesting Picea jezoensis (Sieb. et. Zucc.) Carr. in Hokkaido, Japan, we noted an apparent Chalara state in some isolates of a fungus otherwise resembling O. polonicum. This would indicate that the fungus is a Ceratocystis species as opposed to a species of Ophiostoma. The aim of this study was, therefore, to examine isolates of O. polonicum from Japan and Europe using a variety of techniques and, thus, to establish an appropriate generic placement for this fungus.

Material and Methods

Isolates examined. For the purposes of this study, we made morphological examinations of four isolates of a fungus matching the teleomorph characteristics of O. polonicum from Japan and Europe including the isolate collected by Siemaszko in Poland obtained from the Centraalbureau voor Schimmelcultures, Baarn, Netherlands (CBS). Isolates from Europe were from I. typographus-infested P. abies and supplied by Dr. Solheim (Norwegian Forest Research Institute, Section of Forest Ecology, Division of Forest Pathology, N-1423 Ås-NLH, Norway). Those from Japan were collected by the last author from I. typographus japonicus-infested P. jezoensis in Hokkaido, Japan. All isolates included in this study are maintained in the culture collection of the second author, with representative isolates also available in other collections.

For the experimental part of this study, four isolates of O. polonicum were utilised. These include one from Japan (YCC118 [cmw 2274]) and three from Europe (ATCC 62335 [cmw 1164], CBS 133.38 [cmw 672], cmw 2443). The European isolates included two isolates supplied by H. Solheim as well as an isolate (cmw 672) collected by Siemaszko who originally described this fungus. Two isolates of *Ceratocystis laricicola* Redfern & Minter (cmw 1016 and cmw 1017) supplied by Dr. R. B. Redfern (Forestry Commission, Northern Research Station, Roslin, Midlothian EH25 9SY, UK) were also included given the fact that this fungus is very similar to O. polonicum, with the exception of the purported Leptographium state of the latter species. Morphological examination of O. polonicum was done using light microscopy. Perithecia were abundant in numerous isolates including cmw 2274 from Japan and cmw 1164 from Europe and teleomorph characteristics could be compared with those described for this fungus by Siemaszko (1939). Cultures were also examined thoroughly for the presence of anamorph characters.

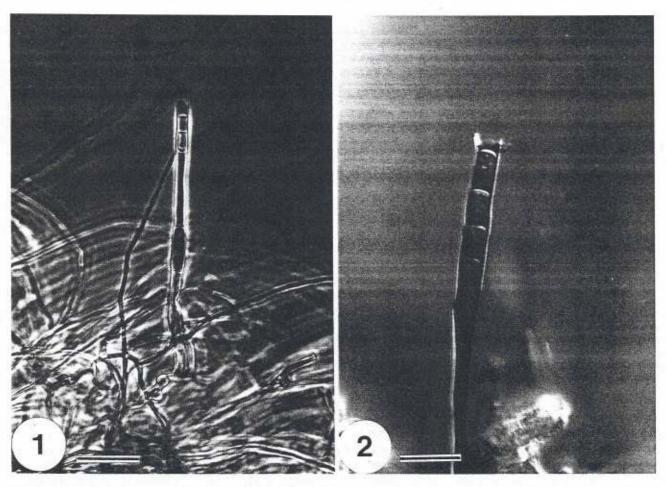
Cyclobeximide tolerance and Cell polysaccharide analysis. All isolates of O. polonicum used in the experimental part of this study were tested for their ability to tolerate cycloheximide in culture. In addition, an isolate of Ceratocystis fimbriata Ell. & Halst. and Ophiostoma piceae Münch were included for comparative purposes. Five different concentrations (0.00, 0.05, 0.10, 0.50, 1.00 and 2.50%) of cycloheximide in 2% Malt extract agar (MEA; 20g malt extract and 20g agar/l dH₂O) were tested. Agar discs, 4.2 mm in diameter were cut from the actively growing margin of cultures and placed at the centres of three Petri dishes containing the different concentrations of cycloheximide for each isolate. Two diameter measurements were taken for each colony after incubation in the dark for six days. Averages of these measurements were calculated and this experiment was repeated once.

Isolates of O. polonicum, for the cell polysaccharide analysis, were grown in 15 g ME (malt extract) and 5 g Glucose/l dH₂O at 20 °C for two weeks. Cell material was collected by centrifugation at 10 000 rpm for 10 min, washed twice with ddH₂O and lyophilised. The freeze-dried cell material was hydrolised with 72% H₂SO₄ for 12 h at 4°C, followed by boiling for 2.5 h in 2 M H₂SO₄ and then neutralised with NaOH. Presence of cell saccharides was determined by column chromatography using a Technicon Auto Analyser System (Alsa Tech, Isando, Johannesburg, South Africa) as previously described by Van Biljon and Olivier, 1989.

Sequence comparisons. Cultures were grown on cellophane discs placed on 2% MEA and incubated at 20 °C until the mycelium covered the disc. These cellophane discs were then transferred to sterile Petri dishes, lyophilised and stored at -20°C. Nucleic acid was extracted from the freeze-dried material using a modified Guanidinium Thiocyanate procedure of Chirgwin et al. (1979). A region within the ribosomal DNA operon, including the variable Internal Transcribed Spacer regions (ITS1 and ITS2) as well as the conserved 5.85 gene, were amplified using the Polymerase Chain Reaction (PCR), Saiki, 1988). Primers ITS1 (5'TCCGTAGGTGAACCTGCGG3') and ITS4 (5'TCCTCCG-CTTATTGATATGC3') (100D/ml) were used for amplification (White et al. 1990). Reactions were performed in a Hybaid Omnigene Temperature Cycler (Hybaid, Middlesex, UK) for 35 cycles using Taq DNA polymerase (Promega Corporation, Madison, U.S.A.) with the Magnesium free 10x Buffer supplied by the manufacturer. The final buffer composition was 6.25 mM MgCl₂, 1.6 mM of each dNTP and 360 pmol of each primer. An initial 5 min denaturation step at 96 °C was performed, followed by 35 cycles of 92 °C for 60 seconds (denaturation), 55 °C for 30 seconds (annealing) and 72 °C for 60 seconds (extension) with a final elongation step of 5 min at 72 °C. The PCR products were visualised on a 1% (w/v) agarose gel to assess the amplification. The amplified DNA products were purified using the Magic PCR Preps (Promega Corporation, Madison, U.S.A.) and sequenced with the fmol Sequencing System (Promega Corporation, Madison, U.S.A.). Primers ITS4, ITS1, CS2 (5'CAATGTGC-GTTCAAAGATTCG3') and CS3 (5'CGAATCTTTGAACG-CACATTG3') [constructed by B. D. Wingfield, University of the Orange Free State] were used to determine the DNA sequence in both directions. The sequence data were visually aligned and the phylogenetic relationships determined using PAUP (Phylogenetic Analysis Using Parsimony) (Swofford et al., 1993). Both the branch and bound and the heuristic options were used in the PAUP analysis. DNA sequence of C. fimbriata, the type species of Ceratocystis s.str. was included in this study for comparative purposes. Neurospora crassa sequence (Chambers, 1986) was used as an outgroup.

Results

Morphological comparisons. Cultural characteristics of the four O. polonicum isolates were similar and differed markedly from those previously described for O. penicillatum. The former fungus has a light grey colour with profuse aerial mycelium as opposed to the dark green-grey colonies of O. penicillatum. Isolate cmw 672 collected by Siemaszko (1939) produced no fruiting structures. Other isolates of the fungus produced distinct ophiostomatoid ascomata with single-celled, reniform, sheathed, two gutulate ascospores identical to those described by Siemaszko (1939). Althoug these structures were extremely rare, conidiophores (Fig. 1) and conidia (Fig. 2) typical of Chalara species were occasionally found associated with the bases of the ascomata in many isolates.


Cycloheximide tolerance and cell wall polysaccharides. All four isolates of O. polonicum tested for tolerance to cycloheximide, proved to be sensitive to all concentrations

O. polonicum is a Ceratocystis

of this antibiotic, even to as low as 0.05 g/l of cycloheximide (Table 1). In this characteristic they were similar to

Table 1. Average growth in mm of Ophiostoma polonicum isolates on various concentrations of cycloheximide. Ophiostoma piceae and Ceratocystis fimbriata were included for comparative purposes

	% Cycloheximide (g/l)						
Fungus	0.00	0.05	0.10	0.50	1.00	2.50	
Ophiostoma polonicu	m						
cmw 1164 (Sweden)	44.8		-	22	-	-	
cmw 2443 (Sweden)	21.2	-		-	-		
cmw 2274 (Japan)	19.5		-	-	-		
cmw 672 (Poland)	34.1	-	-	-	-	-	
Ceratocystis fimbriata							
cmw 2220	33.0	-	-	1	-	-	
Ophiostoma piceae							
cmw 153	48.2	40.9	41.0	38.3	35.0	37.1	

Figs. 1–2. Conidiophore and conidia of O. polonicum. Fig 1. Light micrograph showing the typical Chalara state observed for O. polonicum (Bar: 15 mm = 20µ) and Fig 2, showing the conidia produced by the conidiophore of O. polonicum (Bar: 15 mm = 10µ).

C. Visser, M. J. Wingfield, B. D. Wingfield, and Y. Yamaoka

		10 2	20 0	30 4	10 51	0
N. crassa	TCATTACAGA	GTTGCAAAAC	TCCCACAAAC	CATCGCGAAT	CTTACCCGTA	
cmw 2220				AG.T.TT.		
cmw 672	Ψ -	AG NININGGA	- 0 00	ATTGA	ACAMA MAINT	
cmw 1017		NO THINKING A	7 m mm	ATTGA	ACATAINN	
	T.G	AG.TTTTA	A.T.TT	ATTGA	ACATAT.T	
cmw 2443	·····	AG.TTTTA	A.T.TT	, ATGA	ACATAT.T	
cmw 1016				AT TGA		
cmw 2274	T	AG.NNNNGGA	T.TT	AT TGA	ACATA TNN	
	60	70	80	90	100	
N. crassa				-AAGG-CCTT		
cmw 2220				T.TA.T		
	GCCC.1.IGA	A.GCAC	C.G.CA.CAG	T.TA.T	CCAGT-	
cmw 672	.CCATG.	TTT.GCA.GT	C.TGG-T.AA	AC.A.TC.	GCC.GTAGTA	
cmw 1017	TTTATG.	TTT.GCA.GT	C.TGG-T.AA	AC.A.TC.	GCC.GTAGTA	
cmw 2443	NTTATG.	TTT.GCA.GT	C.TGG-T.AA	AC.A.TC.	GCC.GTAGTA	
cmw 1016	TTTATG.	TTT.GCA.GT	C.TGG-T.AA	AC.A.TC.	GTC.GTAGTA	
cmw 2274	.CCATG.	TTT.GCA.GT	C.TGG-T.AA	AC.A.TC.	GCC.GTAGTA	
	11(1 120) 13(140) 150	
N. crassa				TCTGAGTAAA		
cmw 2220				.T. TTCATTG		
동안 전에서 가지 않는 것이 없는 것이 없다.						
cmw 672				AT.T.TATTC		
cmw 1017				AT.T.TATTC		
cmw 2443				AT.T.T.TTC		
cmw 1016	.TTAGAA	T.A	C.AGAGA	AT.T.TATTC	AGCTG.G-	
cmw 2274	.TTAGAA	T.A	C.AGAGA	AT.T.TATTC	AGCTG.GC	
	160	0 170) 18(1 1 90	200	
N. crassa				CCGGAGTGCC		
Cmw 2220	T A TA	1010000100	0000100000		m x m	
cmw 672	1.A. 1A	NG 7 2 3 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		A	1	
cmw 1017	100.A. 1AA-			A	TTA.GC.T	
	TGG.A.TAA-	**********		A	TTA.GT	
cmw 2443	TGG.A.TAA-			A	TTA.GT	
cmw 1016	TGG.A.TAA-			A	T TA.G T	
cmw 2274	TGG.A.TAA-			A	TTA.GC.T	
	21(220) 23(240	250	
N. crassa				GGCATCGATG		
cmw 2220				A		
cmw 672				A		
cmw 1017						
				A		
cmw 2443				A		
cmw 1016			.TC	A		
CITW 2274			C	A		
					e seelike	
	260					
N. crassa				AATTCAGTGA	ATCATCGAAT	
cmw 2220						
	2222222222222	CC				
cmw 672						
cmw 672 cmw 1017		c			NN.	
		c			NN.	
cmw 1017		C	·-····		NN.	
cmw 1017 cmw 2443					NN.	

Fig. 3. Alignment of the DNA sequences obtained for the ITS1, ITS2 regions and the 5.8S rRNA gene for 3 isolates of O. polonicum (cmw 672, cmw 2274 & cmw 2443), 2 isolates of C. laricicola (cmw 1016 & cmw 1017), one isolate of C. fimbriata (cmw 2220) and N. crassa which was used as an outgroup. N indicates unknown bases; a dot indicates bases identical to the corresponding base in N. crassa and dashes represent deletions in the sequence.

C. fimbriata (type species of Ceratocystis s.str.), but differed markedly from O. piliferum (typical species of Ophiostoma). Rhamnose was found to be absent in all the isolates of O. polonicum tested for cell polysaccharides.

Sequence comparisons. A single DNA fragment of about 550 bp was observed using gel electrophoresis for all isolates amplified. For each isolate amplified, a total of about 500 bp were sequenced and read (Fig. 3). The DNA sequences obtained were visually aligned and edited using MacClade 3.0 (Fig. 3) (Maddison & Maddison, 1992). The sequence of Neurospora crassa which was included in this study for comparative purposes was obtained from Chambers et al. (1986). The bootstrap analysis for each option resulted in the same tree configuration and a strict

O. polonicum is a Ceratocystis

	310	320	33(340	350
N. crassa		ACATTGCGC-			
cmw 2220		C.C			
cmw 672		GC.C			
cmw 1017		N.C			
cmw 2443		GC			
cmw 1016					
		c			
cmw 2274	·	GC.C	.G	C.AGCA	
	360	370	38	390	400
N. crassa	GAGCGTCA	TTTCAACCAT	CAAGCTCTGC	TTGCG-TT	GGGGATCCGC
cmw 2220		C.AC.			
cmw 672		C.AC.			
cmw 1017		C.AC.			
cmw 2443		C.AC.			
cmw 1016		C.AC.			
cmw 2274	C	C.AC.		G.T	
	410	0 420	43	0 440	450
N. crassa	G-GCTGTCCG	CTCAAAATCA	GTGGCGGGCT	CGTCAGTCAC	ACCGAGCGTG
cmw 2220		.C.CTG.A			
cmw 672		GG			
cmw 1017		GG			
cmw 2443		GG			
cmw 1016					
cmw 2274		GG			
CIIIW 22/4	CAC.1		.GUUGUU.MA	AIG10-00	CIGIT-GAAT
					500
N. crassa		ATCGCTATGG			
cmw 2220	TC.AACT.	CC.TG.G.A.	.ATAAAATTT	CTAATTTTT.	ACACTTTGAA
cmw 672	TCAGT.	CC-TG.G.A.	.AA.ATT-A-	TTTTTTG	ACGCTTT.GA
cmw 1017	TCAGT.	CC-TG.G.A.	.AA.ATTTA-	TITTTTT	AGCGCTTTGA
cmw 2443					ACGCTTT.GA
cmw 1016		CC-TG.G.A.			
cmw 2274		CC-TG.G.A.			
N. crassa	51 	0 521 GC	0G-TAAAACC	0 54	0 550
cmw 2220					ACTITIGTIG
cmw 672					ATTTT
cmw 1017					ATTTT
cmw 2443					ATTAT
cmw 1016		A.CAACATOG			
cmw 2274	AACTT	A.CAACATCG	.CG	ATCA	ATTTT
	56	0			
N. crassa	-A-TTTC-TA				
cmw 2220	A.CAC.				
	A.CAC.				
cmw 672					
cmw 1017	A.				
cmw 2443	GA.				

consensus tree was constructed (Fig. 4). The g1 statistics determined from the bootstrap trees obtained for the branch and bound and the heuristic searches were -1.89 and -1.74, respectively. The O. polonicum isolates formed a cluster with C. fimbriata with a confidence interval of a 100%, confirming other evidence that these isolates are most likely species of Ceratocystis. The isolate from Japan

.-.--NA.

.-.--.G.

cmw 1016

cmw 2274

grouped together with Siemaszko's isolate with a confidence interval of 100% and these two clustered with the two *C. laricicola* isolates with 74% confidence (Fig. 4). The Norwegian isolate of *O. polonicum* was less closely related to the above-mentioned isolates, although more closely related to these than to *C. fimbriata*.

C. Visser, M. J. Wingfield, B. D. Wingfield, and Y. Yamaoka

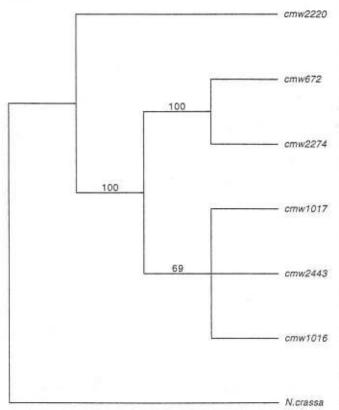


Fig. 4. Consensus tree generated from PAUP analysis depicting the phylogenetic relationships between *C. laricicola* (cmw 1016 & cmw 1017), *O. polonicum* (cmw 672, cmw 2274 & cmw 2443) and *C. fimbriata* (cmw 2220). *Neurospora crassa* was used as an outgroup. Bootstrap values are indicated at the branch points.

Discussion

Results of this study show that the fungus that was described as O. polonicum is a typical species of Ceratocystis s.str. The most definitive characteristics that lead us to this conclusion are the presence of a Chalara anamorph (Minter et al. 1982; De Hoog and Scheffer, 1984), sensitivity to cycloheximide (Harrington, 1981) and the absence of rhamnose in the cell walls (Rosinski and Campana, 1964; Weijman and De Hoog, 1975 and Spencer and Gorin, 1971). This fungus can easily be separated from O. penicillatum, which has a Leptographium anamorph and is tolerant to cycloheximide. We suggest, therefore, that the name Ceratocystis polonica should be used for this fungus.

In addition to the above characteristics, based on rDNA sequence analyses, it was possible to confirm that isolates of C. polonica form a distinct group of fungi, closely related to C. fimbriata and distinct from N. crassa. The fact that two isolates of C. laricicola, a very well defined species of Ceratocystis, grouped together with C. polonica also supports the new generic placement of O. polonicum in Ceratocystis s.str. These data also strongly suggest that C. laricicola and C. polonica are the same species although detailed morphological comparisons are required before a synonymy can be presented.

Past confusion pertaining to the generic placement of C. polonica is relatively easy to explain. This fungus is one of numerous ophiostomatoid fungi including O. penicillatum, that is carried by Ips typographus infesting spruce in Europe (Solheim, 1986). It, thus, occurs in close association with the latter fungus and the two are often isolated as mixed cultures (M. I. Wingfield, unpublished). It is our view that when this fungus was first collected, Siemaszko was dealing with a mixed culture of the two fungi and that he incorrectly identified the Leptographium state as being connected with ascomata of C. polonica. Upadhyay (1981) did not have access to type material of this fungus and evidently chose to synonymise it with O. penicillatum based on reported presence of a Leptographium state by Siemaszko (1938). Solheim (1986) later recognised that C. polonica was distinct from O. penicillatum but did not recognise that it might belong in Ceratocystis rather than in Ophiostoma.

Species of Ophiostoma and Ceratocystis represent excellent examples of distinct taxa that have evolved convergently in adaption to insect dispersal (Hausner et al, 1993c; M. J. Wingfield et al. 1994; Spatafora and Blackwell, 1994; B. D. Wingfield et al. 1994). The discovery that the fungus previously known as O. polonicum, is in fact a species of Ceratocystis s.str., makes it the first example of these two phylogenetically distinct groups occurring associated with the same insect in a specialised niche.

References

- Brasier, C. M.: The generic system as a fungal taxonomic tool: Gene flow, molecular variation and sibling species in the "Ophiostoma piceae-Ophiostoma ulmi" complex and its taxonomic and ecological significance, pp. 77–92. In: Ceratocystis and Ophiostoma: Taxonomy, Ecology and Pathogenicity. (Michael J. Wingfield, Keith A. Seifert and Joan F. Webber, eds.) APS Press, St Paul, Minnesota. (1993)
- Chambers, C., Dutta, S. K. and Crouch, R. J.: Neurospora crassa ribosomal DNA: Sequence of internal transcribed spacer and comparison with N. intermedia and N. sitophila, Gene 44, 159-164 (1986)
- Chirgwin, J. M., Przbyla, A. E., Macdonald, R. J. and Rutter, W. J.: Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18, 5294–5299 (1979)
- Christiansen, E.: Ceratocystis polonica inoculated in Norway Spruce: Blue-staining in relation to inoculum density, resinosis and tree growth. Eur. J. For. Path. 15, 160–167 (1985)
- De Hoog, G. S. and Scheffer, R. J.: Ceratocystis versus Ophiostoma: a reappraisal. Mycologia 76, 292-299 (1984)
- Harrington, T. C.: Cycloheximide sensitivity as a taxonomic character in *Ceratocystis*. Mycologia 73, 1123-1129 (1981)
- Hausner, G., Reid, J. and Klassen, G. R.: Do galeate-ascopore members of the Cephaloascaceae, Endomycetaceae and Ophiostomataceae share a common phylogeny? Mycologia 84, 870–881 (1992)
- Hausner, G., Reid, J. and Klassen, G. R.: On the subdivision of Ceratocystis s.l., based on partial ribosomal DNA sequences. Can. J. Bot. 71, 52-63 (1993a)

Hausner, G., Reid, J. and Klassen, G. R.: Ceratocystiopsis: a reappraisal based on molecular criteria. Mycol. Res. 97, 625-633 (1993b)

1

- Hausner, G., Reid, J. and Klassen, G. R.: On the phylogeny of Ophiostoma, Ceratocystis s.s. and Microascus and relationships within Ophiostoma based on partial ribosomal DNA sequences. Can. J. Bot. 71, 1249-1265 (1993c)
- Jewell, T. R.: A qualitative study of cellulose distribution in Ceratocystis and Europhium. Mycologia 66, 139–146 (1974)
- Kile, G. A.: Plant disease caused by species of Ceratocystis sensu stricto and Chalara, pp. 173–183. In: Ceratocystis and Ophiostoma: Taxonomy, Ecology and Pathogenicity. (Michael J. Wingfield, Keith A. Seifert and Joan F. Webber, eds.) APS Press, St Paul, Minnesota. 1993
- Maddison, W. P. and Maddison, D. R.: MacClade: Analysis of phylogeny and character evolution. Version 3.0. Sinauer Associates, Sunderland, Massuchusetts. (1992)
- Minter, D. W., Kirk, P. M. and Sutton, B. C.: Holoblastic phialides. Trans. Br. mycol. Soc. 79, 75-93 (1982)
- Moreau, C.: Coexistence des formes Thielaviopsis et Graphium chez unie souche de Ceratocystis major (van Beyma) nov. com. Revue de Mycologie Supplement Colonial 17, 17–25 (1952)
- Mouton, M., Van Wyk, P. S. and Wingfield, M. J.: Conidium development in anamorphs of Ceratocystis senu lato. S.A.J. S.A. 90, 293-298 (1994)
- Rosinski, M. A. and Campana, R. J.: Chemical analysis of the cell wall of Ceratocystis ulmi. Mycologia 56, 738-744 (1964)
- Saiki, R. K., Gelfand, D. A., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B. and Erlich, H. A.: Primer directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487–491 (1988)
- Siemaszko, W.: Zespoly Grybow Towarzyszacych Kornikom Polskim. Planta pol. 7, 1-52 (1938)
- Solheim, H.: Species of Ophiostomataceae isolated from Picea abies infested by the bark beetle lps typographus. Nord. J. Bot. 6, 199-207 (1986)
- Solheim, H.: Oxygen deficiency and spruce resin inhibition of growth of fungi associated with *Ips typographus*. Mycol. Res. 95, 1387-1392 (1991)

O. polonicum is a Ceratocystis

- Solheim, H.: Ecological aspects of fungi associated with the spruce bark beetle Ips typographus in Norway, pp. 235–242. In: Ceratocystis and Ophiostoma: Taxonomy, Ecology and Pathogenicity. (Michael J. Wingfield, Keith A. Seifert and Joan F. Webber, eds.) APS Press, St Paul, Minnesota (1993)
- Spatafora, J. W. and Blacktwell, M.: The polyphyletic origins of the ophiostomatoid fungi. Mycol. Res. 98, 1-9 (1994)
- Spencer, J. F. T. and Gorin, P. A. J.: Systematics of the genera Ceratocystis and Graphium. Proton magnetic resonance spectra of the mannose-containing polysaccharides as an aid in classification, Mycologia 63, 387–402 (1971)
- Swofford, D. L.: PAUP Phylogenetic Analysis Using Parsimony Version 3.1.1. Champaign, IL 61820, USA. (1993)
- Upadhyay, H.P.: A monograph of Ceratocystis and Ceratocystiopsis. University of Georgia Press, Athens, GA. 176 pp (1981)
- Van Biljon, P. L. and Olivier, S. P.: Determination of sugars in polysaccharides hydrolysates by anion – exchange chromatography. Journal of Chromatography 478, 305–309 (1989)
- Weijman, A. C. M. and De Hoog, G. S.; On the subdivision of the genus Ceratocystis. Antonie van Leeuwenhoek 41, 353–360 (1975)
- White, T. J., Bruns, T., Lee, S. and Taylor, J.: Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: A guide to methods and applications. (A. M. Innis, D. H. Gelfand, J. J. Sninsky and T. J. White, eds.) Academic Press, San Diego (1990)
- Wingfield, B. D., Grant, W. S., Wolfaardt, J. F. and Wingfield, M. J.: rRNA sequence phylogeny is not congruent with ascospore morphology among species of Ceratocystis sensu stricto. Mol. Biol. Evol. 11, 376–383 (1994)
- Wingfield, M. J., Kendrick, W. B. and Wingfield, B. D.: The development of holomorphic concepts in Ophiostomatalean Ascomycetes, pp. 333-340. In: Ascomycete Systematics (Lichenised and Non-lichenised): Problems and Perspectives in the Nineties. (D. L. Hawksworth, ed.) Plenum Press, New York (1994)
- Wingfield, M. J., Seifert, K. A. and Webber, J. A. (Eds.): Ceratocystis and Ophiostoma: Taxonomy, Ecology and Pathogenicity. APS Press, Minnesota. 293 pp (1993)

Christa Visser, Department of Microbiology and Biochemistry, University of the Orange Free State, P.O. Box 339, Bloemfontein 9300, South Africa, Tel.: 0/27/51-4012124, Fax.: 0/27/51-482004, Email: Christa @wwg3.uovs.ac.za