FABI News

FABI Events

FABI in a nutshell

Research Features

What is the first thing that comes to mind when somebody mentions stink bugs? Everybody knows that I referred to their odour. Indeed, stink bugs are well known for producing blends of odoriferous compounds. This unpleasant smell come from a specific gland located in their abdomen where are storage severely compounds. These compounds are important for stink bugs to communicate and interact with their environment, especially in dense vegetation. Their odour can communicate an alarm signal amongst themselves, or signals of repulsion or attraction to their natural enemies.

 

Now I can see your question, why odoriferous compounds could be used to protect macadamia nuts? This is quite important for the management because these compounds could be used simultaneously to repulse stink bugs from their host plants, and to attract their natural enemies. In my research, we therefore study communication of stink bugs in order to understand how we can use these chemical messages as control options to protect macadamia orchards in South Africa.

Every year, the macadamia industry is affected by stink bugs, which results in several million rands of estimated crops loss. With no other solutions currently available, the industry is forced to spray a large quantity of insecticides. Although the utilisation of chemicals is a short-term control, understanding the biological characteristics of a species can provide clues to develop sustainable methods for the environment.

In our study, we looked at the two-spotted stink bug, Bathycoelia natalicola (family Pentatomidae). This native species of South Africa was discovered in the 1980s and represents the most dominant pest in macadamia orchards. We determined the gland contents of this bug at different ages, and between male and female. In addition, we analysed the behavioural effect of each of the components present in their blends. We extracted the compounds by two methods: directly by gland extractions, and indirectly with alive insects. We found in the odoriferous blend of males and females more than ten components with at least four main components. Our results show that these components are involved in the alarm behaviour of stink bugs and can be used as a defence toward their enemies. The next step will be to determine the minimum blend of compounds that are essential and sufficient to elicit an equivalent activity to that elicited by components released by live bugs, and the optimal ratio and rate of components that are repellent under field conditions. Identification of pheromone is required in order to exploit their full utility, but these results are the first step for South Africa in the

management control of B. natalicola in macadamia orchards.

Semiochemicals of stink bugs and management, a long journey

Many stink bugs are pests whose importance has increased in consequence of the expansion of

chemical utilisation, giving rise to several research on stink bug semiochemistry since the 80s.

Semiochemicals confer multiple communication functions and may be act as a pheromone,

allomone, kairomone or synomone, depending on the context which it is being used or

exploited by senders and receivers.

Pheromones are used for communication between members of the same species and can be

classify as sex, aggregation or alarm pheromone according to their functional role. Allomones

are components used against another species such as predators and parasitoids, which in the

case of stink bugs refer to their repellent smell. Conversely, natural enemies can used

kairomones of their prey to find them, where the benefit is for the receiver. Plant volatiles are

considered synomones when they attract natural enemies of stink bugs, conferring a mutual

benefit to the plant and enemies.

The utilisation of sex pheromones is the most well-known method of mating disruption in

insects, and widespread for lepidopteran pest control. Several studies on the sex pheromone

baited trap were conducted on stink bugs in the field. Nevertheless, compare to other insects,

stink bugs are more complex and are not easily caught in a simple sex pheromone trap. The

reason for this is their mating behaviour that results in a bimodal communication where a

chemical (sexual pheromone) and an acoustic signal (vibrations) are involved. Nevertheless,

scientists have more than one trick in their bag and they observed that stink bugs have an

aggregation capacity. Important research in USA on the invasive pest Halyomorpha halys, or

the brown marmorated stink bug, are currently conducted on commercial apple orchards where

a trap combined with his aggregation pheromone (discovered in 2014) are tested. Other field

experiments demonstrated the interest of the direct utilisation of the scent of stink bugs as a

spray in orchards to attract natural enemies.

As it the case in another country, the identification of semiochemicals of Bathycoelia natalicola

can provide a new tactic for integrated pest management in the macadamia orchards of South

Africa.

New Publications

Pham NQ, Liu FF, Duong TA, Wingfield BD, Chen SF, Wingfield MJ. (2025) Genetic diversity of Calonectria reteaudii isolates from infected Eucalyptus leaves and associated soils indicates a phyllosphere origin of the pathogen. Forest Pathology 55:e70037. 10.1111/efp.70037
Schröder ML, Hurley BP, Wingfield MJ, Slippers B, Garnas JR. (2025) Thermal limitations to the biological control of Gonipterus sp. n. 2 (Coleoptera: Curculionidae) in South African Eucalyptus plantations. Agricultural and Forest Entomology 10.1111/afe.70002
Lynn KMT, Wingfield MJ, Tarigan M, Durán A, Santos SA, Nel WJ, Barnes I. (2025) Investigating bark, ambrosia and nitidulid beetle (Coleoptera: Scolytinae and Nitidulidae) communities and their potential role in the movement of Ceratocystis manginecans in commercial forestry plantations in Riau, Indonesia. Agricultural and Forest Entomology 10.1111/afe.12698
Solís M, Hammerbacher A, Wingfield MJ, Naidoo S. (2025) Transcriptional responses of Eucalyptus to infection by an aggressive leaf blight pathogen reveal the role of host secondary metabolites during pathogen germination. Plant Molecular Biology 115 10.1007/s11103-025-01625-2
Coertze S, Coetzee B, Basson E, de Villiers D, Makhura T, Moster D, Slippers B, Rose LJ, Visagie CM, Read D. (2025) First Report of Clavibacter nebraskensis Causing Goss’s Bacterial Leaf Blight on Maize (Zea mays) in South Africa. Plant Disease 109:1580. 10.1094/PDIS-01-25-0164-PDN
Overy DP, Frisvad JC, Witte TE, Hicks CL, Hermans A, Sproule A, Louis-Seize G, Seifert KA, Yilmaz N, Price J, van Vuuren NI, Visagie CM. (2025) Chemodiversity of Penicillium isolated from alpine and arctic environments, including ten new species. Studies in Mycology 112:75–116. 10.3114/sim.2025.112.03
Harris MA, Kemler M, Slippers B, Hassel N, Tsamba J, Arthan W, Kellogg EA, AuBuchon-Elder T, Vorontsova MS, Archibald S, Hempson GP, Lehmann CER, Besnard G, Bergerow D, Brachmann A, Solofondranohatra CL, Greve M. (2025) Productivity drives leaf mycobiome diversity patterns at global and continetal scales. Global Ecology and Biogeography 34:e70094. 10.1111/geb.70094
Gao M, Yan Z, Liu Z, Jiang Y, Liu T, Miao X, Dai M, Bose T, Chang R. (2025) A novel Arthrobotrys species: Taxonomic characterization, nematicidal activity, and multi-omics insights into nematode predation. Biological Control 208:105853. 10.1016/j.biocontrol.2025.105853
Esterhuizen HJ, Slippers B, Bosman AS, Roux J, Jones W, Bose T, Hammerbacher A. (2025) Early detection of Phytophthora root rot in Eucalyptus using hyperspectral reflectance and machine learning. Computers and Electronics in Agriculture 237:110761. 10.1016/j.compag.2025.110761
Pham NQ, Wingfield BD, Marincowitz S, Brawner JT, Hulcr J, Wingfield MJ. (2025) Cryphonectria canker on Eucalyptus in Florida reconsidered. Forest Pathology 55:e70031. 10.1111/efp.70031
Crous PW, Catcheside DEA, Catcheside PS, Alfenas AC, Alfenas RF, Barreto RW, Lebel T, Balashov S, Broadbridge J, Jurjević , De la Peña-Lastra S, Hoffmann R, Mateos A, Riebesehl J, Shivas RG, Soliz Santander FF, Tan YP, Altés A, Bandini D, Carriconde F, Cazabonne J, Czachura P, Gryta H, Eyssartier G, Larsson E, Pereira OL, Rigueiro-Rodríguez A, Wingfield MJ, Ahmad W, Bibi S, Denman S, Esteve-Raventós F, Hussain S, Illescas T, Luangsa-ard JJ, Möller L, Mombert A, Noisripoom W, Olariaga I, Pancorbo F, Paz A, Piątek M, Polman-Short C, Suárez E, Afshan NS, Ali H, Arzanlou M, Ayer F, Barratt J, Bellanger J, Bidaud A, Bishop-Hurley SL, Bohm M, Bose T, Campo E, Chau NB, Çolak F, Cordeiro TRL, Cruz MO, Custódio FA, Couceiro A, Darmostuk V, Dearnaley JDW, De Azevedo Santiago ALCM, De Freitas LWS, Yáñez-Morales MDJ, Domnauer C, Dentinger B, Dhileepan K, De Souza JT, Dovana F, Eberhardt U, Eisvand P, Erhard A, Fachada V, García-Martín A, Groenewald M, Hammerbacher A, Harms K, Haroon S, Haqnawaz M, Henriques S, Hernández AJ, Jacobus LM, Jaen-Contreras D, Jangsantear P, Kaygusuz O, Knoppersen R, Kumar TKA, Lynch MJ, Mahiques R, Maraia GL, Marbach PAS, Mehrabi-Koushki M, Miller PR, Mongkolsamrit S, Moreau P, Oberlies NH, Oliveira JA, Orlovich D, Pérez-Méndez AS, Pinto A, Raja HA, Ramírez GH, Raphael B, Rodrigues A, Rodrigues H, Ramos DO, Safi A, Sarwar S, Saar I, Sánchez RM, Santana JS, Scrace J, Sales LS, Silva LNP, Stryjak-Bogacka M, Tacconi A, Thanh VN, Thomas A, Thuy NT, Toome M, Valdez-Carrazco JM, Van Vuuren NI, Vasey J, Vauras J, Vila-Viçosa C, Villarreal M, Visagie CM, Vizzini A, Whiteside EJ, Groenewald JZ. (2025) Fungal Planet description sheets: 1781–1866. Persoonia 54:327–587. 10.3114/persoonia.2025.54.10
Nzuza P, Schröder ML, Heim RJ, Daniels L, Slippers B, Hurley BP, Germishuizen I, Sivparsad B, Roux J, Maes WH. (2025) Assessing Gonipterus defoliation levels using multispectral unmanned aerial vehicle (UAV) data in Eucalyptus plantations. Ecological Informatics 90:103301. 10.1016/j.ecoinf.2025.103301
Kunene S, Mmushi TJ, Steenkamp E, Motaung T. (2025) Pinus-derived membrane vesicles disrupt pathogenic metabolism in fungi. plant biology 10.1111/plb.70069 PDF
Theron CA, Wingfield MJ, Ahumada R, Carnegie AJ, Fraser S, Rodas C, Barnes I. (2025) Diversity and distribution of Lophodermium species on non-native Pinus species in the southern hemisphere. Mycological Progress 24(44) 10.1007/s11557-025-02056-5
Msweli D, Geerts S, Nndanduleni M, Paap T. (2025) Evaluation of phosphite to protect a South African Proteaceae from Phytophthora root rot. Journal of Plant Pathology 10.1007/s42161-025-01945-8 PDF
Dewing C, Yilmaz N, Steenkamp ET, Wingfield BD, Visagie CM. (2025) Capturing the fungal diversity hidden in Eastern Cape dairy pastures. Mycological Progress 24(1):38. 10.1007/s11557-025-02059-2
Nel WJ, Duong TA, Fell S, Herron DA, Paap T, Wingfield MJ, de Beer ZW, Hulcr J, Johnson AJ. (2025) A checklist of South African bark and ambrosia beetles (Coleoptera: Curculionidae: Scolytinae, Platypodinae). Zootaxa 5648(1):1-101. 10.11646/zootaxa.5648.1.1
Dewing C, Yilmaz N, Steenkamp ET, Wingfield BD, Visagie CM. (2025) Capturing the fungal diversity hidden in Eastern Cape dairy pastures. Mycological Progress 24:38. 10.1007/s11557-025-02059-2 PDF
Chang R, Yan Z, Jiang J, Wang Y, Si H, Bose T, Miao C. (2025) Four novel endolichenic fungi from Usnea spp. (Lecanorales, Parmeliaceae) in Yunnan and Guizhou, China: Taxonomic description and preliminary assessment of bioactive potentials. MycoKeys 118:55–80. 10.3897/mycokeys.118.155248
Lötter A, Bruna T, Duong TA, Barry K, Lipzen A, Daum C, Yoshinaga Y, Grimwood J, Jenkins JW, Talag J, Borevitz J, Lovell JT, Schmutz J, Wegrzyn JL, Myburg AA. (2025) A haplotype-resolved reference genome for Eucalyptus grandis. G3 Genes|Genomes|Genetics 10.1093/g3journal/jkaf112
Wingfield MJ, Pham NQ, Marincowitz S, Wingfield BD. (2025) Cryphonectriaceae: Biodiverse and threatening tree pathogens in the tropics and southern hemisphere. Annual Review of Phytopathology 63 10.1146/annurev-phyto-121823-030316
Magagula P, Swart V, Fourie A, Vermeulen A, Nelson JH, van Rooyen Z, van den Berg N. (2025) Avocado rhizosphere community profiling: white root rot and its impact on microbial composition. Frontiers in Microbiology 16 10.3389/fmicb.2025.1583797
Marincowitz S, Pham NQ, Wingfield BD, Wingfield MJ. (2025) Microfungi associated with dying quiver trees (Aloidendron dichotomum) in South Africa. Fungal Systematics and Evolution 16:71–80. 10.3114/fuse.2025.16.5 PDF
Pham NQ, Marincowitz S, Crous PW, Wingfield MJ. (2025) Diversity of soil-borne Gliocladiopsis from Indonesia, Malaysia and Vietnam. Fungal Systematics and Evolution 16:81–92. 10.3114/fuse.2025.16.6 PDF
Tanney JB, Kemler M, Vivas M, Wingfield MJ, Slippers B. (2025) Silent invaders: The hidden threat of asymptomatic phytobiomes to forest biosecurity. New Phytologist 10.1111/nph.70209
Fick A, Swart V, Van den Berg N. (2025) In silico prediction method for plant Nucleotide-binding leucine-rich repeat- and pathogen effector interactions. The Plant Journal 122:e70169. 10.1111/tpj.70169
Bose T, Wingfield MJ, Brachmann A, Witfeld F, Begerow D, Kemler M, Dovey S, Roux J, Slippers B, Vivas M, Hammerbacher A. (2025) Removal of organic biomass in Eucalyptus plantations has a greater impact on fungal than on bacterial networks. Forest Ecology and Management 586:122734. 10.1016/j.foreco.2025.122734
Woodward S, Amin H, Mártin-Gárcia J, Solla A, Diaz-Vazquez R, Romeralo C, Alves A, Pinto G, Herron D, Fraser S, Zas R, Doğmuş-Lehtijärvi HT, Bonello P, Wingfield MJ, Witzell J, Diez JJ. (2025) Host-pathogen interactions in the Pine-Fusarium circinatum pathosystem and the potential for resistance deployment in the field. Forest Pathology 55(2):e70020. 10.1111/efp.70020
Maduke N, Slippers B, Van der Linde E, Wingfield M, Fourie G. (2025) Botryosphaeriaceae associated with racemes, fruits and leaves of macadamia in South Africa. Plant Pathology 0:1–15:1–15. 10.1111/ppa.14107
Hulcr J, Barnes I, Barnes M, Gazis R, Hammerbacher A, Johnson AJ, Lynch S, Lynn K, Marais GC, Mayers CG, Nel W, Villari C, Wingfield BD, Wingfield MJ. (2025) From forest to fungus: A roadmap to bark beetle mycobiome research. Phytoparasitica 53(45) 10.1007/s12600-025-01246-x
Knoppersen RS, Bose T, Coutinho TA, Hammerbacher A. (2025) Inside the Belly of the Beast: Exploring the Gut Bacterial Diversity of Gonipterus sp. n. 2. Microbial Ecology 88:27. 10.1007/s00248-025-02524-1
Bose T, Roux J, Titshall L, Dovey SB, Hammerbacher A. (2025) Mulching of post-harvest residues and delayed planting improves fungal biodiversity in South African Eucalyptus plantations and enhances plantation productivity. Applied Soil Ecology 210:106091. 10.1016/j.apsoil.2025.106091
Wychkuys KA, Giron E, Hyman G, Barona E, Castro-Llanos FA, Sheil D, Yu L, Du Z, Hurley BP, Slippers B, Germishuizen I, Bojacá CR, Rubiano M, Sathyapala S, Verchot L, Zhang W. (2025) Biological control protects carbon sequestration capacity of plantation forests. Entomologia Generalis 10.1127/entomologia/2025/3015 PDF
Balocchi F. (2025) Risk Analysis for Alien Taxa (RAAT) for Phytophthora cinnamomi in South Africa. 10.5281/zenodo.14858265
Paap T, Balocchi F, Wingfield MJ. (2025) The root rot pathogen Phytophthora cinnamomi: a long-overlooked threat to the Cape Floristic Region of South Africa. Biological Invasions 27(4) 10.1007/s10530-025-03570-z PDF
Harikrishnan K, Rajeshkumar KC, Patil PM, Jeewon R, Visagie CM. (2025) Aspergillus dhakephalkarii and A. patriciawiltshireae spp. nov., two new species in Aspergillus sect. Nigri ser. Japonici (Eurotiales, Aspergillaceae) from India. Phytotaxa 695:57–79. 10.11646/phytotaxa.695.1.2
Wilson A, van Dijk A, Marx B, du Plessis D, Terblanche G, Bornman S, Wilken PM, Duong TA, De Fine Licht HH, Wingfield BD. (2025) Extracting Protoplasts from Filamentous Fungi Using Extralyse, An Enzyme Used in the Wine Industry. Current Protocols 5(e70122):1-29. 10.1002/cpz1.70122
Dewing C, Visagie CM, Steenkamp ET, Wingfield BD, Yilmaz N. (2025) Three new species of Fusarium (Nectriaceae, Hypocreales) isolated from Eastern Cape dairy pastures in South Africa. MycoKeys 115:241–271. 10.3897/mycokeys.115.148914 PDF
Coertze S, Visagie CM, Rose L, Slippers B, Mostert D, Makhura T, de Villiers D, Basson E, Coetzee B, Read D. (2025) First report of Clavibacter nebraskensis, causing Goss’s bacterial leaf blight on maize (Zea mays L.) in South Africa. Plant Disease 10.1094/PDIS-01-25-0164-PDN PDF
van der Merwe E, Slippers B, Dittrich-Schröder G. (2025) Exploring artificial diets for the laboratory rearing of Sirex noctilio late-instar larvae: a qualitative study. Zenodo 10.5281/zenodo.15049303
Mapfumo P, Archer E, Swanevelder ZH, Wilken M, Creux N, Read DA. (2025) Plant Pathology. Genomic Characterisation of Bidens mottle virus in South Africa and an Assessment of the Impact on Helianthus annuus (Sunflower) in an Open Field Setting 10.1111/ppa.14089
Brasier CM, Grünwald NJ, Bourret TB, Govers F, Scanu B, Cooke DEL, Bose T, Hawksworth DL, Abad ZG, Albarracin MV, Alsultan W, Altamirano-Junqueria AE, Arifin AR, Arnet MJ, Aumentado HDR, Bakonyi J, Belisle WH, Benigno A, Bienapfl JC, Bilodeau GJ, Blair JE, Botella L, Brandano A, Cacciola SO, Carbone I, Castroagudin VL, Chaendaekattu N, Consford JD, Corcobado T, Covey PA, Daniels HA, Deidda A, Dorrance AE, Dort EN, Drenth A, Drizou F, Evangelisti E, Fajardo SN, Fang Y, Ference CM, Frankel SJ, Goss EM, Guest DI, Hardy GESJ, Harris ARH, Hawku MD, Heungens K, Hong C, Horner IJ, Horta Jung M, Iyanda OJ, Jamieson B, Jeffers SN, Judelson HS, Junaid M, Kalogeropoulou E, Kamoun S, Kang S, Kasuga T, Kudláček T, LeBoldus J, Lee CA, Li D, Llanos AK, Lopez-Nicora HD, Machado H, Di San Lio GM, Maia C, Mandal K, Manosalva P, Martin FN, Matson MEH, McDougal RL, McDowell JM, Michelmore RW, Milenković I, Moricca S, Mostowfizadeh-Ghalamfarsa R, Nagy Z, Nikolaeva EV, Ortega-López P, Paap T, Parada-Rojas CH, Peduto Hand F, Perez-Sierra A, Pettersson M, Prasad P, Puig AS, Raco M, Rajput NA, Ristaino JB, Rooney-Latham S, Seidl MF, Shamoun SF, Solla A, Spies CFJ, Sudermann MA, Swiecki TJ, Tian M, Tripathy S, Uematsu S, Van Poucke K, Vichou AE, Walter M, Webber JF, Williams NM, Wingfield MJ, Yadav D, Yang X, Jung T. (2025) Preserving the Biologically Coherent Generic Concept of Phytophthora, ‘Plant Destroyer’. Phytopathology 10.1094/PHYTO-11-24-0372-LE
Stazione L, Corley JC, Allison JD, Hurley BP, Lawson SA, Lantschner MV. (2025) Novel associations among insect herbivores and trees: Patterns of occurrence and damage on pines and eucalypts. Ecological Applications 35:e70018. 10.1002/eap.70018
van den Berg N, Magagula P, Backer R, Swart V. (2025) Towards developing an integrated approach for the treatment of white root rot in commercial avocado orchards. Phytoparasitica 53(32) 10.1007/s12600-025-01250-1 PDF
Townsend G, Hill M, Hurley BP, Roets F. (2025) Escalating threat: increasing impact of the polyphagous shot hole borer beetle, Euwallacea fornicatus, in nearly all major South African forest types. Biological Invasions 27 10.1007/s10530-025-03551-2 PDF
Makunde PT, Slippers B, Bush S, Hurley BP. (2025) Host specificity and host stage preference of Psyllaephagus species (Hymenoptera: Encyrtidae) towards invasive eucalypt psyllids (Hemiptera: Aphalaridae). Agricultural and Forest Entomology :1-13. 10.1111/afe.12679
Tarigan M, Wingfield MJ, Jami F, Oliveira LSS, Saha MA, Durán A, Pham NQ. (2025) Pathogenicity of Pythium myriotylum on Acacia crassicarpa and Acacia mangium × Acacia auriculiformis clones in Indonesia. Southern Forests: a Journal of Forest Science 87:1–5. 10.2989/20702620.2024.2432863
D’Angelo D, Hu H, Lahoz E, Risteski J, Steenkamp E T, Viscardi M, van der Nest M A, Wu Y, Yu H, Zhou J, Karandeni Dewage C S, Kotta-Loizou L I, Stotz H U, Fitt B D L, Huang Y, Hu Y, Kiss L, Sorrentino R, Nkomo T, Zhou X, Vaghefi N, Sonnekus B, Bose T, Cerrato D, Cozzolino L, Creux N, D’Agostino N, Fourie G, Fusco G, Hammerbacher A, Idnurm A, Wingfield BD. (2025) IMA GENOME - F20 A draft genome assembly of Agroathelia rolfsii, Ceratobasidium papillatum, Pyrenopeziza brassicae, Neopestalotiopsis macadamiae, Sphaerellopsis filum and genomic resources for Colletotrichum spaethianum and Colletotrichum fructicola. IMA Fungus 16:e141732. 10.3897/imafungus.16.141732
Espach A, Esterhuizen L, Africander N, Thiart S, Read DA, Pietersen G. (2025) First report of pepper ringspot virus on potato (Solanum tuberosum) in South Africa. Journal of Plant Pathology 10.1007/s42161-025-01887-1
Muema EK, van Lill M, Venter SN, Claassens R, Steenkamp ET. (2025) Mesorhizobium salmacidum sp. nov. and Mesorhizobium argentiipisi sp. nov. are symbionts of the dry-land forage legumes Lessertia diffusa and Calobota sericea. Antonie van Leeuwenhoek 19(3):1-20. 10.1007/s10482-025-02063-2