FABI News

FABI Events

FABI in a nutshell

Research Features

Wood and bark borers comprise some of the most serious pests of forestry trees worldwide. These insects use the inside of bark and / or the wood to feed on and to make a home. Damage by these insects includes under bark girdling, extensive tunneling which weakens the tree, and / or the introduction of symbiotic fungi that weaken or kill the host. Although some wood boring beetles (such as Apate indistincta and Sinoxylon bellicosum) have been reported as minor pests of A. mearnsii, the current major wood and bark boring pests infest Eucalyptus and Pinus.

Wood borers of eucalypts

The cossid moth (Coryphodema tristis) is a major pest of Eucalyptus. This insect is reported to be native to South Africa with a wide range of native and introduced host plants, including grape vines (Vitis vinifera), quince (Cydonia oblonga) and bushwillows (Combretum sp.). It was first recorded infesting Eucalyptus in 2004. Strangely, despite its broad host range, the cossid moth has only been reported to infest E. nitens. No other Eucalyptus species has been infested, even when planted adjacent to highly infested E. nitens stands. The adult female cossid moth lays her eggs under the branches or in bark cracks. Emerging larvae first feed under the bark, but later instars bore into the sapwood. This insect is gregarious (feeds in groups) and causes extensive tunneling. Characteristic symptoms include large amounts of frass protruding from holes in the trunk, sawdust at the base of the trunk and a blackening of the trunk. The moths are also known as goat moths because of the unpleasant smell associated with their infestations. Trees often survive infestation by more than one generation of the cossid moth. But, in time trees weakened by the extensive tunneling are likely to be blown over by the wind. The tunneling also affects the quality and volume of the wood. The cossid moth has been reported to infest trees four years and older (Gebeyehu et al. 2004).

The Eucalyptus longhorn beetles (Phorocantha recurva and P. semipunctata) were accidentally introduced from Australia, and first recorded in South Africa in 1906. The adult female lays eggs under loose bark and the emerging larvae feed on the cambium and phloem layers. Fully grown larvae bore directly into the heartwood where they later pupate. The tunneling of the larvae can cause under bark girdling and reduce the value of the timber. However, these beetles are currently not considered major pests as they primarily infest dying trees.

Wood borers of pine

The Sirex woodwasp (Sirex noctilio) is one of the most serious pests of Pinus in South Africa (Hurley et al. 2008). This insect is native to Eurasia, but has been accidentally introduced to various southern hemisphere countries, and more recently to North America. In South Africa, the Sirex woodwasp was first detected in 1994 in Cape Town. It has since spread to the majority of pine growing areas in the country. The Sirex woodwasp has a symbiotic association with a fungus (Amylostereum areolatum). The adult female wasp places this fungus, together with its eggs and a toxic mucous, into the wood of pine trees. The fungus and mucous together overcome the defense of the tree and block the tracheids and thus nutrient transport. Attack by this insect usually results in tree death. Trees that survive the attack are usually attacked again the next year and killed. Importantly, the Sirex woodwasp primarily attacks stressed trees. Consequently, the most severe damage of this insect has been reported in areas where trees are stressed by factors such as drought and high stocking. The larvae tunnel in the wood, feeding on the fungus. Pupation occurs in the wood. The adult wasps do not feed and only live for one to two weeks.

The ambrosia beetles (Xyleborus and Xyleborinus spp.) also bore into the wood of Pinus. Unlike the Sirex woodwasp, these beetles are considered a minor pest. Infestations are often associated with cut or burnt trees. The beetles have a symbiotic association with fungi. The tunnels of these beetles and the staining of the wood from the fungi can make infested trees unsuitable for use as saw timber. Both the larvae and adults feed on the fungi.

Bark borers of pine

There are three species of bark beetles that are recorded to infest Pinus in South Africa. All three of these species have been accidentally introduced from the northern hemisphere. Bark beetles are considered as some of the most serious pest threats to forestry worldwide, but fortunately the three species currently in South Africa are only minor pests.

The Mediterranean pine engraver beetle (Orthotomicus erosus) feeds on the inner bark, generally on the main trunk. It attacks dead and dying trees, and can accelerate the death of dying trees by under bark girdling. It is also know to be associated with the fungus Ophiostoma ips that causes bluestain of the wood, thus decreasing its value as saw timber. The adults are dark brown and about 3 mm long. The pine bark beetle (Hylastes angustatus) feeds on the roots and stumps of dying trees. It is generally considered a secondary pest, although it has been known to kill seedlings by feeding on their roots and root-collars, thereby causing under bark girdling. In such cases, the pine bark beetle can become a serious pest. The adults are dark brown and about 4 mm long. The red-haired bark beetle (Hylurgus ligniperda) infests stumps or the base of weakened trees. The adults are dark brown and about 6 mm long (Tribe 1992).

Another bark borer on Pinus is the deodar weevil (Pissodes nemorensis). This insect breeds in dead or dying trees, but also infests the leaders of young healthy trees. The adult beetle lays its eggs under the bark and the larvae feed on the inner bark. When feeding occurs on the leaders of young trees, the leader is often killed from under bark girdling. This results in double leaders and malformation of the tree. It has been observed that such double leaders are more susceptible to infestation by the Sirex woodwasp. Pupation occurs in a chip-cocoon under the bark. Emerging adults are about 7 mm long with two creamy-white spots on their elytra (hind wings) (Gebeyehu and Wingfield 2003).

New Publications

Nzuza P, Schröder ML, Heim RJ, Daniels L, Slippers B, Hurley BP, Germishuizen I, Sivparsad B, Roux J, Maes WH. (2025) Assessing Gonipterus defoliation levels using multispectral unmanned aerial vehicle (UAV) data in Eucalyptus plantations. Ecological Informatics 90:103301. 10.1016/j.ecoinf.2025.103301
Msweli D, Geerts S, Nndanduleni M, Paap T. (2025) Evaluation of phosphite to protect a South African Proteaceae from Phytophthora root rot. Journal of Plant Pathology 10.1007/s42161-025-01945-8 PDF
Dewing C, Yilmaz N, Steenkamp ET, Wingfield BD, Visagie CM. (2025) Capturing the fungal diversity hidden in Eastern Cape dairy pastures. Mycological Progress 24(1):38. 10.1007/s11557-025-02059-2
Nel WJ, Duong TA, Fell S, Herron DA, Paap T, Wingfield MJ, de Beer ZW, Hulcr J, Johnson AJ. (2025) A checklist of South African bark and ambrosia beetles (Coleoptera: Curculionidae: Scolytinae, Platypodinae). Zootaxa 5648(1):1-101. 10.11646/zootaxa.5648.1.1
Dewing C, Yilmaz N, Steenkamp ET, Wingfield BD, Visagie CM. (2025) Capturing the fungal diversity hidden in Eastern Cape dairy pastures. Mycological Progress 24:38. 10.1007/s11557-025-02059-2 PDF
Chang R, Yan Z, Jiang J, Wang Y, Si H, Bose T, Miao C. (2025) Four novel endolichenic fungi from Usnea spp. (Lecanorales, Parmeliaceae) in Yunnan and Guizhou, China: Taxonomic description and preliminary assessment of bioactive potentials. MycoKeys 118:55–80. 10.3897/mycokeys.118.155248
Lötter A, Bruna T, Duong TA, Barry K, Lipzen A, Daum C, Yoshinaga Y, Grimwood J, Jenkins JW, Talag J, Borevitz J, Lovell JT, Schmutz J, Wegrzyn JL, Myburg AA. (2025) A haplotype-resolved reference genome for Eucalyptus grandis. G3 Genes|Genomes|Genetics 10.1093/g3journal/jkaf112
Wingfield MJ, Pham NQ, Marincowitz S, Wingfield BD. (2025) Cryphonectriaceae: Biodiverse and threatening tree pathogens in the tropics and southern hemisphere. Annual Review of Phytopathology 63 10.1146/annurev-phyto-121823-030316
Magagula P, Swart V, Fourie A, Vermeulen A, Nelson JH, van Rooyen Z, van den Berg N. (2025) Avocado rhizosphere community profiling: white root rot and its impact on microbial composition. Frontiers in Microbiology 16 10.3389/fmicb.2025.1583797
Marincowitz S, Pham NQ, Wingfield BD, Wingfield MJ. (2025) Microfungi associated with dying quiver trees (Aloidendron dichotomum) in South Africa. Fungal Systematics and Evolution 16:71–80. 10.3114/fuse.2025.16.5 PDF
Pham NQ, Marincowitz S, Crous PW, Wingfield MJ. (2025) Diversity of soil-borne Gliocladiopsis from Indonesia, Malaysia and Vietnam. Fungal Systematics and Evolution 16:81–92. 10.3114/fuse.2025.16.6 PDF
Tanney JB, Kemler M, Vivas M, Wingfield MJ, Slippers B. (2025) Silent invaders: The hidden threat of asymptomatic phytobiomes to forest biosecurity. New Phytologist 10.1111/nph.70209
Fick A, Swart V, Van den Berg N. (2025) In silico prediction method for plant Nucleotide-binding leucine-rich repeat- and pathogen effector interactions. The Plant Journal 122:e70169. 10.1111/tpj.70169
Bose T, Wingfield MJ, Brachmann A, Witfeld F, Begerow D, Kemler M, Dovey S, Roux J, Slippers B, Vivas M, Hammerbacher A. (2025) Removal of organic biomass in Eucalyptus plantations has a greater impact on fungal than on bacterial networks. Forest Ecology and Management 586:122734. 10.1016/j.foreco.2025.122734
Woodward S, Amin H, Mártin-Gárcia J, Solla A, Diaz-Vazquez R, Romeralo C, Alves A, Pinto G, Herron D, Fraser S, Zas R, Doğmuş-Lehtijärvi HT, Bonello P, Wingfield MJ, Witzell J, Diez JJ. (2025) Host-pathogen interactions in the Pine-Fusarium circinatum pathosystem and the potential for resistance deployment in the field. Forest Pathology 55(2):e70020. 10.1111/efp.70020
Maduke N, Slippers B, Van der Linde E, Wingfield M, Fourie G. (2025) Botryosphaeriaceae associated with racemes, fruits and leaves of macadamia in South Africa. Plant Pathology 0:1–15:1–15. 10.1111/ppa.14107
Hulcr J, Barnes I, Barnes M, Gazis R, Hammerbacher A, Johnson AJ, Lynch S, Lynn K, Marais GC, Mayers CG, Nel W, Villari C, Wingfield BD, Wingfield MJ. (2025) From forest to fungus: A roadmap to bark beetle mycobiome research. Phytoparasitica 53(45) 10.1007/s12600-025-01246-x
Knoppersen RS, Bose T, Coutinho TA, Hammerbacher A. (2025) Inside the Belly of the Beast: Exploring the Gut Bacterial Diversity of Gonipterus sp. n. 2. Microbial Ecology 88:27. 10.1007/s00248-025-02524-1
Bose T, Roux J, Titshall L, Dovey SB, Hammerbacher A. (2025) Mulching of post-harvest residues and delayed planting improves fungal biodiversity in South African Eucalyptus plantations and enhances plantation productivity. Applied Soil Ecology 210:106091. 10.1016/j.apsoil.2025.106091
Wychkuys KA, Giron E, Hyman G, Barona E, Castro-Llanos FA, Sheil D, Yu L, Du Z, Hurley BP, Slippers B, Germishuizen I, Bojacá CR, Rubiano M, Sathyapala S, Verchot L, Zhang W. (2025) Biological control protects carbon sequestration capacity of plantation forests. Entomologia Generalis 10.1127/entomologia/2025/3015 PDF
Balocchi F. (2025) Risk Analysis for Alien Taxa (RAAT) for Phytophthora cinnamomi in South Africa. 10.5281/zenodo.14858265
Paap T, Balocchi F, Wingfield MJ. (2025) The root rot pathogen Phytophthora cinnamomi: a long-overlooked threat to the Cape Floristic Region of South Africa. Biological Invasions 27(4) 10.1007/s10530-025-03570-z PDF
Harikrishnan K, Rajeshkumar KC, Patil PM, Jeewon R, Visagie CM. (2025) Aspergillus dhakephalkarii and A. patriciawiltshireae spp. nov., two new species in Aspergillus sect. Nigri ser. Japonici (Eurotiales, Aspergillaceae) from India. Phytotaxa 695:57–79. 10.11646/phytotaxa.695.1.2
Wilson A, van Dijk A, Marx B, du Plessis D, Terblanche G, Bornman S, Wilken PM, Duong TA, De Fine Licht HH, Wingfield BD. (2025) Extracting Protoplasts from Filamentous Fungi Using Extralyse, An Enzyme Used in the Wine Industry. Current Protocols 5(e70122):1-29. 10.1002/cpz1.70122
Dewing C, Visagie CM, Steenkamp ET, Wingfield BD, Yilmaz N. (2025) Three new species of Fusarium (Nectriaceae, Hypocreales) isolated from Eastern Cape dairy pastures in South Africa. MycoKeys 115:241–271. 10.3897/mycokeys.115.148914 PDF
Coertze S, Visagie CM, Rose L, Slippers B, Mostert D, Makhura T, de Villiers D, Basson E, Coetzee B, Read D. (2025) First report of Clavibacter nebraskensis, causing Goss’s bacterial leaf blight on maize (Zea mays L.) in South Africa. Plant Disease 10.1094/PDIS-01-25-0164-PDN PDF
van der Merwe E, Slippers B, Dittrich-Schröder G. (2025) Exploring artificial diets for the laboratory rearing of Sirex noctilio late-instar larvae: a qualitative study. Zenodo 10.5281/zenodo.15049303
Mapfumo P, Archer E, Swanevelder ZH, Wilken M, Creux N, Read DA. (2025) Plant Pathology. Genomic Characterisation of Bidens mottle virus in South Africa and an Assessment of the Impact on Helianthus annuus (Sunflower) in an Open Field Setting 10.1111/ppa.14089
Brasier CM, Grünwald NJ, Bourret TB, Govers F, Scanu B, Cooke DEL, Bose T, Hawksworth DL, Abad ZG, Albarracin MV, Alsultan W, Altamirano-Junqueria AE, Arifin AR, Arnet MJ, Aumentado HDR, Bakonyi J, Belisle WH, Benigno A, Bienapfl JC, Bilodeau GJ, Blair JE, Botella L, Brandano A, Cacciola SO, Carbone I, Castroagudin VL, Chaendaekattu N, Consford JD, Corcobado T, Covey PA, Daniels HA, Deidda A, Dorrance AE, Dort EN, Drenth A, Drizou F, Evangelisti E, Fajardo SN, Fang Y, Ference CM, Frankel SJ, Goss EM, Guest DI, Hardy GESJ, Harris ARH, Hawku MD, Heungens K, Hong C, Horner IJ, Horta Jung M, Iyanda OJ, Jamieson B, Jeffers SN, Judelson HS, Junaid M, Kalogeropoulou E, Kamoun S, Kang S, Kasuga T, Kudláček T, LeBoldus J, Lee CA, Li D, Llanos AK, Lopez-Nicora HD, Machado H, Di San Lio GM, Maia C, Mandal K, Manosalva P, Martin FN, Matson MEH, McDougal RL, McDowell JM, Michelmore RW, Milenković I, Moricca S, Mostowfizadeh-Ghalamfarsa R, Nagy Z, Nikolaeva EV, Ortega-López P, Paap T, Parada-Rojas CH, Peduto Hand F, Perez-Sierra A, Pettersson M, Prasad P, Puig AS, Raco M, Rajput NA, Ristaino JB, Rooney-Latham S, Seidl MF, Shamoun SF, Solla A, Spies CFJ, Sudermann MA, Swiecki TJ, Tian M, Tripathy S, Uematsu S, Van Poucke K, Vichou AE, Walter M, Webber JF, Williams NM, Wingfield MJ, Yadav D, Yang X, Jung T. (2025) Preserving the Biologically Coherent Generic Concept of Phytophthora, ‘Plant Destroyer’. Phytopathology 10.1094/PHYTO-11-24-0372-LE
Stazione L, Corley JC, Allison JD, Hurley BP, Lawson SA, Lantschner MV. (2025) Novel associations among insect herbivores and trees: Patterns of occurrence and damage on pines and eucalypts. Ecological Applications 35:e70018. 10.1002/eap.70018