The students and staff of the CPHB and the Tree Protection Co-operative Programme (TPCP) are involved in various outreach initiatives. These initiatives serve to educate and bring knowledge and information to people whether they are our future scientists or those supporting science in South Africa. The initiatives touch the lives of learners (both primary and high school), students at Higher Education Institutions and also the general public.

 
 

 

Mentorship programme

The vision for the CPHB includes a strong mentoring component, which is in part achieved with the CPHB Mentorship programme. In this programme undergraduate students are mentored by postgraduate students in the CPHB / TPCP. For this programme, undergraduate students who have the potential to follow long-term careers in science are specifically targeted. The Mentorship programme has numerous important areas of impact. Firstly, the undergraduate students in the programme are exposed to a strong culture of science in a programme that is internationally competitive. Secondly, by targeting undergraduate students, the Mentorship programme promotes postgraduate studies among its mentees, as well as their peers because they will most probably communicate some of their experiences to their peers. The end result is that the broader student body becomes better informed about what a career in science can offer them. Finally, the mentorship programme is also beneficial to postgraduate students. Having to mentor a student can be an important learning experience and being able to mentor young scientists is an essential element of any career in science or research.

National Science Week, ad hoc exhibitions and school visits

The CPHB student body is actively involved every year in the National Science Week. During this week, the CPHB students spark the enthusiasm of learners for science through the use of interesting, and sometimes outrageous, experiments. Students and staff of the CPHB are also regularly participating in official exhibitions and school visits during which they present their research and inform the public about the different research areas of the programme.

(See "Information Nuggets" for more interesting stories)

New Publications

Robert R, Robberste N, Thompson GD, Read DA. (2024) Characterization of macadamia ringspot‑associated virus, a novel Orthotospovirus associated with Macadamia integrifolia in South Africa. European Journal of Plant Pathology 10.1007/s10658-024-02832-1 PDF
Hiroyuki S, Marincowitz S, Roux J, Paap T, Wingfield BD, Wingfield MJ. (2024) A new genus and species of Cryphonectriaceae causing stem cankers on plantation eucalypts in South Africa. Plant Pathology :1-14. 10.1111/ppa.13883 PDF
Mapfumo P, Buthelezi S, Archer E, Swanevelder DZH, Wilken PM, Creux N. (2024) In-field climatic factors driving Sclerotinia head rot progression across different sunflower planting dates. Plant Pathology 10.1111/ppa.13873
Price J-L, Visagie CM, Meyer H, Yilmaz N. (2024) Fungal species and mycotoxins Associated with Maize ear rots collected from the Eastern Cape in South Africa. Toxins 16:95. 10.3390/toxins16020095
Tarigan M, Wingfield MJ, Jami F, Marpaung YMAN, Duran A, Pham NQ. (2024) Pathogenicity of Chrysoporthe deuterocubensis on eucalypts in Indonesia. Southern Forests: a Journal of Forest Science 10.2989/20702620.2023.2279054
Caballol M, Serradó F, Barnes I, Camarero JJ, Valeriano C, Colangelo M, Oliva J. (2024) Climate, host ontogeny and pathogen structural specificity determine forest disease distribution at a regional scale. Ecography :e06974. 10.1111/ecog.06974 PDF
MISEV Consortium, Motaung T. (2024) Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. Journal of Extracellular Vesicles 13(2):e12404. 10.1002/jev2.12404
Pham NQ, Suzuki H, Duong TA, Wingfield BD, Barnes I, Duran A, Wingfield MJ. (2024) Cryptic sexual reproduction in an emerging Eucalyptus shoot and foliar pathogen. Plant Pathology 10.1111/ppa.13876
Francinah M. Ratsoma, Nthabiseng Z. Mokoena, Quentin C. Santana, Brenda D. Wingfield, Emma T. Steenkamp, Thabiso E. Motaung. (2024) Characterization of the Fusarium circinatum biofilm environmental response role. Journal of Basic Microbiology 00(00):1-16. 10.1002/jobm.202300536
Morrison EW, Duong TA, Garnas JR. (2024) A high-quality draft genome sequence of Neonectria faginata, causative agent of beech bark disease of Fagus grandifolia. Microbiology Resource Announcements 10.1128/mra.01048-23
Roberts E, Paap T, Roets F. (2024) Chemical control of the Polyphagous Shothole Borer beetle (PSHB, Euwallacea fornicatus) and Fusarium euwallaceae in American sweetgum (Liquidambar styraciflua). Journal of Plant Pathology 10.1007/s42161-023-01583-y
Fitza KNE, Allison J, Slippers B, Chingandu N, Reed SE. (2024) Diversity and potential sources of introduction of the Beech leaf nematode (Litylenchus crenatae< mccannii) to Ontario, Canada. Canadian Journal of Plant Pathology
Engelbrecht K, Raubenheimer I, Paap T, Neethling E, Roets F. (2024) Detection of Fusarium euwallaceae and its vector Euwallacea fornicatus on Pear (Pyrus communis) and in deciduous fruit orchards in South Africa. Australasian Plant Disease Notes 19(1) 10.1007/s13314-023-00524-z PDF
Visagie CM, Meijer M, Kraak B, Groenewald M, Houbraken J, Theelen B, Vorst Y, Boekhout T. (2024) Blastobotrys nigripullensis, a new yeast species isolated from a fungal outbreak on an ancient Roman shipwreck in the Netherlands. Antonie Van Leeuwenhoek 117:22. 10.1007/s10482-023-01898-x
De Vos L, van der Nest MA, Santana QC, van Wyk S, Leeuwendaal KS, Wingfield BD, Steenkamp ET. (2024) Chromosome-level assemblies for the pine pitch canker pathogen Fusarium circinatum. Pathogens 13(1):70. 10.3390/pathogens13010070
Chen BY, Wu WX, Chen SF. (2024) Wide distribution of Teratosphaeria epicoccoides and T. destructans associated with diseased Eucalyptus leaves in plantations in Southern China. Microorganisms 12:129. 10.3390/microorganisms12010129
Visagie CM, Yilmaz N, Kocsubé S, Frisvad JC, Hubka V, Samson RA, Houbraken J. (2024) A review of recently introduced Aspergillus, Penicillium, Talaromyces and other Eurotiales species. Studies in Mycology 107:1–66. 10.3114/sim.2024.107.01
Joubert M, van den Berg N, Theron J, Swart V. (2024) Global transcriptomic analysis in avocado nursery trees reveals differential gene expression during asymptomatic infection by avocado sunblotch viroid (ASBVd). Virus Research 339:199263. 10.1016/j.virusres.2023.199263. PDF
Crous PW, Costa MM, Kandemir H, Vermaas M, Vu D, Zhao L, Arumugam E, Flakus A, Jurjević Ž, Kaliyaperumal M, Mahadevakumar S, Murugadoss R, Shivas RG, Tan YP, Wingfield MJ, Abell SE, Marney TS, Danteswari C, Darmostuk V, Denchev CM, Denchev TT, Gené J, Etayo J, Gunaseelan S, Hubka V, Illescas T, Jansen GM, Kezo K, Kumar S, Larsson E, Mufeeda KT, Piatek M, Rodriguez-Flakus P, Sarma PVSRN, Stryjak-Bokacka M, Torres-Garcia D, Vauras J, Acal DA, Akulov A, Alhudaib K, Asif M, Balashov S, Baral H-O, Baturo-Cieśniewska A, Begerow D, Beja-Perreira A, Bianchinotti MV, Bilański P, Chandranayaka S, Chellappan N, Cowan DA, Custódio FA, Czachura P, Delgado G, De Silva NI, Dijksterhuis J, Dueñas M, Eisvand P, Fachada V, Fournier J, Fritsche Y, Fuljer F, Ganga KGG, Guerra MP, Hansen K, Hywel-Jones N, Ismail AM, Jacobs CR, Jankowiak R, Karich A, Kemler M, Kisło K, Klofac W, Krisai-Greilhuber I, Latha KPD, Lebeuf R, Lopes ME, Lumyong S, Maciá-Vicente JG, Maggs-Kölling G, Magistà D, Manimohan P, Martín MP, Mazur E, Mehrabi-Koushki M, Miller AN, Mombert A, Ossowska EA, Patejuk K, Pereira OL, Piskorski S, Plaza M, Podile AR, Polhorsky A, Pusz W, Raza W, Ruszkiewicz-Michalska M, Saba M, Sánchez RM, Singh R, Śliwa L, Smith ME, Stefenon VM, Strašiftáková D, Suwannarach N, Szczepańska K, Telleria MT, Tennakoon DS, Thines M, Thorn RG, Urbaniak J, van der Vegte M, Vasan V, Vila-Vićosa C, Voglmayr H, Wrzosek M, Zappelini J, Groenewald JZ. (2023) Fungal Planet description sheets: 1550-1613. Persoonia 51:280-417. 10.3767/persoonia.2023.51.08
Wilken PM, Lane FA, Steenkamp ET, Wingfield MJ, Wingfield BD. (2023) Unidirectional mating-type switching is underpinned by a conserved MAT1 locus architecture. Fungal genetics and Biology (103859) 10.1016/j.fgb.2023.103859