Rosellinia necatrix Berl. ex Prill. is an ascomycete pathogen that targets a multitude of different plant hosts in various tropical and temperate regions. As the causal agent of white root rot (WRR) it has caused significant economic losses within the agricultural and forestry industries. Symptoms and the presence of R. necatrix were confirmed in a commercial avocado orchard in the Limpopo Province (South Africa) in 2016. Since then, it has been detected in Mpumalanga, Western Cape and Kwa-Zulu Natal. Control options for WRR are limited due to the pathogen’s hardy resting structures, deep soil penetration, and resistance to common fungicides. Additionally, common avocado rootstocks in South Africa appear to be susceptible to white root rot. Currently, research in the ARP is aimed at understanding R. necatrix and it's affect on avocado, as well as potential control strategies.


 * Read more about Rosellinia necatrix on our Fact sheet here.


ARP Team Members

Phinda Magagula: The detection and management of Rosellinia necatrix in avocado orchards.

Tsakane Miyambo: Investigating the genetic diversity, population structure and virulence of Rosellinia necatrix in South Africa.




New Publications

Joubert M, van den Berg N, Theron J, Swart V. (2024) Global transcriptomic analysis in avocado nursery trees reveals differential gene expression during asymptomatic infection by avocado sunblotch viroid (ASBVd). Virus Research 339:199263. 10.1016/j.virusres.2023.199263. PDF
Anbu SP, Swart V, van den Berg N. (2023) Unmasking the invaders: NLR-mal function in plant defense. Frontiers in Plant Science 14:1307294. 10.3389/fpls.2023.1307294 PDF
Backer R, Naidoo S, van den Berg N. (2023) The expression of the NPR1-dependent defense response pathway genes in Persea americana (Mill.) following infection with Phytophthora cinnamomi. BMC Plant Biology 23(1):548. 10.1186/s12870-023-04541-z PDF
Kooverjee BB, Soma P, van der Nest MA, Scholtz MM, Neser FWC. (2023) Copy Number Variation Discovery in South African Nguni-Sired and Bonsmara-Sired Crossbred Cattle. Animals 13(15):2513. 10.3390/ani13152513
Dzomba EF, Van der Nest MA, Mthembu JNT, Soma P, Snyman MA, Chimonyo M, Muchadeyi FC. (2023) Selection signature analysis and genome-wide divergence of South African Merino breeds from their founders. Frontiers in Genetics 13:932272. 10.3389/fgene.2022.932272