FABI News

FABI Events

FABI in a nutshell

Research Features

Pest/Pathogen of the Month: June

Scientific name: Rosellinia necatrix

Common names: White root root

Rosellinia necatrix Berl. ex Prill. is the causal agent of white root rot on various plant species, including almond, apple, peach, orange, pear, grape, coffee, olive and avocado. The genus Rosellinia consists of multiple species capable of causing disease, however, R. necatrix is the most widely distributed and devastating. R. necatrix was first identified in South Africa in 1974 on apple and pear trees in the Western Cape. It is an ascomycete, saprophytic pathogen that causes rotting of the roots and collapse of host conducting vessels leading to wilting and death. This fungus is soilborne and can survive in the soil on woody debris and organic matter for long periods of time. White root rot is difficult to diagnose since foliar and root symptoms are unspecific, therefore, the disease is often mistaken for Phytophthora root rot. Some hosts do not show any foliar symptoms until the plant suddenly dies, sometimes with fruit and leaves still attached to the tree. A distinguishing symptom is the presence of white mycelial growth on the root surface, in the soil and underneath/on top of the bark at the crown of the tree. Disease control options are limited due to the pathogen’s hardy resting structures, extensive soil penetration and ability to withstand drought, acidic soils and many common fungicides.

 

 

New Publications

Nadasen T, Buitendag C, Visser R, Welgemoed T, Hein I, Berger DK. (2025) A latent invader: transcriptomics reveals Cercospora zeina’s stealth infection strategy of maize and immune-activating effectors. Frontiers in Plant Science 16:1-23. 10.3389/fpls.2025.1703682
Shaw PL, Slippers B, Wingfield BD, Laurent B, Penaud B, Wingfield MJ, Crous PW, Bihon W, Duong TA. (2025) Chromosome-level genome assemblies for the latent pine pathogen, Diplodia sapinea, reveal two accessory chromosomes with distinct genomic features and evolutionary dynamics. G3 Genes|Genomes|Genetics :jkaf239. 10.1093/g3journal/jkaf239 PDF
Coelho MA, David-Palma M, Marincowitz S, Aylward J, Pham NQ, Yurkov AM, Wingfield BD, Wingfield MJ, Sheng S, Heitman J. (2025) The complex evolution and genomic dynamics of mating-type loci in Cryptococcus and Kwoniella. PLoS Biology 23:e3003417. 10.1371/journal.pbio.3003417
Visagie CM, Houbraken J, Overy DP, Sklenář F, Bensch K, Frisvad JC, Mack J, Perrone G, Samson RA, van Vuuren NI, Yilmaz N, Hubka V. (2025) From chaos to tranquillity: a modern approach to the identification, nomenclature and phylogeny of Aspergillus, Penicillium and other Eurotiales, including an updated accepted species list. Studies in Mycology 112:117–260. 10.3114/sim.2025.112.04
Vincent C, Singh A, Michalczyk GZ, Lane SL, Kaur R, Gill AR, Dziedzic N, De Silva K, Cho A, Cardoso AA, Alade DO, Tejera-Nieves M, Sharkey TD, Schmiege SC, Pelech E, Locke AM, Leisner CP, Teshome DT. (2025) Importance of measuring and reporting environmental conditions across plant science subdisciplines. Plant Physiology 199(2) 10.1093/plphys/kiaf405
Maake MM, Beukes CW, van der Nest MA, Avontuur JR, Muema EK, Stepkowski T, Venter SN, Steenkamp ET. (2025) Argyrolobium legumes from an African centre of endemism associate with novel Bradyrhizobium species harbouring unique sets of symbiosis genes. Molecular Phylogenetics and Evolution 214:108471. 10.1016/j.ympev.2025.108471
Joubert M, van den Berg N, Theron J, Swart V. (2025) Small RNAs derived from avocado sunblotch viroid and their association with bleaching symptoms: implications for pathogenesis in avocado sunblotch disease. Archives of Virology 170(10):205. 10.1007/s00705-025-06360-z PDF
Mavima L, Steenkamp ET, Beukes CW, Palmer M, De Meyer SE, James EK, Venter SN, Coetzee MPA. (2025) Estimated timeline for the evolution of symbiotic nitrogen fixing Paraburkholderia. Molecular Phylogenetics and Evolution 213:108447. 10.1016/j.ympev.2025.108447
Pham NQ, Liu FF, Duong TA, Wingfield BD, Chen SF, Wingfield MJ. (2025) Genetic diversity of Calonectria reteaudii isolates from infected Eucalyptus leaves and associated soils indicates a phyllosphere origin of the pathogen. Forest Pathology 55:e70037. 10.1111/efp.70037
Schröder ML, Hurley BP, Wingfield MJ, Slippers B, Garnas JR. (2025) Thermal limitations to the biological control of Gonipterus sp. n. 2 (Coleoptera: Curculionidae) in South African Eucalyptus plantations. Agricultural and Forest Entomology 10.1111/afe.70002